This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/intern/cycles/kernel/kernel_emission.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

346 lines
11 KiB
C++
Raw Permalink Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* Direction Emission */
ccl_device_noinline_cpu float3 direct_emissive_eval(KernelGlobals *kg,
ShaderData *emission_sd,
LightSample *ls,
ccl_addr_space PathState *state,
float3 I,
differential3 dI,
float t,
float time)
{
/* setup shading at emitter */
float3 eval = zero_float3();
if (shader_constant_emission_eval(kg, ls->shader, &eval)) {
if ((ls->prim != PRIM_NONE) && dot(ls->Ng, I) < 0.0f) {
ls->Ng = -ls->Ng;
}
}
else {
/* Setup shader data and call shader_eval_surface once, better
* for GPU coherence and compile times. */
#ifdef __BACKGROUND_MIS__
if (ls->type == LIGHT_BACKGROUND) {
Ray ray;
ray.D = ls->D;
ray.P = ls->P;
ray.t = 1.0f;
ray.time = time;
ray.dP = differential3_zero();
ray.dD = dI;
shader_setup_from_background(kg, emission_sd, &ray);
}
else
#endif
{
shader_setup_from_sample(kg,
emission_sd,
ls->P,
ls->Ng,
I,
ls->shader,
ls->object,
ls->prim,
ls->u,
ls->v,
t,
time,
false,
ls->lamp);
ls->Ng = emission_sd->Ng;
}
/* No proper path flag, we're evaluating this for all closures. that's
* weak but we'd have to do multiple evaluations otherwise. */
path_state_modify_bounce(state, true);
shader_eval_surface(kg, emission_sd, state, NULL, PATH_RAY_EMISSION);
path_state_modify_bounce(state, false);
/* Evaluate closures. */
#ifdef __BACKGROUND_MIS__
if (ls->type == LIGHT_BACKGROUND) {
eval = shader_background_eval(emission_sd);
}
else
#endif
{
eval = shader_emissive_eval(emission_sd);
}
}
eval *= ls->eval_fac;
if (ls->lamp != LAMP_NONE) {
const ccl_global KernelLight *klight = &kernel_tex_fetch(__lights, ls->lamp);
eval *= make_float3(klight->strength[0], klight->strength[1], klight->strength[2]);
}
return eval;
}
ccl_device_noinline_cpu bool direct_emission(KernelGlobals *kg,
ShaderData *sd,
ShaderData *emission_sd,
LightSample *ls,
ccl_addr_space PathState *state,
Ray *ray,
BsdfEval *eval,
bool *is_lamp,
float rand_terminate)
{
if (ls->pdf == 0.0f)
return false;
/* todo: implement */
differential3 dD = differential3_zero();
/* evaluate closure */
2015-05-09 19:34:30 +05:00
float3 light_eval = direct_emissive_eval(
kg, emission_sd, ls, state, -ls->D, dD, ls->t, sd->time);
if (is_zero(light_eval))
return false;
/* evaluate BSDF at shading point */
#ifdef __VOLUME__
2017-02-16 06:24:13 -05:00
if (sd->prim != PRIM_NONE)
shader_bsdf_eval(kg, sd, ls->D, eval, ls->pdf, ls->shader & SHADER_USE_MIS);
else {
float bsdf_pdf;
shader_volume_phase_eval(kg, sd, ls->D, eval, &bsdf_pdf);
if (ls->shader & SHADER_USE_MIS) {
/* Multiple importance sampling. */
float mis_weight = power_heuristic(ls->pdf, bsdf_pdf);
light_eval *= mis_weight;
}
}
#else
shader_bsdf_eval(kg, sd, ls->D, eval, ls->pdf, ls->shader & SHADER_USE_MIS);
#endif
bsdf_eval_mul3(eval, light_eval / ls->pdf);
#ifdef __PASSES__
/* use visibility flag to skip lights */
if (ls->shader & SHADER_EXCLUDE_ANY) {
if (ls->shader & SHADER_EXCLUDE_DIFFUSE)
eval->diffuse = zero_float3();
if (ls->shader & SHADER_EXCLUDE_GLOSSY)
eval->glossy = zero_float3();
if (ls->shader & SHADER_EXCLUDE_TRANSMIT)
eval->transmission = zero_float3();
if (ls->shader & SHADER_EXCLUDE_SCATTER)
eval->volume = zero_float3();
}
#endif
if (bsdf_eval_is_zero(eval))
return false;
if (kernel_data.integrator.light_inv_rr_threshold > 0.0f
#ifdef __SHADOW_TRICKS__
&& (state->flag & PATH_RAY_SHADOW_CATCHER) == 0
#endif
) {
float probability = max3(fabs(bsdf_eval_sum(eval))) *
kernel_data.integrator.light_inv_rr_threshold;
if (probability < 1.0f) {
if (rand_terminate >= probability) {
return false;
}
bsdf_eval_mul(eval, 1.0f / probability);
}
}
if (ls->shader & SHADER_CAST_SHADOW) {
/* setup ray */
2017-02-16 06:24:13 -05:00
bool transmit = (dot(sd->Ng, ls->D) < 0.0f);
ray->P = ray_offset(sd->P, (transmit) ? -sd->Ng : sd->Ng);
if (ls->t == FLT_MAX) {
/* distant light */
ray->D = ls->D;
ray->t = ls->t;
}
else {
/* other lights, avoid self-intersection */
ray->D = ray_offset(ls->P, ls->Ng) - ray->P;
ray->D = normalize_len(ray->D, &ray->t);
}
2017-02-16 06:24:13 -05:00
ray->dP = sd->dP;
ray->dD = differential3_zero();
}
else {
/* signal to not cast shadow ray */
ray->t = 0.0f;
}
/* return if it's a lamp for shadow pass */
*is_lamp = (ls->prim == PRIM_NONE && ls->type != LIGHT_BACKGROUND);
return true;
}
/* Indirect Primitive Emission */
ccl_device_noinline_cpu float3 indirect_primitive_emission(
KernelGlobals *kg, ShaderData *sd, float t, int path_flag, float bsdf_pdf)
{
/* evaluate emissive closure */
float3 L = shader_emissive_eval(sd);
#ifdef __HAIR__
2017-02-16 06:24:13 -05:00
if (!(path_flag & PATH_RAY_MIS_SKIP) && (sd->flag & SD_USE_MIS) &&
(sd->type & PRIMITIVE_ALL_TRIANGLE))
#else
2017-02-16 06:24:13 -05:00
if (!(path_flag & PATH_RAY_MIS_SKIP) && (sd->flag & SD_USE_MIS))
#endif
2014-05-05 02:19:08 +10:00
{
/* multiple importance sampling, get triangle light pdf,
2012-06-09 17:22:52 +00:00
* and compute weight with respect to BSDF pdf */
float pdf = triangle_light_pdf(kg, sd, t);
float mis_weight = power_heuristic(bsdf_pdf, pdf);
return L * mis_weight;
}
return L;
}
/* Indirect Lamp Emission */
ccl_device_noinline_cpu void indirect_lamp_emission(KernelGlobals *kg,
ShaderData *emission_sd,
ccl_addr_space PathState *state,
PathRadiance *L,
Ray *ray,
float3 throughput)
{
for (int lamp = 0; lamp < kernel_data.integrator.num_all_lights; lamp++) {
LightSample ls ccl_optional_struct_init;
if (!lamp_light_eval(kg, lamp, ray->P, ray->D, ray->t, &ls))
continue;
#ifdef __PASSES__
/* use visibility flag to skip lights */
if (ls.shader & SHADER_EXCLUDE_ANY) {
if (((ls.shader & SHADER_EXCLUDE_DIFFUSE) && (state->flag & PATH_RAY_DIFFUSE)) ||
((ls.shader & SHADER_EXCLUDE_GLOSSY) &&
((state->flag & (PATH_RAY_GLOSSY | PATH_RAY_REFLECT)) ==
(PATH_RAY_GLOSSY | PATH_RAY_REFLECT))) ||
((ls.shader & SHADER_EXCLUDE_TRANSMIT) && (state->flag & PATH_RAY_TRANSMIT)) ||
((ls.shader & SHADER_EXCLUDE_SCATTER) && (state->flag & PATH_RAY_VOLUME_SCATTER)))
continue;
}
#endif
float3 lamp_L = direct_emissive_eval(
kg, emission_sd, &ls, state, -ray->D, ray->dD, ls.t, ray->time);
#ifdef __VOLUME__
if (state->volume_stack[0].shader != SHADER_NONE) {
/* shadow attenuation */
Ray volume_ray = *ray;
volume_ray.t = ls.t;
float3 volume_tp = one_float3();
kernel_volume_shadow(kg, emission_sd, state, &volume_ray, &volume_tp);
lamp_L *= volume_tp;
}
#endif
if (!(state->flag & PATH_RAY_MIS_SKIP)) {
/* multiple importance sampling, get regular light pdf,
* and compute weight with respect to BSDF pdf */
float mis_weight = power_heuristic(state->ray_pdf, ls.pdf);
lamp_L *= mis_weight;
}
path_radiance_accum_emission(kg, L, state, throughput, lamp_L);
}
}
/* Indirect Background */
ccl_device_noinline_cpu float3 indirect_background(KernelGlobals *kg,
ShaderData *emission_sd,
ccl_addr_space PathState *state,
ccl_global float *buffer,
ccl_addr_space Ray *ray)
{
#ifdef __BACKGROUND__
int shader = kernel_data.background.surface_shader;
/* Use visibility flag to skip lights. */
if (shader & SHADER_EXCLUDE_ANY) {
if (((shader & SHADER_EXCLUDE_DIFFUSE) && (state->flag & PATH_RAY_DIFFUSE)) ||
((shader & SHADER_EXCLUDE_GLOSSY) &&
((state->flag & (PATH_RAY_GLOSSY | PATH_RAY_REFLECT)) ==
(PATH_RAY_GLOSSY | PATH_RAY_REFLECT))) ||
((shader & SHADER_EXCLUDE_TRANSMIT) && (state->flag & PATH_RAY_TRANSMIT)) ||
((shader & SHADER_EXCLUDE_CAMERA) && (state->flag & PATH_RAY_CAMERA)) ||
((shader & SHADER_EXCLUDE_SCATTER) && (state->flag & PATH_RAY_VOLUME_SCATTER)))
return zero_float3();
}
/* Evaluate background shader. */
float3 L = zero_float3();
if (!shader_constant_emission_eval(kg, shader, &L)) {
# ifdef __SPLIT_KERNEL__
Ray priv_ray = *ray;
shader_setup_from_background(kg, emission_sd, &priv_ray);
# else
shader_setup_from_background(kg, emission_sd, ray);
# endif
path_state_modify_bounce(state, true);
shader_eval_surface(kg, emission_sd, state, buffer, state->flag | PATH_RAY_EMISSION);
path_state_modify_bounce(state, false);
L = shader_background_eval(emission_sd);
}
/* Background MIS weights. */
# ifdef __BACKGROUND_MIS__
/* Check if background light exists or if we should skip pdf. */
Cycles: Add new Sky Texture method including direct sunlight This commit adds a new model to the Sky Texture node, which is based on a method by Nishita et al. and works by basically simulating volumetric scattering in the atmosphere. By making some approximations (such as only considering single scattering), we get a fairly simple and fast simulation code that takes into account Rayleigh and Mie scattering as well as Ozone absorption. This code is used to precompute a 512x128 texture which is then looked up during render time, and is fast enough to allow real-time tweaking in the viewport. Due to the nature of the simulation, it exposes several parameters that allow for lots of flexibility in choosing the look and matching real-world conditions (such as Air/Dust/Ozone density and altitude). Additionally, the same volumetric approach can be used to compute absorption of the direct sunlight, so the model also supports adding direct sunlight. This makes it significantly easier to set up Sun+Sky illumination where the direction, intensity and color of the sun actually matches the sky. In order to support properly sampling the direct sun component, the commit also adds logic for sampling a specific area to the kernel light sampling code. This is combined with portal and background map sampling using MIS. This sampling logic works for the common case of having one Sky texture going into the Background shader, but if a custom input to the Vector node is used or if there are multiple Sky textures, it falls back to using only background map sampling (while automatically setting the resolution to 4096x2048 if auto resolution is used). More infos and preview can be found here: https://docs.google.com/document/d/1gQta0ygFWXTrl5Pmvl_nZRgUw0mWg0FJeRuNKS36m08/view Underlying model, implementation and documentation by Marco (@nacioss). Improvements, cleanup and sun sampling by @lukasstockner. Differential Revision: https://developer.blender.org/D7896
2020-06-17 20:27:10 +02:00
if (!(state->flag & PATH_RAY_MIS_SKIP) && kernel_data.background.use_mis) {
/* multiple importance sampling, get background light pdf for ray
2012-06-09 17:22:52 +00:00
* direction, and compute weight with respect to BSDF pdf */
float pdf = background_light_pdf(kg, ray->P, ray->D);
float mis_weight = power_heuristic(state->ray_pdf, pdf);
return L * mis_weight;
}
# endif
return L;
#else
return make_float3(0.8f, 0.8f, 0.8f);
#endif
}
CCL_NAMESPACE_END