0
0
forked from blender/blender
blender/extern/lzma/LzmaEnc.c
Sergey Sharybin 87dcee0c0c Silence some annoying warnings when doing full build with strict flags
This mainly touches extern libraries and few debug-only places in intern.

Some summary:

- External libraries are not strict at all about missing declarations,
  so we can rather safely remove such warning together with other strict
  flags.

- Bullet has some static functions which are not used.
  Those were commented out.

- Carve now has some unused debug-only functions commented out as well.
  While we're on the way of getting rid of Carve, it makes sense to make
  things a bit cleaner for the time being.

- In LZMA we have some parts disabled which gives some set but unused
  variables which is rather correct.

- Elbeem had quite some variables set and never used because their usage
  is inside of debug-only code which is commented out.

Note about patching upstream libraries: surely one might say that we
have to make local patchset against this, but own experience says it
only gives extra work trying to merge such tweaks to a new upstream
version and usually it's just faster to re-apply such fixes again after
bundling new upstream library.
2016-04-22 10:59:15 +02:00

2281 lines
61 KiB
C

/* LzmaEnc.c -- LZMA Encoder
2009-02-02 : Igor Pavlov : Public domain */
#include <string.h>
/* #define SHOW_STAT */
/* #define SHOW_STAT2 */
#if defined(SHOW_STAT) || defined(SHOW_STAT2)
#include <stdio.h>
#endif
#include "LzmaEnc.h"
#include "LzFind.h"
#ifdef COMPRESS_MF_MT
#include "LzFindMt.h"
#endif
#ifdef SHOW_STAT
static int ttt = 0;
#endif
#define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
#define kBlockSize (9 << 10)
#define kUnpackBlockSize (1 << 18)
#define kMatchArraySize (1 << 21)
#define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
#define kNumMaxDirectBits (31)
#define kNumTopBits 24
#define kTopValue ((UInt32)1 << kNumTopBits)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5
#define kProbInitValue (kBitModelTotal >> 1)
#define kNumMoveReducingBits 4
#define kNumBitPriceShiftBits 4
#define kBitPrice (1 << kNumBitPriceShiftBits)
void LzmaEncProps_Init(CLzmaEncProps *p)
{
p->level = 5;
p->dictSize = p->mc = 0;
p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
p->writeEndMark = 0;
}
void LzmaEncProps_Normalize(CLzmaEncProps *p)
{
int level = p->level;
if (level < 0) level = 5;
p->level = level;
if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
if (p->lc < 0) p->lc = 3;
if (p->lp < 0) p->lp = 0;
if (p->pb < 0) p->pb = 2;
if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
if (p->numHashBytes < 0) p->numHashBytes = 4;
if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
if (p->numThreads < 0)
p->numThreads =
#ifdef COMPRESS_MF_MT
((p->btMode && p->algo) ? 2 : 1);
#else
1;
#endif
}
UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
{
CLzmaEncProps props = *props2;
LzmaEncProps_Normalize(&props);
return props.dictSize;
}
/* #define LZMA_LOG_BSR */
/* Define it for Intel's CPU */
#ifdef LZMA_LOG_BSR
#define kDicLogSizeMaxCompress 30
#define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); }
UInt32 GetPosSlot1(UInt32 pos)
{
UInt32 res;
BSR2_RET(pos, res);
return res;
}
#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
#define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
#else
#define kNumLogBits (9 + (int)sizeof(size_t) / 2)
#define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
void LzmaEnc_FastPosInit(Byte *g_FastPos)
{
int c = 2, slotFast;
g_FastPos[0] = 0;
g_FastPos[1] = 1;
for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
{
UInt32 k = (1 << ((slotFast >> 1) - 1));
UInt32 j;
for (j = 0; j < k; j++, c++)
g_FastPos[c] = (Byte)slotFast;
}
}
#define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \
(0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
res = p->g_FastPos[pos >> i] + (i * 2); }
/*
#define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
p->g_FastPos[pos >> 6] + 12 : \
p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
*/
#define GetPosSlot1(pos) p->g_FastPos[pos]
#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
#define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
#endif
#define LZMA_NUM_REPS 4
typedef unsigned CState;
typedef struct _COptimal
{
UInt32 price;
CState state;
int prev1IsChar;
int prev2;
UInt32 posPrev2;
UInt32 backPrev2;
UInt32 posPrev;
UInt32 backPrev;
UInt32 backs[LZMA_NUM_REPS];
} COptimal;
#define kNumOpts (1 << 12)
#define kNumLenToPosStates 4
#define kNumPosSlotBits 6
#define kDicLogSizeMin 0
#define kDicLogSizeMax 32
#define kDistTableSizeMax (kDicLogSizeMax * 2)
#define kNumAlignBits 4
#define kAlignTableSize (1 << kNumAlignBits)
#define kAlignMask (kAlignTableSize - 1)
#define kStartPosModelIndex 4
#define kEndPosModelIndex 14
#define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
#define kNumFullDistances (1 << (kEndPosModelIndex / 2))
#ifdef _LZMA_PROB32
#define CLzmaProb UInt32
#else
#define CLzmaProb UInt16
#endif
#define LZMA_PB_MAX 4
#define LZMA_LC_MAX 8
#define LZMA_LP_MAX 4
#define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
#define kLenNumLowBits 3
#define kLenNumLowSymbols (1 << kLenNumLowBits)
#define kLenNumMidBits 3
#define kLenNumMidSymbols (1 << kLenNumMidBits)
#define kLenNumHighBits 8
#define kLenNumHighSymbols (1 << kLenNumHighBits)
#define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
#define LZMA_MATCH_LEN_MIN 2
#define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
#define kNumStates 12
typedef struct
{
CLzmaProb choice;
CLzmaProb choice2;
CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
CLzmaProb high[kLenNumHighSymbols];
} CLenEnc;
typedef struct
{
CLenEnc p;
UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
UInt32 tableSize;
UInt32 counters[LZMA_NUM_PB_STATES_MAX];
} CLenPriceEnc;
typedef struct _CRangeEnc
{
UInt32 range;
Byte cache;
UInt64 low;
UInt64 cacheSize;
Byte *buf;
Byte *bufLim;
Byte *bufBase;
ISeqOutStream *outStream;
UInt64 processed;
SRes res;
} CRangeEnc;
typedef struct _CSeqInStreamBuf
{
ISeqInStream funcTable;
const Byte *data;
SizeT rem;
} CSeqInStreamBuf;
static SRes MyRead(void *pp, void *data, size_t *size)
{
size_t curSize = *size;
CSeqInStreamBuf *p = (CSeqInStreamBuf *)pp;
if (p->rem < curSize)
curSize = p->rem;
memcpy(data, p->data, curSize);
p->rem -= curSize;
p->data += curSize;
*size = curSize;
return SZ_OK;
}
typedef struct
{
CLzmaProb *litProbs;
CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
CLzmaProb isRep[kNumStates];
CLzmaProb isRepG0[kNumStates];
CLzmaProb isRepG1[kNumStates];
CLzmaProb isRepG2[kNumStates];
CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
CLzmaProb posAlignEncoder[1 << kNumAlignBits];
CLenPriceEnc lenEnc;
CLenPriceEnc repLenEnc;
UInt32 reps[LZMA_NUM_REPS];
UInt32 state;
} CSaveState;
typedef struct _CLzmaEnc
{
IMatchFinder matchFinder;
void *matchFinderObj;
#ifdef COMPRESS_MF_MT
Bool mtMode;
CMatchFinderMt matchFinderMt;
#endif
CMatchFinder matchFinderBase;
#ifdef COMPRESS_MF_MT
Byte pad[128];
#endif
UInt32 optimumEndIndex;
UInt32 optimumCurrentIndex;
UInt32 longestMatchLength;
UInt32 numPairs;
UInt32 numAvail;
COptimal opt[kNumOpts];
#ifndef LZMA_LOG_BSR
Byte g_FastPos[1 << kNumLogBits];
#endif
UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
UInt32 numFastBytes;
UInt32 additionalOffset;
UInt32 reps[LZMA_NUM_REPS];
UInt32 state;
UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
UInt32 alignPrices[kAlignTableSize];
UInt32 alignPriceCount;
UInt32 distTableSize;
unsigned lc, lp, pb;
unsigned lpMask, pbMask;
CLzmaProb *litProbs;
CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
CLzmaProb isRep[kNumStates];
CLzmaProb isRepG0[kNumStates];
CLzmaProb isRepG1[kNumStates];
CLzmaProb isRepG2[kNumStates];
CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
CLzmaProb posAlignEncoder[1 << kNumAlignBits];
CLenPriceEnc lenEnc;
CLenPriceEnc repLenEnc;
unsigned lclp;
Bool fastMode;
CRangeEnc rc;
Bool writeEndMark;
UInt64 nowPos64;
UInt32 matchPriceCount;
Bool finished;
Bool multiThread;
SRes result;
UInt32 dictSize;
UInt32 matchFinderCycles;
ISeqInStream *inStream;
CSeqInStreamBuf seqBufInStream;
CSaveState saveState;
} CLzmaEnc;
void LzmaEnc_SaveState(CLzmaEncHandle pp)
{
CLzmaEnc *p = (CLzmaEnc *)pp;
CSaveState *dest = &p->saveState;
int i;
dest->lenEnc = p->lenEnc;
dest->repLenEnc = p->repLenEnc;
dest->state = p->state;
for (i = 0; i < kNumStates; i++)
{
memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
}
for (i = 0; i < kNumLenToPosStates; i++)
memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
memcpy(dest->reps, p->reps, sizeof(p->reps));
memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
}
void LzmaEnc_RestoreState(CLzmaEncHandle pp)
{
CLzmaEnc *dest = (CLzmaEnc *)pp;
const CSaveState *p = &dest->saveState;
int i;
dest->lenEnc = p->lenEnc;
dest->repLenEnc = p->repLenEnc;
dest->state = p->state;
for (i = 0; i < kNumStates; i++)
{
memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
}
for (i = 0; i < kNumLenToPosStates; i++)
memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
memcpy(dest->reps, p->reps, sizeof(p->reps));
memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
}
SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
{
CLzmaEnc *p = (CLzmaEnc *)pp;
CLzmaEncProps props = *props2;
LzmaEncProps_Normalize(&props);
if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
props.dictSize > (1 << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30))
return SZ_ERROR_PARAM;
p->dictSize = props.dictSize;
p->matchFinderCycles = props.mc;
{
unsigned fb = props.fb;
if (fb < 5)
fb = 5;
if (fb > LZMA_MATCH_LEN_MAX)
fb = LZMA_MATCH_LEN_MAX;
p->numFastBytes = fb;
}
p->lc = props.lc;
p->lp = props.lp;
p->pb = props.pb;
p->fastMode = (props.algo == 0);
p->matchFinderBase.btMode = props.btMode;
{
UInt32 numHashBytes = 4;
if (props.btMode)
{
if (props.numHashBytes < 2)
numHashBytes = 2;
else if (props.numHashBytes < 4)
numHashBytes = props.numHashBytes;
}
p->matchFinderBase.numHashBytes = numHashBytes;
}
p->matchFinderBase.cutValue = props.mc;
p->writeEndMark = props.writeEndMark;
#ifdef COMPRESS_MF_MT
/*
if (newMultiThread != _multiThread)
{
ReleaseMatchFinder();
_multiThread = newMultiThread;
}
*/
p->multiThread = (props.numThreads > 1);
#endif
return SZ_OK;
}
static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
#define IsCharState(s) ((s) < 7)
#define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
#define kInfinityPrice (1 << 30)
static void RangeEnc_Construct(CRangeEnc *p)
{
p->outStream = 0;
p->bufBase = 0;
}
#define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
#define RC_BUF_SIZE (1 << 16)
static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
{
if (p->bufBase == 0)
{
p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
if (p->bufBase == 0)
return 0;
p->bufLim = p->bufBase + RC_BUF_SIZE;
}
return 1;
}
static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
{
alloc->Free(alloc, p->bufBase);
p->bufBase = 0;
}
static void RangeEnc_Init(CRangeEnc *p)
{
/* Stream.Init(); */
p->low = 0;
p->range = 0xFFFFFFFF;
p->cacheSize = 1;
p->cache = 0;
p->buf = p->bufBase;
p->processed = 0;
p->res = SZ_OK;
}
static void RangeEnc_FlushStream(CRangeEnc *p)
{
size_t num;
if (p->res != SZ_OK)
return;
num = p->buf - p->bufBase;
if (num != p->outStream->Write(p->outStream, p->bufBase, num))
p->res = SZ_ERROR_WRITE;
p->processed += num;
p->buf = p->bufBase;
}
static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
{
if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0)
{
Byte temp = p->cache;
do
{
Byte *buf = p->buf;
*buf++ = (Byte)(temp + (Byte)(p->low >> 32));
p->buf = buf;
if (buf == p->bufLim)
RangeEnc_FlushStream(p);
temp = 0xFF;
}
while (--p->cacheSize != 0);
p->cache = (Byte)((UInt32)p->low >> 24);
}
p->cacheSize++;
p->low = (UInt32)p->low << 8;
}
static void RangeEnc_FlushData(CRangeEnc *p)
{
int i;
for (i = 0; i < 5; i++)
RangeEnc_ShiftLow(p);
}
static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits)
{
do
{
p->range >>= 1;
p->low += p->range & (0 - ((value >> --numBits) & 1));
if (p->range < kTopValue)
{
p->range <<= 8;
RangeEnc_ShiftLow(p);
}
}
while (numBits != 0);
}
static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
{
UInt32 ttt = *prob;
UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
if (symbol == 0)
{
p->range = newBound;
ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
}
else
{
p->low += newBound;
p->range -= newBound;
ttt -= ttt >> kNumMoveBits;
}
*prob = (CLzmaProb)ttt;
if (p->range < kTopValue)
{
p->range <<= 8;
RangeEnc_ShiftLow(p);
}
}
static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
{
symbol |= 0x100;
do
{
RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
symbol <<= 1;
}
while (symbol < 0x10000);
}
static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
{
UInt32 offs = 0x100;
symbol |= 0x100;
do
{
matchByte <<= 1;
RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
symbol <<= 1;
offs &= ~(matchByte ^ symbol);
}
while (symbol < 0x10000);
}
void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
{
UInt32 i;
for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
{
const int kCyclesBits = kNumBitPriceShiftBits;
UInt32 w = i;
UInt32 bitCount = 0;
int j;
for (j = 0; j < kCyclesBits; j++)
{
w = w * w;
bitCount <<= 1;
while (w >= ((UInt32)1 << 16))
{
w >>= 1;
bitCount++;
}
}
ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
}
}
#define GET_PRICE(prob, symbol) \
p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
#define GET_PRICEa(prob, symbol) \
ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
#define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
#define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
#define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
#define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
{
UInt32 price = 0;
symbol |= 0x100;
do
{
price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
symbol <<= 1;
}
while (symbol < 0x10000);
return price;
}
static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
{
UInt32 price = 0;
UInt32 offs = 0x100;
symbol |= 0x100;
do
{
matchByte <<= 1;
price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
symbol <<= 1;
offs &= ~(matchByte ^ symbol);
}
while (symbol < 0x10000);
return price;
}
static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
{
UInt32 m = 1;
int i;
for (i = numBitLevels; i != 0;)
{
UInt32 bit;
i--;
bit = (symbol >> i) & 1;
RangeEnc_EncodeBit(rc, probs + m, bit);
m = (m << 1) | bit;
}
}
static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
{
UInt32 m = 1;
int i;
for (i = 0; i < numBitLevels; i++)
{
UInt32 bit = symbol & 1;
RangeEnc_EncodeBit(rc, probs + m, bit);
m = (m << 1) | bit;
symbol >>= 1;
}
}
static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
{
UInt32 price = 0;
symbol |= (1 << numBitLevels);
while (symbol != 1)
{
price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
symbol >>= 1;
}
return price;
}
static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
{
UInt32 price = 0;
UInt32 m = 1;
int i;
for (i = numBitLevels; i != 0; i--)
{
UInt32 bit = symbol & 1;
symbol >>= 1;
price += GET_PRICEa(probs[m], bit);
m = (m << 1) | bit;
}
return price;
}
static void LenEnc_Init(CLenEnc *p)
{
unsigned i;
p->choice = p->choice2 = kProbInitValue;
for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
p->low[i] = kProbInitValue;
for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
p->mid[i] = kProbInitValue;
for (i = 0; i < kLenNumHighSymbols; i++)
p->high[i] = kProbInitValue;
}
static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
{
if (symbol < kLenNumLowSymbols)
{
RangeEnc_EncodeBit(rc, &p->choice, 0);
RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
}
else
{
RangeEnc_EncodeBit(rc, &p->choice, 1);
if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
{
RangeEnc_EncodeBit(rc, &p->choice2, 0);
RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
}
else
{
RangeEnc_EncodeBit(rc, &p->choice2, 1);
RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
}
}
}
static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
{
UInt32 a0 = GET_PRICE_0a(p->choice);
UInt32 a1 = GET_PRICE_1a(p->choice);
UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
UInt32 i = 0;
for (i = 0; i < kLenNumLowSymbols; i++)
{
if (i >= numSymbols)
return;
prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
}
for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
{
if (i >= numSymbols)
return;
prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
}
for (; i < numSymbols; i++)
prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
}
static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
{
LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
p->counters[posState] = p->tableSize;
}
static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
{
UInt32 posState;
for (posState = 0; posState < numPosStates; posState++)
LenPriceEnc_UpdateTable(p, posState, ProbPrices);
}
static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
{
LenEnc_Encode(&p->p, rc, symbol, posState);
if (updatePrice)
if (--p->counters[posState] == 0)
LenPriceEnc_UpdateTable(p, posState, ProbPrices);
}
static void MovePos(CLzmaEnc *p, UInt32 num)
{
#ifdef SHOW_STAT
ttt += num;
printf("\n MovePos %d", num);
#endif
if (num != 0)
{
p->additionalOffset += num;
p->matchFinder.Skip(p->matchFinderObj, num);
}
}
static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
{
UInt32 lenRes = 0, numPairs;
p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
#ifdef SHOW_STAT
printf("\n i = %d numPairs = %d ", ttt, numPairs / 2);
ttt++;
{
UInt32 i;
for (i = 0; i < numPairs; i += 2)
printf("%2d %6d | ", p->matches[i], p->matches[i + 1]);
}
#endif
if (numPairs > 0)
{
lenRes = p->matches[numPairs - 2];
if (lenRes == p->numFastBytes)
{
const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
UInt32 distance = p->matches[numPairs - 1] + 1;
UInt32 numAvail = p->numAvail;
if (numAvail > LZMA_MATCH_LEN_MAX)
numAvail = LZMA_MATCH_LEN_MAX;
{
const Byte *pby2 = pby - distance;
for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
}
}
}
p->additionalOffset++;
*numDistancePairsRes = numPairs;
return lenRes;
}
#define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
#define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
#define IsShortRep(p) ((p)->backPrev == 0)
static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
{
return
GET_PRICE_0(p->isRepG0[state]) +
GET_PRICE_0(p->isRep0Long[state][posState]);
}
static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
{
UInt32 price;
if (repIndex == 0)
{
price = GET_PRICE_0(p->isRepG0[state]);
price += GET_PRICE_1(p->isRep0Long[state][posState]);
}
else
{
price = GET_PRICE_1(p->isRepG0[state]);
if (repIndex == 1)
price += GET_PRICE_0(p->isRepG1[state]);
else
{
price += GET_PRICE_1(p->isRepG1[state]);
price += GET_PRICE(p->isRepG2[state], repIndex - 2);
}
}
return price;
}
static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
{
return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
GetPureRepPrice(p, repIndex, state, posState);
}
static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
{
UInt32 posMem = p->opt[cur].posPrev;
UInt32 backMem = p->opt[cur].backPrev;
p->optimumEndIndex = cur;
do
{
if (p->opt[cur].prev1IsChar)
{
MakeAsChar(&p->opt[posMem])
p->opt[posMem].posPrev = posMem - 1;
if (p->opt[cur].prev2)
{
p->opt[posMem - 1].prev1IsChar = False;
p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
}
}
{
UInt32 posPrev = posMem;
UInt32 backCur = backMem;
backMem = p->opt[posPrev].backPrev;
posMem = p->opt[posPrev].posPrev;
p->opt[posPrev].backPrev = backCur;
p->opt[posPrev].posPrev = cur;
cur = posPrev;
}
}
while (cur != 0);
*backRes = p->opt[0].backPrev;
p->optimumCurrentIndex = p->opt[0].posPrev;
return p->optimumCurrentIndex;
}
#define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300)
static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
{
UInt32 numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur;
UInt32 matchPrice, repMatchPrice, normalMatchPrice;
UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS];
UInt32 *matches;
const Byte *data;
Byte curByte, matchByte;
if (p->optimumEndIndex != p->optimumCurrentIndex)
{
const COptimal *opt = &p->opt[p->optimumCurrentIndex];
UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
*backRes = opt->backPrev;
p->optimumCurrentIndex = opt->posPrev;
return lenRes;
}
p->optimumCurrentIndex = p->optimumEndIndex = 0;
if (p->additionalOffset == 0)
mainLen = ReadMatchDistances(p, &numPairs);
else
{
mainLen = p->longestMatchLength;
numPairs = p->numPairs;
}
numAvail = p->numAvail;
if (numAvail < 2)
{
*backRes = (UInt32)(-1);
return 1;
}
if (numAvail > LZMA_MATCH_LEN_MAX)
numAvail = LZMA_MATCH_LEN_MAX;
data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
repMaxIndex = 0;
for (i = 0; i < LZMA_NUM_REPS; i++)
{
UInt32 lenTest;
const Byte *data2;
reps[i] = p->reps[i];
data2 = data - (reps[i] + 1);
if (data[0] != data2[0] || data[1] != data2[1])
{
repLens[i] = 0;
continue;
}
for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
repLens[i] = lenTest;
if (lenTest > repLens[repMaxIndex])
repMaxIndex = i;
}
if (repLens[repMaxIndex] >= p->numFastBytes)
{
UInt32 lenRes;
*backRes = repMaxIndex;
lenRes = repLens[repMaxIndex];
MovePos(p, lenRes - 1);
return lenRes;
}
matches = p->matches;
if (mainLen >= p->numFastBytes)
{
*backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
MovePos(p, mainLen - 1);
return mainLen;
}
curByte = *data;
matchByte = *(data - (reps[0] + 1));
if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2)
{
*backRes = (UInt32)-1;
return 1;
}
p->opt[0].state = (CState)p->state;
posState = (position & p->pbMask);
{
const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
(!IsCharState(p->state) ?
LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
LitEnc_GetPrice(probs, curByte, p->ProbPrices));
}
MakeAsChar(&p->opt[1]);
matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
if (matchByte == curByte)
{
UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
if (shortRepPrice < p->opt[1].price)
{
p->opt[1].price = shortRepPrice;
MakeAsShortRep(&p->opt[1]);
}
}
lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]);
if (lenEnd < 2)
{
*backRes = p->opt[1].backPrev;
return 1;
}
p->opt[1].posPrev = 0;
for (i = 0; i < LZMA_NUM_REPS; i++)
p->opt[0].backs[i] = reps[i];
len = lenEnd;
do
p->opt[len--].price = kInfinityPrice;
while (len >= 2);
for (i = 0; i < LZMA_NUM_REPS; i++)
{
UInt32 repLen = repLens[i];
UInt32 price;
if (repLen < 2)
continue;
price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
do
{
UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
COptimal *opt = &p->opt[repLen];
if (curAndLenPrice < opt->price)
{
opt->price = curAndLenPrice;
opt->posPrev = 0;
opt->backPrev = i;
opt->prev1IsChar = False;
}
}
while (--repLen >= 2);
}
normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
if (len <= mainLen)
{
UInt32 offs = 0;
while (len > matches[offs])
offs += 2;
for (; ; len++)
{
COptimal *opt;
UInt32 distance = matches[offs + 1];
UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
UInt32 lenToPosState = GetLenToPosState(len);
if (distance < kNumFullDistances)
curAndLenPrice += p->distancesPrices[lenToPosState][distance];
else
{
UInt32 slot;
GetPosSlot2(distance, slot);
curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
}
opt = &p->opt[len];
if (curAndLenPrice < opt->price)
{
opt->price = curAndLenPrice;
opt->posPrev = 0;
opt->backPrev = distance + LZMA_NUM_REPS;
opt->prev1IsChar = False;
}
if (len == matches[offs])
{
offs += 2;
if (offs == numPairs)
break;
}
}
}
cur = 0;
#ifdef SHOW_STAT2
if (position >= 0)
{
unsigned i;
printf("\n pos = %4X", position);
for (i = cur; i <= lenEnd; i++)
printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price);
}
#endif
for (;;)
{
UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen;
UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice;
Bool nextIsChar;
Byte curByte, matchByte;
const Byte *data;
COptimal *curOpt;
COptimal *nextOpt;
cur++;
if (cur == lenEnd)
return Backward(p, backRes, cur);
newLen = ReadMatchDistances(p, &numPairs);
if (newLen >= p->numFastBytes)
{
p->numPairs = numPairs;
p->longestMatchLength = newLen;
return Backward(p, backRes, cur);
}
position++;
curOpt = &p->opt[cur];
posPrev = curOpt->posPrev;
if (curOpt->prev1IsChar)
{
posPrev--;
if (curOpt->prev2)
{
state = p->opt[curOpt->posPrev2].state;
if (curOpt->backPrev2 < LZMA_NUM_REPS)
state = kRepNextStates[state];
else
state = kMatchNextStates[state];
}
else
state = p->opt[posPrev].state;
state = kLiteralNextStates[state];
}
else
state = p->opt[posPrev].state;
if (posPrev == cur - 1)
{
if (IsShortRep(curOpt))
state = kShortRepNextStates[state];
else
state = kLiteralNextStates[state];
}
else
{
UInt32 pos;
const COptimal *prevOpt;
if (curOpt->prev1IsChar && curOpt->prev2)
{
posPrev = curOpt->posPrev2;
pos = curOpt->backPrev2;
state = kRepNextStates[state];
}
else
{
pos = curOpt->backPrev;
if (pos < LZMA_NUM_REPS)
state = kRepNextStates[state];
else
state = kMatchNextStates[state];
}
prevOpt = &p->opt[posPrev];
if (pos < LZMA_NUM_REPS)
{
UInt32 i;
reps[0] = prevOpt->backs[pos];
for (i = 1; i <= pos; i++)
reps[i] = prevOpt->backs[i - 1];
for (; i < LZMA_NUM_REPS; i++)
reps[i] = prevOpt->backs[i];
}
else
{
UInt32 i;
reps[0] = (pos - LZMA_NUM_REPS);
for (i = 1; i < LZMA_NUM_REPS; i++)
reps[i] = prevOpt->backs[i - 1];
}
}
curOpt->state = (CState)state;
curOpt->backs[0] = reps[0];
curOpt->backs[1] = reps[1];
curOpt->backs[2] = reps[2];
curOpt->backs[3] = reps[3];
curPrice = curOpt->price;
nextIsChar = False;
data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
curByte = *data;
matchByte = *(data - (reps[0] + 1));
posState = (position & p->pbMask);
curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
{
const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
curAnd1Price +=
(!IsCharState(state) ?
LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
LitEnc_GetPrice(probs, curByte, p->ProbPrices));
}
nextOpt = &p->opt[cur + 1];
if (curAnd1Price < nextOpt->price)
{
nextOpt->price = curAnd1Price;
nextOpt->posPrev = cur;
MakeAsChar(nextOpt);
nextIsChar = True;
}
matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
{
UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
if (shortRepPrice <= nextOpt->price)
{
nextOpt->price = shortRepPrice;
nextOpt->posPrev = cur;
MakeAsShortRep(nextOpt);
nextIsChar = True;
}
}
numAvailFull = p->numAvail;
{
UInt32 temp = kNumOpts - 1 - cur;
if (temp < numAvailFull)
numAvailFull = temp;
}
if (numAvailFull < 2)
continue;
numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
if (!nextIsChar && matchByte != curByte) /* speed optimization */
{
/* try Literal + rep0 */
UInt32 temp;
UInt32 lenTest2;
const Byte *data2 = data - (reps[0] + 1);
UInt32 limit = p->numFastBytes + 1;
if (limit > numAvailFull)
limit = numAvailFull;
for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
lenTest2 = temp - 1;
if (lenTest2 >= 2)
{
UInt32 state2 = kLiteralNextStates[state];
UInt32 posStateNext = (position + 1) & p->pbMask;
UInt32 nextRepMatchPrice = curAnd1Price +
GET_PRICE_1(p->isMatch[state2][posStateNext]) +
GET_PRICE_1(p->isRep[state2]);
/* for (; lenTest2 >= 2; lenTest2--) */
{
UInt32 curAndLenPrice;
COptimal *opt;
UInt32 offset = cur + 1 + lenTest2;
while (lenEnd < offset)
p->opt[++lenEnd].price = kInfinityPrice;
curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
opt = &p->opt[offset];
if (curAndLenPrice < opt->price)
{
opt->price = curAndLenPrice;
opt->posPrev = cur + 1;
opt->backPrev = 0;
opt->prev1IsChar = True;
opt->prev2 = False;
}
}
}
}
startLen = 2; /* speed optimization */
{
UInt32 repIndex;
for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
{
UInt32 lenTest;
UInt32 lenTestTemp;
UInt32 price;
const Byte *data2 = data - (reps[repIndex] + 1);
if (data[0] != data2[0] || data[1] != data2[1])
continue;
for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
while (lenEnd < cur + lenTest)
p->opt[++lenEnd].price = kInfinityPrice;
lenTestTemp = lenTest;
price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
do
{
UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
COptimal *opt = &p->opt[cur + lenTest];
if (curAndLenPrice < opt->price)
{
opt->price = curAndLenPrice;
opt->posPrev = cur;
opt->backPrev = repIndex;
opt->prev1IsChar = False;
}
}
while (--lenTest >= 2);
lenTest = lenTestTemp;
if (repIndex == 0)
startLen = lenTest + 1;
/* if (_maxMode) */
{
UInt32 lenTest2 = lenTest + 1;
UInt32 limit = lenTest2 + p->numFastBytes;
UInt32 nextRepMatchPrice;
if (limit > numAvailFull)
limit = numAvailFull;
for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
lenTest2 -= lenTest + 1;
if (lenTest2 >= 2)
{
UInt32 state2 = kRepNextStates[state];
UInt32 posStateNext = (position + lenTest) & p->pbMask;
UInt32 curAndLenCharPrice =
price + p->repLenEnc.prices[posState][lenTest - 2] +
GET_PRICE_0(p->isMatch[state2][posStateNext]) +
LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
data[lenTest], data2[lenTest], p->ProbPrices);
state2 = kLiteralNextStates[state2];
posStateNext = (position + lenTest + 1) & p->pbMask;
nextRepMatchPrice = curAndLenCharPrice +
GET_PRICE_1(p->isMatch[state2][posStateNext]) +
GET_PRICE_1(p->isRep[state2]);
/* for (; lenTest2 >= 2; lenTest2--) */
{
UInt32 curAndLenPrice;
COptimal *opt;
UInt32 offset = cur + lenTest + 1 + lenTest2;
while (lenEnd < offset)
p->opt[++lenEnd].price = kInfinityPrice;
curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
opt = &p->opt[offset];
if (curAndLenPrice < opt->price)
{
opt->price = curAndLenPrice;
opt->posPrev = cur + lenTest + 1;
opt->backPrev = 0;
opt->prev1IsChar = True;
opt->prev2 = True;
opt->posPrev2 = cur;
opt->backPrev2 = repIndex;
}
}
}
}
}
}
/* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
if (newLen > numAvail)
{
newLen = numAvail;
for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
matches[numPairs] = newLen;
numPairs += 2;
}
if (newLen >= startLen)
{
UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
UInt32 offs, curBack, posSlot;
UInt32 lenTest;
while (lenEnd < cur + newLen)
p->opt[++lenEnd].price = kInfinityPrice;
offs = 0;
while (startLen > matches[offs])
offs += 2;
curBack = matches[offs + 1];
GetPosSlot2(curBack, posSlot);
for (lenTest = /*2*/ startLen; ; lenTest++)
{
UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
UInt32 lenToPosState = GetLenToPosState(lenTest);
COptimal *opt;
if (curBack < kNumFullDistances)
curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
else
curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
opt = &p->opt[cur + lenTest];
if (curAndLenPrice < opt->price)
{
opt->price = curAndLenPrice;
opt->posPrev = cur;
opt->backPrev = curBack + LZMA_NUM_REPS;
opt->prev1IsChar = False;
}
if (/*_maxMode && */lenTest == matches[offs])
{
/* Try Match + Literal + Rep0 */
const Byte *data2 = data - (curBack + 1);
UInt32 lenTest2 = lenTest + 1;
UInt32 limit = lenTest2 + p->numFastBytes;
UInt32 nextRepMatchPrice;
if (limit > numAvailFull)
limit = numAvailFull;
for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
lenTest2 -= lenTest + 1;
if (lenTest2 >= 2)
{
UInt32 state2 = kMatchNextStates[state];
UInt32 posStateNext = (position + lenTest) & p->pbMask;
UInt32 curAndLenCharPrice = curAndLenPrice +
GET_PRICE_0(p->isMatch[state2][posStateNext]) +
LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
data[lenTest], data2[lenTest], p->ProbPrices);
state2 = kLiteralNextStates[state2];
posStateNext = (posStateNext + 1) & p->pbMask;
nextRepMatchPrice = curAndLenCharPrice +
GET_PRICE_1(p->isMatch[state2][posStateNext]) +
GET_PRICE_1(p->isRep[state2]);
/* for (; lenTest2 >= 2; lenTest2--) */
{
UInt32 offset = cur + lenTest + 1 + lenTest2;
UInt32 curAndLenPrice;
COptimal *opt;
while (lenEnd < offset)
p->opt[++lenEnd].price = kInfinityPrice;
curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
opt = &p->opt[offset];
if (curAndLenPrice < opt->price)
{
opt->price = curAndLenPrice;
opt->posPrev = cur + lenTest + 1;
opt->backPrev = 0;
opt->prev1IsChar = True;
opt->prev2 = True;
opt->posPrev2 = cur;
opt->backPrev2 = curBack + LZMA_NUM_REPS;
}
}
}
offs += 2;
if (offs == numPairs)
break;
curBack = matches[offs + 1];
if (curBack >= kNumFullDistances)
GetPosSlot2(curBack, posSlot);
}
}
}
}
}
#define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
{
UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i;
const Byte *data;
const UInt32 *matches;
if (p->additionalOffset == 0)
mainLen = ReadMatchDistances(p, &numPairs);
else
{
mainLen = p->longestMatchLength;
numPairs = p->numPairs;
}
numAvail = p->numAvail;
*backRes = (UInt32)-1;
if (numAvail < 2)
return 1;
if (numAvail > LZMA_MATCH_LEN_MAX)
numAvail = LZMA_MATCH_LEN_MAX;
data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
repLen = repIndex = 0;
for (i = 0; i < LZMA_NUM_REPS; i++)
{
UInt32 len;
const Byte *data2 = data - (p->reps[i] + 1);
if (data[0] != data2[0] || data[1] != data2[1])
continue;
for (len = 2; len < numAvail && data[len] == data2[len]; len++);
if (len >= p->numFastBytes)
{
*backRes = i;
MovePos(p, len - 1);
return len;
}
if (len > repLen)
{
repIndex = i;
repLen = len;
}
}
matches = p->matches;
if (mainLen >= p->numFastBytes)
{
*backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
MovePos(p, mainLen - 1);
return mainLen;
}
mainDist = 0; /* for GCC */
if (mainLen >= 2)
{
mainDist = matches[numPairs - 1];
while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1)
{
if (!ChangePair(matches[numPairs - 3], mainDist))
break;
numPairs -= 2;
mainLen = matches[numPairs - 2];
mainDist = matches[numPairs - 1];
}
if (mainLen == 2 && mainDist >= 0x80)
mainLen = 1;
}
if (repLen >= 2 && (
(repLen + 1 >= mainLen) ||
(repLen + 2 >= mainLen && mainDist >= (1 << 9)) ||
(repLen + 3 >= mainLen && mainDist >= (1 << 15))))
{
*backRes = repIndex;
MovePos(p, repLen - 1);
return repLen;
}
if (mainLen < 2 || numAvail <= 2)
return 1;
p->longestMatchLength = ReadMatchDistances(p, &p->numPairs);
if (p->longestMatchLength >= 2)
{
UInt32 newDistance = matches[p->numPairs - 1];
if ((p->longestMatchLength >= mainLen && newDistance < mainDist) ||
(p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) ||
(p->longestMatchLength > mainLen + 1) ||
(p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist)))
return 1;
}
data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
for (i = 0; i < LZMA_NUM_REPS; i++)
{
UInt32 len, limit;
const Byte *data2 = data - (p->reps[i] + 1);
if (data[0] != data2[0] || data[1] != data2[1])
continue;
limit = mainLen - 1;
for (len = 2; len < limit && data[len] == data2[len]; len++);
if (len >= limit)
return 1;
}
*backRes = mainDist + LZMA_NUM_REPS;
MovePos(p, mainLen - 2);
return mainLen;
}
static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
{
UInt32 len;
RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
p->state = kMatchNextStates[p->state];
len = LZMA_MATCH_LEN_MIN;
LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
}
static SRes CheckErrors(CLzmaEnc *p)
{
if (p->result != SZ_OK)
return p->result;
if (p->rc.res != SZ_OK)
p->result = SZ_ERROR_WRITE;
if (p->matchFinderBase.result != SZ_OK)
p->result = SZ_ERROR_READ;
if (p->result != SZ_OK)
p->finished = True;
return p->result;
}
static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
{
/* ReleaseMFStream(); */
p->finished = True;
if (p->writeEndMark)
WriteEndMarker(p, nowPos & p->pbMask);
RangeEnc_FlushData(&p->rc);
RangeEnc_FlushStream(&p->rc);
return CheckErrors(p);
}
static void FillAlignPrices(CLzmaEnc *p)
{
UInt32 i;
for (i = 0; i < kAlignTableSize; i++)
p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
p->alignPriceCount = 0;
}
static void FillDistancesPrices(CLzmaEnc *p)
{
UInt32 tempPrices[kNumFullDistances];
UInt32 i, lenToPosState;
for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
{
UInt32 posSlot = GetPosSlot1(i);
UInt32 footerBits = ((posSlot >> 1) - 1);
UInt32 base = ((2 | (posSlot & 1)) << footerBits);
tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
}
for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
{
UInt32 posSlot;
const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
{
UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
UInt32 i;
for (i = 0; i < kStartPosModelIndex; i++)
distancesPrices[i] = posSlotPrices[i];
for (; i < kNumFullDistances; i++)
distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
}
}
p->matchPriceCount = 0;
}
void LzmaEnc_Construct(CLzmaEnc *p)
{
RangeEnc_Construct(&p->rc);
MatchFinder_Construct(&p->matchFinderBase);
#ifdef COMPRESS_MF_MT
MatchFinderMt_Construct(&p->matchFinderMt);
p->matchFinderMt.MatchFinder = &p->matchFinderBase;
#endif
{
CLzmaEncProps props;
LzmaEncProps_Init(&props);
LzmaEnc_SetProps(p, &props);
}
#ifndef LZMA_LOG_BSR
LzmaEnc_FastPosInit(p->g_FastPos);
#endif
LzmaEnc_InitPriceTables(p->ProbPrices);
p->litProbs = 0;
p->saveState.litProbs = 0;
}
CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
{
void *p;
p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
if (p != 0)
LzmaEnc_Construct((CLzmaEnc *)p);
return p;
}
void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
{
alloc->Free(alloc, p->litProbs);
alloc->Free(alloc, p->saveState.litProbs);
p->litProbs = 0;
p->saveState.litProbs = 0;
}
void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
{
#ifdef COMPRESS_MF_MT
MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
#endif
MatchFinder_Free(&p->matchFinderBase, allocBig);
LzmaEnc_FreeLits(p, alloc);
RangeEnc_Free(&p->rc, alloc);
}
void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
{
LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
alloc->Free(alloc, p);
}
static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
{
UInt32 nowPos32, startPos32;
if (p->inStream != 0)
{
p->matchFinderBase.stream = p->inStream;
p->matchFinder.Init(p->matchFinderObj);
p->inStream = 0;
}
if (p->finished)
return p->result;
RINOK(CheckErrors(p));
nowPos32 = (UInt32)p->nowPos64;
startPos32 = nowPos32;
if (p->nowPos64 == 0)
{
UInt32 numPairs;
Byte curByte;
if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
return Flush(p, nowPos32);
ReadMatchDistances(p, &numPairs);
RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
p->state = kLiteralNextStates[p->state];
curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
LitEnc_Encode(&p->rc, p->litProbs, curByte);
p->additionalOffset--;
nowPos32++;
}
if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
for (;;)
{
UInt32 pos, len, posState;
if (p->fastMode)
len = GetOptimumFast(p, &pos);
else
len = GetOptimum(p, nowPos32, &pos);
#ifdef SHOW_STAT2
printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos);
#endif
posState = nowPos32 & p->pbMask;
if (len == 1 && pos == (UInt32)-1)
{
Byte curByte;
CLzmaProb *probs;
const Byte *data;
RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
curByte = *data;
probs = LIT_PROBS(nowPos32, *(data - 1));
if (IsCharState(p->state))
LitEnc_Encode(&p->rc, probs, curByte);
else
LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
p->state = kLiteralNextStates[p->state];
}
else
{
RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
if (pos < LZMA_NUM_REPS)
{
RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
if (pos == 0)
{
RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
}
else
{
UInt32 distance = p->reps[pos];
RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
if (pos == 1)
RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
else
{
RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
if (pos == 3)
p->reps[3] = p->reps[2];
p->reps[2] = p->reps[1];
}
p->reps[1] = p->reps[0];
p->reps[0] = distance;
}
if (len == 1)
p->state = kShortRepNextStates[p->state];
else
{
LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
p->state = kRepNextStates[p->state];
}
}
else
{
UInt32 posSlot;
RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
p->state = kMatchNextStates[p->state];
LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
pos -= LZMA_NUM_REPS;
GetPosSlot(pos, posSlot);
RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
if (posSlot >= kStartPosModelIndex)
{
UInt32 footerBits = ((posSlot >> 1) - 1);
UInt32 base = ((2 | (posSlot & 1)) << footerBits);
UInt32 posReduced = pos - base;
if (posSlot < kEndPosModelIndex)
RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
else
{
RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
p->alignPriceCount++;
}
}
p->reps[3] = p->reps[2];
p->reps[2] = p->reps[1];
p->reps[1] = p->reps[0];
p->reps[0] = pos;
p->matchPriceCount++;
}
}
p->additionalOffset -= len;
nowPos32 += len;
if (p->additionalOffset == 0)
{
UInt32 processed;
if (!p->fastMode)
{
if (p->matchPriceCount >= (1 << 7))
FillDistancesPrices(p);
if (p->alignPriceCount >= kAlignTableSize)
FillAlignPrices(p);
}
if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
break;
processed = nowPos32 - startPos32;
if (useLimits)
{
if (processed + kNumOpts + 300 >= maxUnpackSize ||
RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
break;
}
else if (processed >= (1 << 15))
{
p->nowPos64 += nowPos32 - startPos32;
return CheckErrors(p);
}
}
}
p->nowPos64 += nowPos32 - startPos32;
return Flush(p, nowPos32);
}
#define kBigHashDicLimit ((UInt32)1 << 24)
static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
{
UInt32 beforeSize = kNumOpts;
if (!RangeEnc_Alloc(&p->rc, alloc))
return SZ_ERROR_MEM;
#ifdef COMPRESS_MF_MT
Bool btMode = (p->matchFinderBase.btMode != 0);;
p->mtMode = (p->multiThread && !p->fastMode && btMode);
#endif
{
unsigned lclp = p->lc + p->lp;
if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
{
LzmaEnc_FreeLits(p, alloc);
p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
if (p->litProbs == 0 || p->saveState.litProbs == 0)
{
LzmaEnc_FreeLits(p, alloc);
return SZ_ERROR_MEM;
}
p->lclp = lclp;
}
}
p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
if (beforeSize + p->dictSize < keepWindowSize)
beforeSize = keepWindowSize - p->dictSize;
#ifdef COMPRESS_MF_MT
if (p->mtMode)
{
RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
p->matchFinderObj = &p->matchFinderMt;
MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
}
else
#endif
{
if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
return SZ_ERROR_MEM;
p->matchFinderObj = &p->matchFinderBase;
MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
}
return SZ_OK;
}
void LzmaEnc_Init(CLzmaEnc *p)
{
UInt32 i;
p->state = 0;
for (i = 0 ; i < LZMA_NUM_REPS; i++)
p->reps[i] = 0;
RangeEnc_Init(&p->rc);
for (i = 0; i < kNumStates; i++)
{
UInt32 j;
for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
{
p->isMatch[i][j] = kProbInitValue;
p->isRep0Long[i][j] = kProbInitValue;
}
p->isRep[i] = kProbInitValue;
p->isRepG0[i] = kProbInitValue;
p->isRepG1[i] = kProbInitValue;
p->isRepG2[i] = kProbInitValue;
}
{
UInt32 num = 0x300 << (p->lp + p->lc);
for (i = 0; i < num; i++)
p->litProbs[i] = kProbInitValue;
}
{
for (i = 0; i < kNumLenToPosStates; i++)
{
CLzmaProb *probs = p->posSlotEncoder[i];
UInt32 j;
for (j = 0; j < (1 << kNumPosSlotBits); j++)
probs[j] = kProbInitValue;
}
}
{
for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
p->posEncoders[i] = kProbInitValue;
}
LenEnc_Init(&p->lenEnc.p);
LenEnc_Init(&p->repLenEnc.p);
for (i = 0; i < (1 << kNumAlignBits); i++)
p->posAlignEncoder[i] = kProbInitValue;
p->optimumEndIndex = 0;
p->optimumCurrentIndex = 0;
p->additionalOffset = 0;
p->pbMask = (1 << p->pb) - 1;
p->lpMask = (1 << p->lp) - 1;
}
void LzmaEnc_InitPrices(CLzmaEnc *p)
{
if (!p->fastMode)
{
FillDistancesPrices(p);
FillAlignPrices(p);
}
p->lenEnc.tableSize =
p->repLenEnc.tableSize =
p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
}
static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
{
UInt32 i;
for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
if (p->dictSize <= ((UInt32)1 << i))
break;
p->distTableSize = i * 2;
p->finished = False;
p->result = SZ_OK;
RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
LzmaEnc_Init(p);
LzmaEnc_InitPrices(p);
p->nowPos64 = 0;
return SZ_OK;
}
static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqInStream *inStream, ISeqOutStream *outStream,
ISzAlloc *alloc, ISzAlloc *allocBig)
{
CLzmaEnc *p = (CLzmaEnc *)pp;
p->inStream = inStream;
p->rc.outStream = outStream;
return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
}
SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
ISeqInStream *inStream, UInt32 keepWindowSize,
ISzAlloc *alloc, ISzAlloc *allocBig)
{
CLzmaEnc *p = (CLzmaEnc *)pp;
p->inStream = inStream;
return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
}
static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
{
p->seqBufInStream.funcTable.Read = MyRead;
p->seqBufInStream.data = src;
p->seqBufInStream.rem = srcLen;
}
SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
{
CLzmaEnc *p = (CLzmaEnc *)pp;
LzmaEnc_SetInputBuf(p, src, srcLen);
p->inStream = &p->seqBufInStream.funcTable;
return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
}
void LzmaEnc_Finish(CLzmaEncHandle pp)
{
#ifdef COMPRESS_MF_MT
CLzmaEnc *p = (CLzmaEnc *)pp;
if (p->mtMode)
MatchFinderMt_ReleaseStream(&p->matchFinderMt);
#else
pp = pp;
#endif
}
typedef struct _CSeqOutStreamBuf
{
ISeqOutStream funcTable;
Byte *data;
SizeT rem;
Bool overflow;
} CSeqOutStreamBuf;
static size_t MyWrite(void *pp, const void *data, size_t size)
{
CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
if (p->rem < size)
{
size = p->rem;
p->overflow = True;
}
memcpy(p->data, data, size);
p->rem -= size;
p->data += size;
return size;
}
UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
{
const CLzmaEnc *p = (CLzmaEnc *)pp;
return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
}
const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
{
const CLzmaEnc *p = (CLzmaEnc *)pp;
return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
}
SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
{
CLzmaEnc *p = (CLzmaEnc *)pp;
UInt64 nowPos64;
SRes res;
CSeqOutStreamBuf outStream;
outStream.funcTable.Write = MyWrite;
outStream.data = dest;
outStream.rem = *destLen;
outStream.overflow = False;
p->writeEndMark = False;
p->finished = False;
p->result = SZ_OK;
if (reInit)
LzmaEnc_Init(p);
LzmaEnc_InitPrices(p);
nowPos64 = p->nowPos64;
RangeEnc_Init(&p->rc);
p->rc.outStream = &outStream.funcTable;
res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize);
*unpackSize = (UInt32)(p->nowPos64 - nowPos64);
*destLen -= outStream.rem;
if (outStream.overflow)
return SZ_ERROR_OUTPUT_EOF;
return res;
}
SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
ISzAlloc *alloc, ISzAlloc *allocBig)
{
CLzmaEnc *p = (CLzmaEnc *)pp;
SRes res = SZ_OK;
#ifdef COMPRESS_MF_MT
Byte allocaDummy[0x300];
int i = 0;
for (i = 0; i < 16; i++)
allocaDummy[i] = (Byte)i;
#endif
RINOK(LzmaEnc_Prepare(pp, inStream, outStream, alloc, allocBig));
for (;;)
{
res = LzmaEnc_CodeOneBlock(p, False, 0, 0);
if (res != SZ_OK || p->finished != 0)
break;
if (progress != 0)
{
res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
if (res != SZ_OK)
{
res = SZ_ERROR_PROGRESS;
break;
}
}
}
LzmaEnc_Finish(pp);
return res;
}
SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
{
CLzmaEnc *p = (CLzmaEnc *)pp;
int i;
UInt32 dictSize = p->dictSize;
if (*size < LZMA_PROPS_SIZE)
return SZ_ERROR_PARAM;
*size = LZMA_PROPS_SIZE;
props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
for (i = 11; i <= 30; i++)
{
if (dictSize <= ((UInt32)2 << i))
{
dictSize = (2 << i);
break;
}
if (dictSize <= ((UInt32)3 << i))
{
dictSize = (3 << i);
break;
}
}
for (i = 0; i < 4; i++)
props[1 + i] = (Byte)(dictSize >> (8 * i));
return SZ_OK;
}
SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
{
SRes res;
CLzmaEnc *p = (CLzmaEnc *)pp;
CSeqOutStreamBuf outStream;
LzmaEnc_SetInputBuf(p, src, srcLen);
outStream.funcTable.Write = MyWrite;
outStream.data = dest;
outStream.rem = *destLen;
outStream.overflow = False;
p->writeEndMark = writeEndMark;
res = LzmaEnc_Encode(pp, &outStream.funcTable, &p->seqBufInStream.funcTable,
progress, alloc, allocBig);
*destLen -= outStream.rem;
if (outStream.overflow)
return SZ_ERROR_OUTPUT_EOF;
return res;
}
SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
{
CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
SRes res;
if (p == 0)
return SZ_ERROR_MEM;
res = LzmaEnc_SetProps(p, props);
if (res == SZ_OK)
{
res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
if (res == SZ_OK)
res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
writeEndMark, progress, alloc, allocBig);
}
LzmaEnc_Destroy(p, alloc, allocBig);
return res;
}