Implement type conversion for NodeItem #9

Merged
Bogdan Nagirniak merged 12 commits from BogdanNagirniak/blender:matx-nodeitem-type into matx-export-material 2023-09-05 12:03:24 +02:00
8 changed files with 621 additions and 461 deletions

View File

@ -15,12 +15,8 @@ NodeItem BSDFPrincipledNodeParser::compute()
NodeItem base_color = get_input_value("Base Color");
NodeItem subsurface = get_input_value("Subsurface");
NodeItem subsurface_radius = empty();
NodeItem subsurface_color = empty();
if (subsurface != zero) {
subsurface_radius = get_input_value("Subsurface Radius");
subsurface_color = get_input_value("Subsurface Color");
}
NodeItem subsurface_radius = get_input_value("Subsurface Radius");
NodeItem subsurface_color = get_input_value("Subsurface Color");
NodeItem metallic = get_input_value("Metallic");
NodeItem specular = get_input_value("Specular");
@ -70,7 +66,7 @@ NodeItem BSDFPrincipledNodeParser::compute()
/* Creating standard_surface */
NodeItem res = create_node("standard_surface", "surfaceshader");
res.set_input("base", 1.0, "float");
res.set_input("base_color", base_color.to_color3());
res.set_input("base_color", base_color, NodeItem::Type::Color3);
res.set_input("diffuse_roughness", roughness);
if (normal) {
res.set_input("normal", normal);
@ -85,7 +81,7 @@ NodeItem BSDFPrincipledNodeParser::compute()
if (specular != zero) {
res.set_input("specular", specular);
res.set_input("specular_color", base_color.to_color3());
res.set_input("specular_color", base_color, NodeItem::Type::Color3);
res.set_input("specular_roughness", roughness);
res.set_input("specular_IOR", ior);
if (anisotropic) {
@ -98,28 +94,26 @@ NodeItem BSDFPrincipledNodeParser::compute()
if (transmission != zero) {
res.set_input("transmission", transmission);
res.set_input("transmission_color", base_color.to_color3());
res.set_input("transmission_color", base_color, NodeItem::Type::Color3);
res.set_input("transmission_extra_roughness", transmission_roughness);
}
if (subsurface != zero) {
res.set_input("subsurface", subsurface);
res.set_input("subsurface_color", subsurface_color);
res.set_input("subsurface_radius", subsurface_radius);
if (anisotropic) {
res.set_input("subsurface_anisotropy", anisotropic);
}
}
if (sheen != zero) {
res.set_input("sheen", sheen);
res.set_input("sheen_color", base_color.to_color3());
res.set_input("sheen_color", base_color, NodeItem::Type::Color3);
res.set_input("sheen_roughness", roughness);
}
if (clearcoat != zero) {
res.set_input("coat", clearcoat);
res.set_input("coat_color", base_color.to_color3());
res.set_input("coat_color", base_color, NodeItem::Type::Color3);
res.set_input("coat_roughness", clearcoat_roughness);
res.set_input("coat_IOR", ior);
if (anisotropic) {
@ -131,7 +125,7 @@ NodeItem BSDFPrincipledNodeParser::compute()
if (emission != zero) {
res.set_input("emission", emission_strength);
res.set_input("emission_color", emission);
res.set_input("emission_color", emission, NodeItem::Type::Color3);
}
return res;

View File

@ -2,8 +2,8 @@
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#include "node_parser.h"
#include "../material.h"
#include "node_parser.h"
namespace blender::nodes::materialx {
@ -109,10 +109,10 @@ NodeItem MathNodeParser::compute()
res = x.max(y);
break;
case NODE_MATH_LESS_THAN:
res = x.if_else("<", y, value(1.0f), value(0.0f));
res = x.if_else(NodeItem::CompareOp::Less, y, value(1.0f), value(0.0f));
break;
case NODE_MATH_GREATER_THAN:
res = x.if_else(">", y, value(1.0f), value(0.0f));
res = x.if_else(NodeItem::CompareOp::Greater, y, value(1.0f), value(0.0f));
break;
case NODE_MATH_MODULO:
res = x % y;
@ -138,7 +138,7 @@ NodeItem MathNodeParser::compute()
CLOG_WARN(LOG_MATERIALX_SHADER, "Unimplemented math operation %d", op);
break;
case NODE_MATH_COMPARE:
res = z.if_else("<", (x - y).abs(), value(1.0f), value(0.0f));
res = z.if_else(NodeItem::CompareOp::Less, (x - y).abs(), value(1.0f), value(0.0f));
break;
case NODE_MATH_MULTIPLY_ADD:
res = x * y + z;

View File

@ -12,73 +12,6 @@ namespace blender::nodes::materialx {
NodeItem::NodeItem(MaterialX::GraphElement *graph) : graph_(graph) {}
NodeItem NodeItem::empty() const
{
return NodeItem(graph_);
}
void NodeItem::set_input(const std::string &name,
const NodeItem &item,
const std::string &output_name)
{
if (item.value) {
set_input(name, item.value);
}
else if (item.node) {
set_input(name, item.node, output_name);
}
else {
CLOG_WARN(LOG_MATERIALX_SHADER, "Empty item to input: %s", name.c_str());
}
}
void NodeItem::set_input(const std::string &name, const MaterialX::ValuePtr value)
{
std::string mx_type = value->getTypeString();
if (mx_type == "float") {
set_input(name, value->asA<float>(), mx_type);
}
else if (mx_type == "integer") {
set_input(name, value->asA<int>(), mx_type);
}
else if (mx_type == "vector2") {
set_input(name, value->asA<MaterialX::Vector2>(), mx_type);
}
else if (mx_type == "vector3") {
set_input(name, value->asA<MaterialX::Vector3>(), mx_type);
}
else if (mx_type == "vector4") {
set_input(name, value->asA<MaterialX::Vector4>(), mx_type);
}
else if (mx_type == "color3") {
set_input(name, value->asA<MaterialX::Color3>(), mx_type);
}
else if (mx_type == "color4") {
set_input(name, value->asA<MaterialX::Color4>(), mx_type);
}
else if (mx_type == "string") {
set_input(name, value->asA<std::string>(), mx_type);
}
else {
BLI_assert_unreachable();
}
}
void NodeItem::set_input(const std::string &name,
const MaterialX::NodePtr node,
const std::string &output_name)
{
this->node->setConnectedNode(name, node);
if (output_name != "") {
this->node->setConnectedOutput("in1", node->getOutput(output_name));
}
}
void NodeItem::add_output(const std::string &name, const std::string &mx_type)
{
node->addOutput(name, mx_type);
}
NodeItem::operator bool() const
{
return value || node;
@ -135,32 +68,13 @@ bool NodeItem::operator==(const NodeItem &other) const
return false;
}
std::string mx_type;
auto val1 = value;
auto val2 = other.value;
if (!adjust_types(val1, val2, mx_type)) {
NodeItem item1 = *this;
NodeItem item2 = other;
Type to_type = adjust_types(item1, item2);
if (to_type == Type::Empty) {
return false;
}
if (mx_type == "float") {
return val1->asA<float>() == val2->asA<float>();
}
if (mx_type == "color3") {
return val1->asA<MaterialX::Color3>() == val2->asA<MaterialX::Color3>();
}
if (mx_type == "color4") {
return val1->asA<MaterialX::Color4>() == val2->asA<MaterialX::Color4>();
}
if (mx_type == "vector2") {
return val1->asA<MaterialX::Vector2>() == val2->asA<MaterialX::Vector2>();
}
if (mx_type == "vector3") {
return val1->asA<MaterialX::Vector3>() == val2->asA<MaterialX::Vector3>();
}
if (mx_type == "vector4") {
return val1->asA<MaterialX::Vector4>() == val2->asA<MaterialX::Vector4>();
}
return false;
return item1.value->getValueString() == item2.value->getValueString();
}
bool NodeItem::operator!=(const NodeItem &other) const
@ -197,32 +111,39 @@ NodeItem NodeItem::dotproduct(const NodeItem &other) const
{
NodeItem d = arithmetic(other, "dotproduct", [](float a, float b) { return a * b; });
if (d.value) {
std::string mx_type = d.type();
Type mx_type = d.type();
float f = 0.0f;
if (mx_type == "float") {
switch (mx_type) {
case Type::Float: {
f = value->asA<float>();
break;
}
else if (mx_type == "color3") {
auto v = value->asA<MaterialX::Color3>();
f = v[0] + v[1] + v[2];
}
else if (mx_type == "color4") {
auto v = value->asA<MaterialX::Color4>();
f = v[0] + v[1] + v[2] + v[3];
}
else if (mx_type == "vector2") {
case Type::Vector2: {
auto v = value->asA<MaterialX::Vector2>();
f = v[0] + v[1];
break;
}
else if (mx_type == "vector3") {
case Type::Vector3: {
auto v = value->asA<MaterialX::Vector3>();
f = v[0] + v[1] + v[2];
break;
}
else if (mx_type == "vector4") {
case Type::Vector4: {
auto v = value->asA<MaterialX::Vector4>();
f = v[0] + v[1] + v[2] + v[3];
break;
}
else {
case Type::Color3: {
auto v = value->asA<MaterialX::Color3>();
f = v[0] + v[1] + v[2];
break;
}
case Type::Color4: {
auto v = value->asA<MaterialX::Color4>();
f = v[0] + v[1] + v[2] + v[3];
break;
}
default:
BLI_assert_unreachable();
}
d.value = MaterialX::Value::createValue(f);
@ -230,65 +151,6 @@ NodeItem NodeItem::dotproduct(const NodeItem &other) const
return d;
}
NodeItem NodeItem::if_else(const std::string &condition,
const NodeItem &other,
const NodeItem &if_val,
const NodeItem &else_val) const
{
if (condition == "<") {
return other.if_else(">", *this, else_val, if_val);
}
if (condition == "<=") {
return other.if_else(">=", *this, else_val, if_val);
}
if (condition == "!=") {
return if_else("==", other, else_val, if_val);
}
NodeItem res = empty();
if (type() != "float" || other.type() != "float") {
return res;
}
auto val1 = if_val;
auto val2 = else_val;
std::string mx_type;
if (!adjust_types(val1, val2, mx_type)) {
return res;
}
std::function<bool(float, float)> func = nullptr;
std::string mx_category;
if (condition == ">") {
mx_category = "ifgreater";
func = [](float a, float b) { return a > b; };
}
else if (condition == ">=") {
mx_category = "ifgreatereq";
func = [](float a, float b) { return a >= b; };
}
else if (condition == "==") {
mx_category = "ifequal";
func = [](float a, float b) { return a == b; };
}
else {
BLI_assert_unreachable();
}
if (value && other.value) {
res = func(value->asA<float>(), other.value->asA<float>()) ? val1 : val2;
}
else {
res.node = graph_->addNode(mx_category, MaterialX::EMPTY_STRING, mx_type);
res.set_input("value1", *this);
res.set_input("value2", other);
res.set_input("in1", val1);
res.set_input("in2", val2);
}
return res;
}
NodeItem NodeItem::blend(const NodeItem &a, const NodeItem &b) const
{
return (val(1.0f) - *this) * a + *this * b;
@ -374,247 +236,528 @@ NodeItem NodeItem::exp() const
return arithmetic("exp", [](float a) { return std::expf(a); });
}
NodeItem NodeItem::to_color3() const
NodeItem NodeItem::convert(Type to_type) const
{
std::string mx_type = type();
NodeItem res = empty();
if (value) {
MaterialX::Color3 c;
if (mx_type == "float") {
float v = value->asA<float>();
c = {v, v, v};
Type from_type = type();
if (from_type == to_type) {
return *this;
}
else if (mx_type == "color3") {
auto v = value->asA<MaterialX::Color3>();
c = {v[0], v[1], v[2]};
}
else if (mx_type == "color4") {
auto v = value->asA<MaterialX::Color4>();
c = {v[0], v[1], v[2]};
}
else if (mx_type == "vector3") {
auto v = value->asA<MaterialX::Vector3>();
c = {v[0], v[1], v[2]};
}
else if (mx_type == "vector4") {
auto v = value->asA<MaterialX::Vector4>();
c = {v[0], v[1], v[2]};
}
else {
return res;
}
res.value = MaterialX::Value::createValue<MaterialX::Color3>(c);
}
else if (node) {
if (mx_type != "color3") {
return res;
}
res.node = node;
}
return res;
}
bool NodeItem::is_numeric() const
{
std::string t = type();
return ELEM(t, "float", "color3", "color4", "vector2", "vector3", "vector4");
}
std::string NodeItem::type() const
{
return value ? value->getTypeString() : node->getType();
}
NodeItem NodeItem::arithmetic(const std::string &mx_category,
std::function<float(float)> func) const
{
if (!is_numeric()) {
if (!is_arithmetic(from_type) || !is_arithmetic(to_type)) {
return empty();
}
std::string t = value ? value->getTypeString() : node->getType();
NodeItem res(graph_);
if (to_type == Type::Float) {
/* TODO: Convert to float, <extract> should be used */
}
/* Converting types which requires > 1 iteration */
switch (from_type) {
case Type::Vector2:
switch (to_type) {
case Type::Vector4:
return convert(Type::Vector3).convert(Type::Vector4);
case Type::Color3:
return convert(Type::Vector3).convert(Type::Color3);
case Type::Color4:
return convert(Type::Vector3).convert(Type::Color3).convert(Type::Color4);
default:
break;
}
break;
case Type::Vector3:
switch (to_type) {
case Type::Color4:
return convert(Type::Color3).convert(Type::Color4);
default:
break;
}
break;
case Type::Vector4:
switch (to_type) {
case Type::Vector2:
return convert(Type::Vector3).convert(Type::Vector2);
case Type::Color3:
return convert(Type::Vector3).convert(Type::Color3);
default:
break;
}
break;
case Type::Color3:
switch (to_type) {
case Type::Vector2:
return convert(Type::Vector3).convert(Type::Vector2);
case Type::Vector4:
return convert(Type::Vector3).convert(Type::Vector4);
default:
break;
}
break;
case Type::Color4:
switch (to_type) {
case Type::Vector2:
return convert(Type::Vector4).convert(Type::Vector3).convert(Type::Vector2);
case Type::Vector3:
return convert(Type::Vector4).convert(Type::Vector3);
default:
break;
}
break;
default:
break;
}
/* Converting 1 iteration types */
NodeItem res = empty();
if (value) {
if (t == "float") {
switch (from_type) {
case Type::Float: {
float v = value->asA<float>();
res.value = MaterialX::Value::createValue<float>(func(v));
switch (to_type) {
case Type::Vector2:
res.value = MaterialX::Value::createValue<MaterialX::Vector2>({v, v});
break;
case Type::Vector3:
res.value = MaterialX::Value::createValue<MaterialX::Vector3>({v, v, v});
break;
case Type::Vector4:
res.value = MaterialX::Value::createValue<MaterialX::Vector4>({v, v, v, 1.0f});
break;
case Type::Color3:
res.value = MaterialX::Value::createValue<MaterialX::Color3>({v, v, v});
break;
case Type::Color4:
res.value = MaterialX::Value::createValue<MaterialX::Color4>({v, v, v, 1.0f});
break;
default:
BLI_assert_unreachable();
}
else if (t == "color3") {
auto v = value->asA<MaterialX::Color3>();
res.value = MaterialX::Value::createValue<MaterialX::Color3>(
{func(v[0]), func(v[1]), func(v[2])});
break;
}
else if (t == "color4") {
auto v = value->asA<MaterialX::Color4>();
res.value = MaterialX::Value::createValue<MaterialX::Color4>(
{func(v[0]), func(v[1]), func(v[2]), func(v[3])});
}
else if (t == "vector2") {
case Type::Vector2: {
auto v = value->asA<MaterialX::Vector2>();
res.value = MaterialX::Value::createValue<MaterialX::Vector2>({func(v[0]), func(v[1])});
switch (to_type) {
case Type::Vector3:
res.value = MaterialX::Value::createValue<MaterialX::Vector3>({v[0], v[1], 0.0f});
break;
default:
BLI_assert_unreachable();
}
else if (t == "vector3") {
break;
}
case Type::Vector3: {
auto v = value->asA<MaterialX::Vector3>();
res.value = MaterialX::Value::createValue<MaterialX::Vector3>(
{func(v[0]), func(v[1]), func(v[2])});
}
else if (t == "vector4") {
auto v = value->asA<MaterialX::Vector4>();
switch (to_type) {
case Type::Vector2:
res.value = MaterialX::Value::createValue<MaterialX::Vector2>({v[0], v[1]});
break;
case Type::Vector4:
res.value = MaterialX::Value::createValue<MaterialX::Vector4>(
{func(v[0]), func(v[1]), func(v[2]), func(v[3])});
{v[0], v[1], v[2], 0.0f});
break;
case Type::Color3:
res.value = MaterialX::Value::createValue<MaterialX::Color3>({v[0], v[1], v[2]});
break;
default:
BLI_assert_unreachable();
}
else {
break;
}
case Type::Vector4: {
auto v = value->asA<MaterialX::Vector4>();
switch (to_type) {
case Type::Vector3:
res.value = MaterialX::Value::createValue<MaterialX::Vector3>({v[0], v[1], v[2]});
break;
case Type::Color4:
res.value = MaterialX::Value::createValue<MaterialX::Color4>({v[0], v[1], v[2], v[3]});
break;
default:
BLI_assert_unreachable();
}
break;
}
case Type::Color3: {
auto v = value->asA<MaterialX::Color3>();
switch (to_type) {
case Type::Vector3:
res.value = MaterialX::Value::createValue<MaterialX::Vector3>({v[0], v[1], v[2]});
break;
case Type::Color4:
res.value = MaterialX::Value::createValue<MaterialX::Color4>({v[0], v[1], v[2], 1.0f});
break;
default:
BLI_assert_unreachable();
}
break;
}
case Type::Color4: {
auto v = value->asA<MaterialX::Color4>();
switch (to_type) {
case Type::Vector4:
res.value = MaterialX::Value::createValue<MaterialX::Vector4>(
{v[0], v[1], v[2], v[3]});
break;
case Type::Color3:
res.value = MaterialX::Value::createValue<MaterialX::Color3>({v[0], v[1], v[2]});
break;
default:
BLI_assert_unreachable();
}
break;
}
default:
BLI_assert_unreachable();
}
}
else {
res.node = graph_->addNode(mx_category, MaterialX::EMPTY_STRING, t);
res.node = graph_->addNode("convert", MaterialX::EMPTY_STRING, type(to_type));
res.set_input("in", *this);
}
return res;
}
NodeItem NodeItem::if_else(CompareOp op,
const NodeItem &other,
const NodeItem &if_val,
const NodeItem &else_val) const
{
switch (op) {
case CompareOp::Less:
return other.if_else(CompareOp::Greater, *this, else_val, if_val);
case CompareOp::LessEq:
return other.if_else(CompareOp::GreaterEq, *this, else_val, if_val);
case CompareOp::NotEq:
return if_else(CompareOp::Eq, other, else_val, if_val);
default:
break;
}
NodeItem res = empty();
if (type() != Type::Float || other.type() != Type::Float) {
BogdanNagirniak marked this conversation as resolved
Review

Should Integer be here?

Should `Integer` be here?
Review

Discussed: let it be here

Discussed: let it be here
return res;
}
auto item1 = if_val;
auto item2 = else_val;
Type to_type = adjust_types(item1, item2);
if (to_type == Type::Empty) {
return res;
}
std::function<bool(float, float)> func = nullptr;
std::string mx_category;
switch (op) {
case CompareOp::Greater:
mx_category = "ifgreater";
func = [](float a, float b) { return a > b; };
break;
case CompareOp::GreaterEq:
mx_category = "ifgreatereq";
func = [](float a, float b) { return a >= b; };
break;
case CompareOp::Eq:
mx_category = "ifequal";
func = [](float a, float b) { return a == b; };
break;
default:
BLI_assert_unreachable();
}
if (value && other.value) {
res = func(value->asA<float>(), other.value->asA<float>()) ? item1 : item2;
}
else {
res.node = graph_->addNode(mx_category, MaterialX::EMPTY_STRING, type(to_type));
res.set_input("value1", *this);
res.set_input("value2", other);
res.set_input("in1", item1);
res.set_input("in2", item2);
}
return res;
}
NodeItem NodeItem::empty() const
{
return NodeItem(graph_);
}
NodeItem::Type NodeItem::type() const
{
if (value) {
return type(value->getTypeString());
}
if (node) {
return type(node->getType());
}
return Type::Empty;
}
void NodeItem::set_input(const std::string &name,
const NodeItem &item,
const std::string &output_name)
{
if (item.value) {
Type item_type = item.type();
std::string mx_type = type(item_type);
switch (item_type) {
case Type::String:
set_input(name, item.value->asA<std::string>(), mx_type);
break;
case Type::Integer:
set_input(name, item.value->asA<int>(), mx_type);
break;
case Type::Float:
set_input(name, item.value->asA<float>(), mx_type);
break;
case Type::Vector2:
set_input(name, item.value->asA<MaterialX::Vector2>(), mx_type);
break;
case Type::Vector3:
set_input(name, item.value->asA<MaterialX::Vector3>(), mx_type);
break;
case Type::Vector4:
set_input(name, item.value->asA<MaterialX::Vector4>(), mx_type);
break;
case Type::Color3:
set_input(name, item.value->asA<MaterialX::Color3>(), mx_type);
break;
case Type::Color4:
set_input(name, item.value->asA<MaterialX::Color4>(), mx_type);
break;
default:
BLI_assert_unreachable();
}
}
else if (item.node) {
node->setConnectedNode(name, item.node);
if (output_name != "") {
node->setConnectedOutput(name, item.node->getOutput(output_name));
}
}
else {
CLOG_WARN(LOG_MATERIALX_SHADER, "Empty item to input: %s", name.c_str());
}
}
void NodeItem::set_input(const std::string &name,
const NodeItem &item,
Type in_type,
const std::string &output_name)
{
set_input(name, item.convert(in_type), output_name);
}
void NodeItem::add_output(const std::string &name, Type out_type)
{
node->addOutput(name, type(out_type));
}
NodeItem::Type NodeItem::type(const std::string &type_str)
{
if (type_str == "string") {
return Type::String;
}
if (type_str == "integer") {
return Type::Integer;
}
if (type_str == "float") {
return Type::Float;
}
if (type_str == "vector2") {
return Type::Vector2;
}
if (type_str == "vector3") {
return Type::Vector3;
}
if (type_str == "vector4") {
return Type::Vector4;
}
if (type_str == "color3") {
return Type::Color3;
}
if (type_str == "color4") {
return Type::Color4;
}
return Type::Other;
}
std::string NodeItem::type(Type type)
{
switch (type) {
case Type::String:
return "string";
case Type::Integer:
return "integer";
case Type::Float:
return "float";
case Type::Vector2:
return "vector2";
case Type::Vector3:
return "vector3";
case Type::Vector4:
return "vector4";
case Type::Color3:
return "color3";
case Type::Color4:
return "color4";
default:
break;
}
return "";
}
bool NodeItem::is_arithmetic(Type type)
{
return type >= Type::Float;
}
NodeItem::Type NodeItem::adjust_types(NodeItem &item1, NodeItem &item2)
{
Type t1 = item1.type();
Type t2 = item2.type();
if (t1 == t2) {
return t1;
}
if (!is_arithmetic(t1) || !is_arithmetic(t2)) {
return Type::Empty;
}
if (t1 < t2) {
item1 = item1.convert(t2);
return t2;
}
else {
item2 = item2.convert(t1);
return t1;
}
}
bool NodeItem::is_arithmetic() const
{
return is_arithmetic(type());
}
NodeItem NodeItem::arithmetic(const std::string &category, std::function<float(float)> func) const
{
NodeItem res = empty();
Type type = this->type();
if (!is_arithmetic(type)) {
return res;
}
if (value) {
switch (type) {
case Type::Float: {
float v = value->asA<float>();
res.value = MaterialX::Value::createValue<float>(func(v));
break;
}
case Type::Color3: {
auto v = value->asA<MaterialX::Color3>();
res.value = MaterialX::Value::createValue<MaterialX::Color3>(
{func(v[0]), func(v[1]), func(v[2])});
break;
}
case Type::Color4: {
auto v = value->asA<MaterialX::Color4>();
res.value = MaterialX::Value::createValue<MaterialX::Color4>(
{func(v[0]), func(v[1]), func(v[2]), func(v[3])});
break;
}
case Type::Vector2: {
auto v = value->asA<MaterialX::Vector2>();
res.value = MaterialX::Value::createValue<MaterialX::Vector2>({func(v[0]), func(v[1])});
}
case Type::Vector3: {
auto v = value->asA<MaterialX::Vector3>();
res.value = MaterialX::Value::createValue<MaterialX::Vector3>(
{func(v[0]), func(v[1]), func(v[2])});
break;
}
case Type::Vector4: {
auto v = value->asA<MaterialX::Vector4>();
res.value = MaterialX::Value::createValue<MaterialX::Vector4>(
{func(v[0]), func(v[1]), func(v[2]), func(v[3])});
break;
}
default:
BLI_assert_unreachable();
}
}
else {
/* TODO: Some of math functions (sin, cos, ...) doesn't work with Color types,
* we have to convert to Vector */
res.node = graph_->addNode(category, MaterialX::EMPTY_STRING, this->type(type));
res.set_input("in", *this);
}
return res;
}
NodeItem NodeItem::arithmetic(const NodeItem &other,
const std::string &mx_category,
const std::string &category,
std::function<float(float, float)> func) const
{
NodeItem res = empty();
if (!is_numeric() || !other.is_numeric()) {
NodeItem item1 = *this;
NodeItem item2 = other;
Type to_type = adjust_types(item1, item2);
if (to_type == Type::Empty) {
return res;
}
std::string mx_type;
if (value && other.value) {
auto val1 = value;
auto val2 = other.value;
if (!adjust_types(val1, val2, mx_type)) {
return res;
}
if (mx_type == "float") {
float v1 = val1->asA<float>();
float v2 = val2->asA<float>();
switch (to_type) {
case Type::Float: {
float v1 = item1.value->asA<float>();
float v2 = item2.value->asA<float>();
res.value = MaterialX::Value::createValue<float>(func(v1, v2));
break;
}
else if (mx_type == "color3") {
auto v1 = val1->asA<MaterialX::Color3>();
auto v2 = val2->asA<MaterialX::Color3>();
case Type::Color3: {
auto v1 = item1.value->asA<MaterialX::Color3>();
auto v2 = item2.value->asA<MaterialX::Color3>();
res.value = MaterialX::Value::createValue<MaterialX::Color3>(
{func(v1[0], v2[0]), func(v1[1], v2[1]), func(v1[2], v2[2])});
break;
}
else if (mx_type == "color4") {
auto v1 = val1->asA<MaterialX::Color4>();
auto v2 = val2->asA<MaterialX::Color4>();
case Type::Color4: {
auto v1 = item1.value->asA<MaterialX::Color4>();
auto v2 = item2.value->asA<MaterialX::Color4>();
res.value = MaterialX::Value::createValue<MaterialX::Color4>(
{func(v1[0], v2[0]), func(v1[1], v2[1]), func(v1[2], v2[2]), func(v1[3], v2[3])});
break;
}
else if (mx_type == "vector2") {
auto v1 = val1->asA<MaterialX::Vector2>();
auto v2 = val2->asA<MaterialX::Vector2>();
case Type::Vector2: {
auto v1 = item1.value->asA<MaterialX::Vector2>();
auto v2 = item2.value->asA<MaterialX::Vector2>();
res.value = MaterialX::Value::createValue<MaterialX::Vector2>(
{func(v1[0], v2[0]), func(v1[1], v2[1])});
break;
}
else if (mx_type == "vector3") {
auto v1 = val1->asA<MaterialX::Vector3>();
auto v2 = val2->asA<MaterialX::Vector3>();
case Type::Vector3: {
auto v1 = item1.value->asA<MaterialX::Vector3>();
auto v2 = item2.value->asA<MaterialX::Vector3>();
res.value = MaterialX::Value::createValue<MaterialX::Vector3>(
{func(v1[0], v2[0]), func(v1[1], v2[1]), func(v1[2], v2[2])});
break;
}
else if (mx_type == "vector4") {
auto v1 = val1->asA<MaterialX::Vector4>();
auto v2 = val2->asA<MaterialX::Vector4>();
case Type::Vector4: {
auto v1 = item1.value->asA<MaterialX::Vector4>();
auto v2 = item2.value->asA<MaterialX::Vector4>();
res.value = MaterialX::Value::createValue<MaterialX::Vector4>(
{func(v1[0], v2[0]), func(v1[1], v2[1]), func(v1[2], v2[2]), func(v1[3], v2[3])});
break;
}
else {
default:
BLI_assert_unreachable();
}
}
else {
auto val1 = *this;
auto val2 = other;
if (!adjust_types(val1, val2, mx_type)) {
return res;
}
res.node = graph_->addNode(mx_category, MaterialX::EMPTY_STRING, mx_type);
res.set_input("in1", val1);
res.set_input("in2", val2);
res.node = graph_->addNode(category, MaterialX::EMPTY_STRING, type(to_type));
res.set_input("in1", item1);
res.set_input("in2", item2);
}
return res;
}
MaterialX::ValuePtr NodeItem::float_to_type(float v, std::string mx_type)
{
if (mx_type == "float") {
return MaterialX::Value::createValue<float>(v);
}
if (mx_type == "color3") {
return MaterialX::Value::createValue<MaterialX::Color3>({v, v, v});
}
if (mx_type == "color4") {
return MaterialX::Value::createValue<MaterialX::Color4>({v, v, v, 1.0f});
}
if (mx_type == "vector2") {
return MaterialX::Value::createValue<MaterialX::Vector2>({v, v});
}
if (mx_type == "vector3") {
return MaterialX::Value::createValue<MaterialX::Vector3>({v, v, v});
}
if (mx_type == "vector4") {
return MaterialX::Value::createValue<MaterialX::Vector4>({v, v, v, 1.0f});
}
BLI_assert_unreachable();
return nullptr;
}
bool NodeItem::adjust_types(MaterialX::ValuePtr &val1,
MaterialX::ValuePtr &val2,
std::string &mx_type)
{
std::string t1 = val1->getTypeString();
std::string t2 = val2->getTypeString();
if (t1 != t2) {
if (t1 == "float") {
val1 = float_to_type(val1->asA<float>(), t2);
mx_type = t2;
}
else if (t2 == "float") {
val2 = float_to_type(val2->asA<float>(), t1);
mx_type = t1;
}
else {
return false;
}
}
else {
mx_type = t1;
}
return true;
}
bool NodeItem::adjust_types(NodeItem &val1, NodeItem &val2, std::string &mx_type)
{
std::string t1 = val1.type();
std::string t2 = val2.type();
if (t1 != t2) {
if (val1.value && t1 == "float") {
val1.value = float_to_type(val1.value->asA<float>(), t2);
mx_type = t2;
}
else if (val2.value && t2 == "float") {
val2.value = float_to_type(val2.value->asA<float>(), t1);
mx_type = t1;
}
else {
return false;
}
}
else {
mx_type = t1;
}
return true;
}
} // namespace blender::nodes::materialx

View File

@ -9,6 +9,21 @@
namespace blender::nodes::materialx {
class NodeItem {
public:
enum class Type {
Empty = 0,
Other, /* For MaterialX types like: surfaceshader, bsdf, edf, ...*/
String,
Integer,
Float,
Vector2,
Vector3,
Vector4,
Color3,
Color4
};
enum class CompareOp { Less = 0, LessEq, Eq, GreaterEq, Greater, NotEq };
public:
MaterialX::ValuePtr value;
MaterialX::NodePtr node;
@ -20,20 +35,7 @@ class NodeItem {
NodeItem(MaterialX::GraphElement *graph);
~NodeItem() = default;
NodeItem empty() const;
template<class T> NodeItem val(const T &data) const;
template<class T>
void set_input(const std::string &name, const T &value, const std::string &mx_type);
void set_input(const std::string &name,
const NodeItem &item,
const std::string &output_name = "");
void set_input(const std::string &name, const MaterialX::ValuePtr value);
void set_input(const std::string &name,
const MaterialX::NodePtr node,
const std::string &output_name = "");
void add_output(const std::string &name, const std::string &mx_type);
/* Operators */
BogdanNagirniak marked this conversation as resolved
Review

Suggest add #pragma region for such places

Suggest add `#pragma region` for such places
Review

It is not commonly used in Blender code

It is not commonly used in Blender code
operator bool() const;
NodeItem operator+(const NodeItem &other) const;
NodeItem operator-(const NodeItem &other) const;
@ -45,16 +47,13 @@ class NodeItem {
bool operator==(const NodeItem &other) const;
bool operator!=(const NodeItem &other) const;
/* Math functions */
NodeItem abs() const;
NodeItem floor() const;
NodeItem ceil() const;
NodeItem min(const NodeItem &other) const;
NodeItem max(const NodeItem &other) const;
NodeItem dotproduct(const NodeItem &other) const;
NodeItem if_else(const std::string &condition,
const NodeItem &other,
const NodeItem &if_val,
const NodeItem &else_val) const;
NodeItem blend(const NodeItem &a, const NodeItem &b) const;
NodeItem clamp(const NodeItem &min_val, const NodeItem &max_val) const;
NodeItem clamp(float min_val = 0.0f, float max_val = 1.0f) const;
@ -72,22 +71,40 @@ class NodeItem {
NodeItem sqrt() const;
NodeItem sign() const;
NodeItem exp() const;
NodeItem convert(Type to_type) const;
NodeItem if_else(CompareOp op,
const NodeItem &other,
const NodeItem &if_val,
const NodeItem &else_val) const;
NodeItem to_color3() const;
bool is_numeric() const;
std::string type() const;
/* Useful functions */
NodeItem empty() const;
template<class T> NodeItem val(const T &data) const;
Type type() const;
/* Functions to set input and output */
template<class T>
void set_input(const std::string &in_name, const T &value, const std::string &in_type);
void set_input(const std::string &in_name,
const NodeItem &item,
const std::string &out_name = "");
void set_input(const std::string &in_name,
const NodeItem &item,
Type in_type,
const std::string &out_name = "");
void add_output(const std::string &in_name, Type out_type);
private:
NodeItem arithmetic(const std::string &mx_category, std::function<float(float)> func) const;
static Type type(const std::string &type_str);
static std::string type(Type type);
static bool is_arithmetic(Type type);
static Type adjust_types(NodeItem &item1, NodeItem &item2);
bool is_arithmetic() const;
NodeItem arithmetic(const std::string &category, std::function<float(float)> func) const;
NodeItem arithmetic(const NodeItem &other,
const std::string &mx_category,
const std::string &category,
std::function<float(float, float)> func) const;
static MaterialX::ValuePtr float_to_type(float v, std::string mx_type);
/* Functions for adjusting values to make equal types */
static bool adjust_types(MaterialX::ValuePtr &val1,
MaterialX::ValuePtr &val2,
std::string &mx_type);
static bool adjust_types(NodeItem &val1, NodeItem &val2, std::string &mx_type);
};
template<class T> NodeItem NodeItem::val(const T &data) const
@ -98,9 +115,9 @@ template<class T> NodeItem NodeItem::val(const T &data) const
}
template<class T>
void NodeItem::set_input(const std::string &name, const T &value, const std::string &mx_type)
void NodeItem::set_input(const std::string &in_name, const T &value, const std::string &in_type)
{
node->setInputValue(name, value, mx_type);
node->setInputValue(in_name, value, in_type);
}
} // namespace blender::nodes::materialx

View File

@ -14,7 +14,11 @@ NodeParser::NodeParser(MaterialX::GraphElement *graph,
const Material *material,
const bNode *node,
const bNodeSocket *socket_out)
: graph_(graph), depsgraph_(depsgraph), material_(material), node_(node), socket_out_(socket_out)
: graph_(graph),
depsgraph_(depsgraph),
material_(material),
node_(node),
socket_out_(socket_out)
{
}
@ -74,17 +78,20 @@ NodeItem NodeParser::get_input_default(const bNodeSocket &socket)
case SOCK_FLOAT: {
float v = socket.default_value_typed<bNodeSocketValueFloat>()->value;
res.value = MaterialX::Value::createValue<float>(v);
} break;
break;
}
case SOCK_VECTOR: {
const float *v = socket.default_value_typed<bNodeSocketValueVector>()->value;
res.value = MaterialX::Value::createValue<MaterialX::Vector3>(
MaterialX::Vector3(v[0], v[1], v[2]));
} break;
break;
}
case SOCK_RGBA: {
const float *v = socket.default_value_typed<bNodeSocketValueRGBA>()->value;
res.value = MaterialX::Value::createValue<MaterialX::Color4>(
MaterialX::Color4(v[0], v[1], v[2], v[3]));
} break;
break;
}
default: {
CLOG_WARN(LOG_MATERIALX_SHADER, "Unsupported socket type: %d", socket.type);
}

View File

@ -37,7 +37,8 @@ NodeItem OutputMaterialNodeParser::compute(const std::string &socket_name)
NodeItem OutputMaterialNodeParser::compute_default()
{
NodeItem surface = create_node("standard_surface", "surfaceshader");
surface.set_input("base_color", value(MaterialX::Color3(material_->r, material_->g, material_->b)));
surface.set_input("base_color",
value(MaterialX::Color3(material_->r, material_->g, material_->b)));
surface.set_input("diffuse_roughness", value(material_->roughness));
if (material_->metallic > 0.0f) {
surface.set_input("metalness", value(material_->metallic));

View File

@ -8,23 +8,20 @@ namespace blender::nodes::materialx {
NodeItem TexCheckerNodeParser::compute()
{
NodeItem scale = get_input_value("Scale");
NodeItem vector = get_input_link("Vector");
NodeItem color1 = get_input_value("Color1");
NodeItem color2 = get_input_value("Color2");
NodeItem scale = get_input_value("Scale");
if (scale.value && scale.type() == "float") {
float v = scale.value->asA<float>();
scale = value(MaterialX::Vector2(v, v));
if (!vector) {
vector = create_node("texcoord", "vector2");
}
NodeItem texcoord = create_node("texcoord", "vector2");
NodeItem place2d = create_node("place2d", "vector2");
place2d.set_input("texcoord", texcoord * scale);
vector = vector * scale;
NodeItem separate = create_node("separate2", "multioutput");
separate.set_input("in", place2d);
separate.add_output("outx", "float");
separate.add_output("outy", "float");
separate.set_input("in", vector, NodeItem::Type::Vector2);
separate.add_output("outx", NodeItem::Type::Float);
separate.add_output("outy", NodeItem::Type::Float);
NodeItem modulo_x = create_node("modulo", "float");
modulo_x.set_input("in1", separate, "outx");
@ -34,12 +31,12 @@ NodeItem TexCheckerNodeParser::compute()
modulo_y.set_input("in1", separate, "outy");
modulo_y.set_input("in2", value(2.0f));
NodeItem ifequal =
(modulo_x.floor() + modulo_y.floor()).if_else("==", value(1.0f), value(0.0f), value(1.0f));
NodeItem ifequal = (modulo_x.floor() + modulo_y.floor())
.if_else(NodeItem::CompareOp::Eq, value(1.0f), value(0.0f), value(1.0f));
NodeItem res = create_node("mix", "color3");
res.set_input("bg", color1.to_color3());
res.set_input("fg", color2.to_color3());
res.set_input("bg", color1, NodeItem::Type::Color3);
res.set_input("fg", color2, NodeItem::Type::Color3);
res.set_input("mix", ifequal);
return res;
}

View File

@ -12,14 +12,15 @@ NodeItem TexNoiseNodeParser::compute()
NodeItem detail = get_input_value("Detail");
NodeItem lacunarity = get_input_value("Lacunarity");
if (detail.value && detail.type() == "float") {
if (detail.value && detail.type() == NodeItem::Type::Float) {
detail = value(int(detail.value->asA<float>()));
}
NodeItem texcoord = create_node("position", "vector3");
NodeItem position = create_node("position", "vector3");
position = position * scale;
NodeItem res = create_node("fractal3d", "color3");
res.set_input("position", texcoord * scale);
res.set_input("position", position, NodeItem::Type::Vector3);
res.set_input("octaves", detail);
res.set_input("lacunarity", lacunarity);
return res;