This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/curve.c

2436 lines
50 KiB
C
Raw Normal View History

2002-10-12 11:37:38 +00:00
/* curve.c
2002-10-12 11:37:38 +00:00
*
*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#define STRUBI hack
#include <math.h> // floor
#include <string.h>
#include <stdlib.h>
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
2002-10-12 11:37:38 +00:00
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "DNA_object_types.h"
#include "DNA_curve_types.h"
#include "DNA_material_types.h"
/* for dereferencing pointers */
#include "DNA_ID.h"
#include "DNA_vfont_types.h"
#include "DNA_key_types.h"
#include "DNA_ipo_types.h"
#include "BKE_global.h"
#include "BKE_main.h"
#include "BKE_utildefines.h" // VECCOPY
#include "BKE_object.h"
#include "BKE_mesh.h"
#include "BKE_curve.h"
#include "BKE_displist.h"
#include "BKE_ipo.h"
#include "BKE_anim.h"
#include "BKE_library.h"
#include "BKE_key.h"
/* globals */
extern ListBase editNurb; /* editcurve.c */
/* local */
int cu_isectLL(float *v1, float *v2, float *v3, float *v4,
short cox, short coy,
float *labda, float *mu, float *vec);
#ifdef STRUBI
/* hotfix; copies x*y array into extended (x+dx)*(y+dy) array
old[] and new[] can be the same ! */
int copyintoExtendedArray(float *old, int oldx, int oldy, float *new, int newx, int newy)
{
2002-10-30 00:37:19 +00:00
int x, y, ttt, ooo;
2002-10-12 11:37:38 +00:00
float *oldp, *newp;
2002-10-30 00:37:19 +00:00
2002-10-12 11:37:38 +00:00
if (newx < oldx || newy < oldy) return 0;
for (y = newy - 1; y >= oldy; y--) {
2002-10-30 00:37:19 +00:00
ttt = y * newx;
2002-10-12 11:37:38 +00:00
for (x = newx - 1; x >= 0; x--) {
2002-10-30 00:37:19 +00:00
newp = new + 3 * (ttt + x);
2002-10-12 11:37:38 +00:00
newp[0] = 0.0; newp[1] = 0.0; newp[2] = 0.0;
}
}
for (; y >= 0; y--) {
2002-10-30 00:37:19 +00:00
ttt = y * newx;
ooo = y * oldx;
2002-10-12 11:37:38 +00:00
for (x = newx - 1; x >= oldx; x--) {
2002-10-30 00:37:19 +00:00
newp = new + 3 * (ttt + x);
2002-10-12 11:37:38 +00:00
newp[0] = 0.0; newp[1] = 0.0; newp[2] = 0.0;
}
for (; x >= 0; x--) {
2002-10-30 00:37:19 +00:00
oldp = old + 3 * (ooo + x);
newp = new + 3 * (ttt + x);
2002-10-12 11:37:38 +00:00
VECCOPY(newp, oldp);
}
}
return 1;
}
#endif
void unlink_curve(Curve *cu)
{
int a;
for(a=0; a<cu->totcol; a++) {
if(cu->mat[a]) cu->mat[a]->id.us--;
cu->mat[a]= 0;
}
if(cu->vfont) cu->vfont->id.us--;
cu->vfont= 0;
if(cu->key) cu->key->id.us--;
cu->key= 0;
if(cu->ipo) cu->ipo->id.us--;
cu->ipo= 0;
}
/* niet curve zelf vrijgeven */
void free_curve(Curve *cu)
{
freeNurblist(&cu->nurb);
BLI_freelistN(&cu->bev);
freedisplist(&cu->disp);
unlink_curve(cu);
if(cu->mat) MEM_freeN(cu->mat);
if(cu->str) MEM_freeN(cu->str);
if(cu->strinfo) MEM_freeN(cu->strinfo);
2002-10-12 11:37:38 +00:00
if(cu->bb) MEM_freeN(cu->bb);
if(cu->path) free_path(cu->path);
if(cu->tb) MEM_freeN(cu->tb);
2002-10-12 11:37:38 +00:00
}
Curve *add_curve(int type)
{
Curve *cu;
char *str;
if(type==OB_CURVE) str= "Curve";
else if(type==OB_SURF) str= "Surf";
else str= "Text";
cu= alloc_libblock(&G.main->curve, ID_CU, str);
cu->size[0]= cu->size[1]= cu->size[2]= 1.0;
cu->flag= CU_FRONT+CU_BACK;
cu->pathlen= 100;
cu->resolu= cu->resolv= 6;
cu->width= 1.0;
cu->wordspace = 1.0;
2002-10-12 11:37:38 +00:00
cu->spacing= cu->linedist= 1.0;
cu->fsize= 1.0;
cu->texflag= CU_AUTOSPACE;
2002-10-12 11:37:38 +00:00
cu->bb= unit_boundbox();
return cu;
}
Curve *copy_curve(Curve *cu)
{
Curve *cun;
int a;
cun= copy_libblock(cu);
cun->nurb.first= cun->nurb.last= 0;
duplicateNurblist( &(cun->nurb), &(cu->nurb));
cun->mat= MEM_dupallocN(cu->mat);
for(a=0; a<cun->totcol; a++) {
id_us_plus((ID *)cun->mat[a]);
}
cun->str= MEM_dupallocN(cu->str);
cun->strinfo= MEM_dupallocN(cu->strinfo);
cun->tb= MEM_dupallocN(cu->tb);
2002-10-12 11:37:38 +00:00
cun->bb= MEM_dupallocN(cu->bb);
cun->key= copy_key(cu->key);
if(cun->key) cun->key->from= (ID *)cun;
cun->disp.first= cun->disp.last= 0;
cun->bev.first= cun->bev.last= 0;
cun->path= 0;
/* single user ipo too */
2002-10-12 11:37:38 +00:00
if(cun->ipo) cun->ipo= copy_ipo(cun->ipo);
id_us_plus((ID *)cun->vfont);
id_us_plus((ID *)cun->vfontb);
id_us_plus((ID *)cun->vfonti);
id_us_plus((ID *)cun->vfontbi);
2002-10-12 11:37:38 +00:00
return cun;
}
void make_local_curve(Curve *cu)
{
Object *ob = 0;
Curve *cun;
int local=0, lib=0;
/* - when there are only lib users: don't do
* - when there are only local users: set flag
* - mixed: do a copy
2002-10-12 11:37:38 +00:00
*/
if(cu->id.lib==0) return;
if(cu->vfont) cu->vfont->id.lib= 0;
if(cu->id.us==1) {
cu->id.lib= 0;
cu->id.flag= LIB_LOCAL;
new_id(0, (ID *)cu, 0);
return;
}
ob= G.main->object.first;
while(ob) {
if(ob->data==cu) {
if(ob->id.lib) lib= 1;
else local= 1;
}
ob= ob->id.next;
}
if(local && lib==0) {
cu->id.lib= 0;
cu->id.flag= LIB_LOCAL;
new_id(0, (ID *)cu, 0);
}
else if(local && lib) {
cun= copy_curve(cu);
cun->id.us= 0;
ob= G.main->object.first;
while(ob) {
if(ob->data==cu) {
if(ob->id.lib==0) {
ob->data= cun;
cun->id.us++;
cu->id.us--;
}
}
ob= ob->id.next;
}
}
}
void test_curve_type(Object *ob)
{
Nurb *nu;
Curve *cu;
cu= ob->data;
if(cu->vfont) {
ob->type= OB_FONT;
return;
}
else {
nu= cu->nurb.first;
while(nu) {
if(nu->pntsv>1) {
ob->type= OB_SURF;
return;
}
nu= nu->next;
}
}
ob->type= OB_CURVE;
}
void tex_space_curve(Curve *cu)
{
DispList *dl;
BoundBox *bb;
float *data, min[3], max[3], loc[3], size[3];
int tot, doit= 0;
if(cu->bb==0) cu->bb= MEM_callocN(sizeof(BoundBox), "boundbox");
bb= cu->bb;
INIT_MINMAX(min, max);
dl= cu->disp.first;
while(dl) {
if(dl->type==DL_INDEX3 || dl->type==DL_INDEX3) tot= dl->nr;
else tot= dl->nr*dl->parts;
if(tot) doit= 1;
data= dl->verts;
while(tot--) {
DO_MINMAX(data, min, max);
data+= 3;
}
dl= dl->next;
}
if(doit) {
loc[0]= (min[0]+max[0])/2.0f;
loc[1]= (min[1]+max[1])/2.0f;
loc[2]= (min[2]+max[2])/2.0f;
size[0]= (max[0]-min[0])/2.0f;
size[1]= (max[1]-min[1])/2.0f;
size[2]= (max[2]-min[2])/2.0f;
}
else {
loc[0]= loc[1]= loc[2]= 0.0f;
size[0]= size[1]= size[2]= 1.0f;
}
bb->vec[0][0]=bb->vec[1][0]=bb->vec[2][0]=bb->vec[3][0]= loc[0]-size[0];
bb->vec[4][0]=bb->vec[5][0]=bb->vec[6][0]=bb->vec[7][0]= loc[0]+size[0];
bb->vec[0][1]=bb->vec[1][1]=bb->vec[4][1]=bb->vec[5][1]= loc[1]-size[1];
bb->vec[2][1]=bb->vec[3][1]=bb->vec[6][1]=bb->vec[7][1]= loc[1]+size[1];
bb->vec[0][2]=bb->vec[3][2]=bb->vec[4][2]=bb->vec[7][2]= loc[2]-size[2];
bb->vec[1][2]=bb->vec[2][2]=bb->vec[5][2]=bb->vec[6][2]= loc[2]+size[2];
if(cu->texflag & CU_AUTOSPACE) {
2002-10-12 11:37:38 +00:00
VECCOPY(cu->loc, loc);
VECCOPY(cu->size, size);
cu->rot[0]= cu->rot[1]= cu->rot[2]= 0.0;
if(cu->size[0]==0.0) cu->size[0]= 1.0;
else if(cu->size[0]>0.0 && cu->size[0]<0.00001) cu->size[0]= 0.00001;
else if(cu->size[0]<0.0 && cu->size[0]> -0.00001) cu->size[0]= -0.00001;
if(cu->size[1]==0.0) cu->size[1]= 1.0;
else if(cu->size[1]>0.0 && cu->size[1]<0.00001) cu->size[1]= 0.00001;
else if(cu->size[1]<0.0 && cu->size[1]> -0.00001) cu->size[1]= -0.00001;
if(cu->size[2]==0.0) cu->size[2]= 1.0;
else if(cu->size[2]>0.0 && cu->size[2]<0.00001) cu->size[2]= 0.00001;
else if(cu->size[2]<0.0 && cu->size[2]> -0.00001) cu->size[2]= -0.00001;
}
}
int count_curveverts(ListBase *nurb)
{
Nurb *nu;
int tot=0;
nu= nurb->first;
while(nu) {
if(nu->bezt) tot+= 3*nu->pntsu;
else if(nu->bp) tot+= nu->pntsu*nu->pntsv;
nu= nu->next;
}
return tot;
}
/* **************** NURBS ROUTINES ******************** */
void freeNurb(Nurb *nu)
{
if(nu==0) return;
if(nu->bezt) MEM_freeN(nu->bezt);
nu->bezt= 0;
if(nu->bp) MEM_freeN(nu->bp);
nu->bp= 0;
if(nu->knotsu) MEM_freeN(nu->knotsu);
nu->knotsu= 0;
if(nu->knotsv) MEM_freeN(nu->knotsv);
nu->knotsv= 0;
/* if(nu->trim.first) freeNurblist(&(nu->trim)); */
MEM_freeN(nu);
}
void freeNurblist(ListBase *lb)
{
Nurb *nu, *next;
if(lb==0) return;
nu= lb->first;
while(nu) {
next= nu->next;
freeNurb(nu);
nu= next;
}
lb->first= lb->last= 0;
}
Nurb *duplicateNurb(Nurb *nu)
{
Nurb *newnu;
int len;
newnu= (Nurb*)MEM_mallocN(sizeof(Nurb),"duplicateNurb");
if(newnu==0) return 0;
memcpy(newnu, nu, sizeof(Nurb));
if(nu->bezt) {
newnu->bezt=
(BezTriple*)MEM_mallocN((nu->pntsu)* sizeof(BezTriple),"duplicateNurb2");
memcpy(newnu->bezt, nu->bezt, nu->pntsu*sizeof(BezTriple));
}
else {
len= nu->pntsu*nu->pntsv;
newnu->bp=
(BPoint*)MEM_mallocN((len)* sizeof(BPoint),"duplicateNurb3");
memcpy(newnu->bp, nu->bp, len*sizeof(BPoint));
newnu->knotsu=newnu->knotsv= 0;
if(nu->knotsu) {
len= KNOTSU(nu);
if(len) {
newnu->knotsu= MEM_mallocN(len*sizeof(float), "duplicateNurb4");
memcpy(newnu->knotsu, nu->knotsu, sizeof(float)*len);
}
}
if(nu->pntsv>1 && nu->knotsv) {
len= KNOTSV(nu);
if(len) {
newnu->knotsv= MEM_mallocN(len*sizeof(float), "duplicateNurb5");
memcpy(newnu->knotsv, nu->knotsv, sizeof(float)*len);
}
}
}
return newnu;
}
void duplicateNurblist(ListBase *lb1, ListBase *lb2)
{
Nurb *nu, *nun;
freeNurblist(lb1);
nu= lb2->first;
while(nu) {
nun= duplicateNurb(nu);
BLI_addtail(lb1, nun);
nu= nu->next;
}
}
void test2DNurb(Nurb *nu)
{
BezTriple *bezt;
BPoint *bp;
int a;
if( nu->type== CU_BEZIER+CU_2D ) {
a= nu->pntsu;
bezt= nu->bezt;
while(a--) {
bezt->vec[0][2]= 0.0;
bezt->vec[1][2]= 0.0;
bezt->vec[2][2]= 0.0;
bezt++;
}
}
else if(nu->type & CU_2D) {
a= nu->pntsu*nu->pntsv;
bp= nu->bp;
while(a--) {
bp->vec[2]= 0.0;
bp++;
}
}
}
void minmaxNurb(Nurb *nu, float *min, float *max)
{
BezTriple *bezt;
BPoint *bp;
int a;
if( (nu->type & 7)==CU_BEZIER ) {
a= nu->pntsu;
bezt= nu->bezt;
while(a--) {
DO_MINMAX(bezt->vec[0], min, max);
DO_MINMAX(bezt->vec[1], min, max);
DO_MINMAX(bezt->vec[2], min, max);
bezt++;
}
}
else {
a= nu->pntsu*nu->pntsv;
bp= nu->bp;
while(a--) {
DO_MINMAX(bp->vec, min, max);
bp++;
}
}
}
/* ~~~~~~~~~~~~~~~~~~~~Non Uniform Rational B Spline calculations ~~~~~~~~~~~ */
2002-10-12 11:37:38 +00:00
/* actually, doubles should be used here as much as possible */
2002-10-12 11:37:38 +00:00
void extend_spline(float * pnts, int in, int out)
{
float *_pnts;
double * add;
2002-10-30 00:37:19 +00:00
int i, j, k, in2;
2002-10-12 11:37:38 +00:00
_pnts = pnts;
add = (double*)MEM_mallocN((in)* sizeof(double), "extend_spline");
2002-10-30 00:37:19 +00:00
in2 = in -1;
2002-10-12 11:37:38 +00:00
for (k = 3; k > 0; k--){
pnts = _pnts;
/* copy points to 'add' */
2002-10-12 11:37:38 +00:00
for (i = 0; i < in; i++){
add[i] = *pnts;
pnts += 3;
}
/* inverse forward differencing */
2002-10-30 00:37:19 +00:00
for (i = 0; i < in2; i++){
for (j = in2; j > i; j--){
2002-10-12 11:37:38 +00:00
add[j] -= add[j - 1];
}
}
pnts = _pnts;
for (i = out; i > 0; i--){
*pnts = (float)(add[0]);
pnts += 3;
2002-10-30 00:37:19 +00:00
for (j = 0; j < in2; j++){
2002-10-12 11:37:38 +00:00
add[j] += add[j+1];
}
}
_pnts++;
}
MEM_freeN(add);
}
void calcknots(float *knots, short aantal, short order, short type)
/* knots: number of pnts NOT corrected for cyclic */
/* type; 0: uniform, 1: endpoints, 2: bezier */
2002-10-12 11:37:38 +00:00
{
float k;
2002-10-30 00:37:19 +00:00
int a, t;
2002-10-12 11:37:38 +00:00
2002-10-30 00:37:19 +00:00
t = aantal+order;
2002-10-12 11:37:38 +00:00
if(type==0) {
2002-10-30 00:37:19 +00:00
for(a=0;a<t;a++) {
2002-10-12 11:37:38 +00:00
knots[a]= (float)a;
}
}
else if(type==1) {
k= 0.0;
2002-10-30 00:37:19 +00:00
for(a=1;a<=t;a++) {
2002-10-12 11:37:38 +00:00
knots[a-1]= k;
if(a>=order && a<=aantal) k+= 1.0;
}
}
else if(type==2) {
if(order==4) {
k= 0.34;
2002-10-30 00:37:19 +00:00
for(a=0;a<t;a++) {
2002-10-12 11:37:38 +00:00
knots[a]= (float)floor(k);
k+= (1.0/3.0);
}
}
else if(order==3) {
k= 0.6;
2002-10-30 00:37:19 +00:00
for(a=0;a<t;a++) {
2002-10-12 11:37:38 +00:00
if(a>=order && a<=aantal) k+= (0.5);
knots[a]= (float)floor(k);
}
}
}
}
void makecyclicknots(float *knots, short pnts, short order)
/* pnts, order: number of pnts NOT corrected for cyclic */
2002-10-12 11:37:38 +00:00
{
2002-10-30 00:37:19 +00:00
int a, b, order2, c;
2002-10-12 11:37:38 +00:00
if(knots==0) return;
2002-10-30 00:37:19 +00:00
order2=order-1;
2002-10-12 11:37:38 +00:00
/* do first long rows (order -1), remove identical knots at endpoints */
2002-10-12 11:37:38 +00:00
if(order>2) {
2002-10-30 00:37:19 +00:00
b= pnts+order2;
for(a=1; a<order2; a++) {
2002-10-12 11:37:38 +00:00
if(knots[b]!= knots[b-a]) break;
}
2002-10-30 00:37:19 +00:00
if(a==order2) knots[pnts+order-2]+= 1.0;
2002-10-12 11:37:38 +00:00
}
b= order;
2002-10-30 00:37:19 +00:00
c=pnts + order + order2;
for(a=pnts+order2; a<c; a++) {
2002-10-12 11:37:38 +00:00
knots[a]= knots[a-1]+ (knots[b]-knots[b-1]);
b--;
}
}
void makeknots(Nurb *nu, short uv, short type) /* 0: uniform, 1: endpoints, 2: bezier */
{
if( (nu->type & 7)==CU_NURBS ) {
if(uv & 1) {
if(nu->knotsu) MEM_freeN(nu->knotsu);
if(nu->pntsu>1) {
nu->knotsu= MEM_callocN(4+sizeof(float)*KNOTSU(nu), "makeknots");
calcknots(nu->knotsu, nu->pntsu, nu->orderu, type);
if(nu->flagu & 1) makecyclicknots(nu->knotsu, nu->pntsu, nu->orderu);
}
else nu->knotsu= 0;
}
if(uv & 2) {
if(nu->knotsv) MEM_freeN(nu->knotsv);
if(nu->pntsv>1) {
nu->knotsv= MEM_callocN(4+sizeof(float)*KNOTSV(nu), "makeknots");
calcknots(nu->knotsv, nu->pntsv, nu->orderv, type);
if(nu->flagv & 1) makecyclicknots(nu->knotsv, nu->pntsv, nu->orderv);
}
else nu->knotsv= 0;
}
}
}
void basisNurb(float t, short order, short pnts, float *knots, float *basis, int *start, int *end)
{
float d, e;
2002-10-30 00:37:19 +00:00
int i, i1 = 0, i2 = 0 ,j, orderpluspnts, opp2, o2;
2002-10-12 11:37:38 +00:00
orderpluspnts= order+pnts;
2002-10-30 00:37:19 +00:00
opp2 = orderpluspnts-1;
2002-10-12 11:37:38 +00:00
/* this is for float inaccuracy */
if(t < knots[0]) t= knots[0];
2002-10-30 00:37:19 +00:00
else if(t > knots[opp2]) t= knots[opp2];
2002-10-12 11:37:38 +00:00
/* this part is order '1' */
2002-10-30 00:37:19 +00:00
o2 = order + 1;
for(i=0;i<opp2;i++) {
2002-10-12 11:37:38 +00:00
if(knots[i]!=knots[i+1] && t>= knots[i] && t<=knots[i+1]) {
basis[i]= 1.0;
2002-10-30 00:37:19 +00:00
i1= i-o2;
2002-10-12 11:37:38 +00:00
if(i1<0) i1= 0;
i2= i;
i++;
2002-10-30 00:37:19 +00:00
while(i<opp2) {
2002-10-12 11:37:38 +00:00
basis[i]= 0.0;
i++;
}
break;
}
else basis[i]= 0.0;
}
basis[i]= 0.0;
/* this is order 2,3,... */
2002-10-12 11:37:38 +00:00
for(j=2; j<=order; j++) {
2002-10-30 00:37:19 +00:00
if(i2+j>= orderpluspnts) i2= opp2-j;
2002-10-12 11:37:38 +00:00
for(i= i1; i<=i2; i++) {
if(basis[i]!=0.0)
d= ((t-knots[i])*basis[i]) / (knots[i+j-1]-knots[i]);
else
d= 0.0;
if(basis[i+1]!=0.0)
e= ((knots[i+j]-t)*basis[i+1]) / (knots[i+j]-knots[i+1]);
else
e= 0.0;
basis[i]= d+e;
}
}
*start= 1000;
*end= 0;
for(i=i1; i<=i2; i++) {
if(basis[i]>0.0) {
*end= i;
if(*start==1000) *start= i;
}
}
}
void makeNurbfaces(Nurb *nu, float *data)
/* data has to be 3*4*resolu*resolv in size, and zero-ed */
2002-10-12 11:37:38 +00:00
{
BPoint *bp;
float *basisu, *basis, *basisv, *sum, *fp, *in;
float u, v, ustart, uend, ustep, vstart, vend, vstep, sumdiv;
int i, j, iofs, jofs, cycl, len, resolu, resolv;
int istart, iend, jsta, jen, *jstart, *jend, ratcomp;
if(nu->knotsu==0 || nu->knotsv==0) return;
if(nu->orderu>nu->pntsu) return;
if(nu->orderv>nu->pntsv) return;
if(data==0) return;
/* allocate and initialize */
2002-10-12 11:37:38 +00:00
len= nu->pntsu*nu->pntsv;
if(len==0) return;
sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbfaces1");
resolu= nu->resolu;
resolv= nu->resolv;
len= resolu*resolv;
if(len==0) {
MEM_freeN(sum);
return;
}
bp= nu->bp;
i= nu->pntsu*nu->pntsv;
ratcomp=0;
while(i--) {
if(bp->vec[3]!=1.0) {
ratcomp= 1;
break;
}
bp++;
}
fp= nu->knotsu;
ustart= fp[nu->orderu-1];
if(nu->flagu & 1) uend= fp[nu->pntsu+nu->orderu-1];
else uend= fp[nu->pntsu];
ustep= (uend-ustart)/(resolu-1+(nu->flagu & 1));
basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbfaces3");
fp= nu->knotsv;
vstart= fp[nu->orderv-1];
if(nu->flagv & 1) vend= fp[nu->pntsv+nu->orderv-1];
else vend= fp[nu->pntsv];
vstep= (vend-vstart)/(resolv-1+(nu->flagv & 1));
len= KNOTSV(nu);
basisv= (float *)MEM_mallocN(sizeof(float)*len*resolv, "makeNurbfaces3");
jstart= (int *)MEM_mallocN(sizeof(float)*resolv, "makeNurbfaces4");
jend= (int *)MEM_mallocN(sizeof(float)*resolv, "makeNurbfaces5");
/* precalculation of basisv and jstart,jend */
2002-10-12 11:37:38 +00:00
if(nu->flagv & 1) cycl= nu->orderv-1;
else cycl= 0;
v= vstart;
basis= basisv;
while(resolv--) {
basisNurb(v, nu->orderv, (short)(nu->pntsv+cycl), nu->knotsv, basis, jstart+resolv, jend+resolv);
basis+= KNOTSV(nu);
v+= vstep;
}
if(nu->flagu & 1) cycl= nu->orderu-1;
else cycl= 0;
in= data;
u= ustart;
while(resolu--) {
basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
basis= basisv;
resolv= nu->resolv;
while(resolv--) {
jsta= jstart[resolv];
jen= jend[resolv];
/* calculate sum */
2002-10-12 11:37:38 +00:00
sumdiv= 0.0;
fp= sum;
for(j= jsta; j<=jen; j++) {
if(j>=nu->pntsv) jofs= (j - nu->pntsv);
else jofs= j;
bp= nu->bp+ nu->pntsu*jofs+istart-1;
for(i= istart; i<=iend; i++, fp++) {
if(i>= nu->pntsu) {
iofs= i- nu->pntsu;
bp= nu->bp+ nu->pntsu*jofs+iofs;
}
else bp++;
if(ratcomp) {
*fp= basisu[i]*basis[j]*bp->vec[3];
sumdiv+= *fp;
}
else *fp= basisu[i]*basis[j];
}
}
if(ratcomp) {
fp= sum;
for(j= jsta; j<=jen; j++) {
for(i= istart; i<=iend; i++, fp++) {
*fp/= sumdiv;
}
}
}
/* one! (1.0) real point now */
2002-10-12 11:37:38 +00:00
fp= sum;
for(j= jsta; j<=jen; j++) {
if(j>=nu->pntsv) jofs= (j - nu->pntsv);
else jofs= j;
bp= nu->bp+ nu->pntsu*jofs+istart-1;
for(i= istart; i<=iend; i++, fp++) {
if(i>= nu->pntsu) {
iofs= i- nu->pntsu;
bp= nu->bp+ nu->pntsu*jofs+iofs;
}
else bp++;
if(*fp!=0.0) {
in[0]+= (*fp) * bp->vec[0];
in[1]+= (*fp) * bp->vec[1];
in[2]+= (*fp) * bp->vec[2];
}
}
}
in+=3;
basis+= KNOTSV(nu);
}
u+= ustep;
}
/* free */
2002-10-12 11:37:38 +00:00
MEM_freeN(sum);
MEM_freeN(basisu);
MEM_freeN(basisv);
MEM_freeN(jstart);
MEM_freeN(jend);
}
void makeNurbcurve_forw(Nurb *nu, float *data)
/* *data: has to be 3*4*pntsu*resolu in size and zero-ed */
2002-10-12 11:37:38 +00:00
{
BPoint *bp;
float *basisu, *sum, *fp, *in;
float u, ustart, uend, ustep, sumdiv;
int i, j, k, len, resolu, istart, iend;
int wanted, org;
if(nu->knotsu==0) return;
if(data==0) return;
/* allocate and init */
2002-10-12 11:37:38 +00:00
len= nu->pntsu;
if(len==0) return;
sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbcurve1");
resolu= nu->resolu*nu->pntsu;
if(resolu==0) {
MEM_freeN(sum);
return;
}
fp= nu->knotsu;
ustart= fp[nu->orderu-1];
uend= fp[nu->pntsu];
ustep= (uend-ustart)/(resolu-1);
basisu= (float *)MEM_mallocN(sizeof(float)*(nu->orderu+nu->pntsu), "makeNurbcurve3");
in= data;
u= ustart;
for (k = nu->orderu - 1; k < nu->pntsu; k++){
wanted = (int)((nu->knotsu[k+1] - nu->knotsu[k]) / ustep);
org = 4; /* equal to order */
2002-10-12 11:37:38 +00:00
if (org > wanted) org = wanted;
for (j = org; j > 0; j--){
basisNurb(u, nu->orderu, nu->pntsu, nu->knotsu, basisu, &istart, &iend);
/* calc sum */
2002-10-12 11:37:38 +00:00
sumdiv= 0.0;
fp= sum;
for(i= istart; i<=iend; i++, fp++) {
/* do the rational component */
2002-10-12 11:37:38 +00:00
*fp= basisu[i];
sumdiv+= *fp;
}
if(sumdiv!=0.0) if(sumdiv<0.999 || sumdiv>1.001) {
/* is this normalizing needed? */
2002-10-12 11:37:38 +00:00
fp= sum;
for(i= istart; i<=iend; i++, fp++) {
*fp/= sumdiv;
}
}
/* one! (1.0) real point */
2002-10-12 11:37:38 +00:00
fp= sum;
bp= nu->bp+ istart;
for(i= istart; i<=iend; i++, bp++, fp++) {
if(*fp!=0.0) {
in[0]+= (*fp) * bp->vec[0];
in[1]+= (*fp) * bp->vec[1];
in[2]+= (*fp) * bp->vec[2];
}
}
in+=3;
u+= ustep;
}
if (wanted > org){
extend_spline(in - 3 * org, org, wanted);
in += 3 * (wanted - org);
u += ustep * (wanted - org);
}
}
/* free */
2002-10-12 11:37:38 +00:00
MEM_freeN(sum);
MEM_freeN(basisu);
}
void makeNurbcurve(Nurb *nu, float *data, int dim)
/* data has to be dim*4*pntsu*resolu in size and zero-ed */
2002-10-12 11:37:38 +00:00
{
BPoint *bp;
float u, ustart, uend, ustep, sumdiv;
float *basisu, *sum, *fp, *in;
int i, len, resolu, istart, iend, cycl;
if(nu->knotsu==0) return;
if(nu->orderu>nu->pntsu) return;
if(data==0) return;
/* allocate and initialize */
2002-10-12 11:37:38 +00:00
len= nu->pntsu;
if(len==0) return;
sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbcurve1");
resolu= nu->resolu*nu->pntsu;
if(resolu==0) {
MEM_freeN(sum);
return;
}
fp= nu->knotsu;
ustart= fp[nu->orderu-1];
if(nu->flagu & 1) uend= fp[nu->pntsu+nu->orderu-1];
else uend= fp[nu->pntsu];
ustep= (uend-ustart)/(resolu-1+(nu->flagu & 1));
basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbcurve3");
if(nu->flagu & 1) cycl= nu->orderu-1;
else cycl= 0;
in= data;
u= ustart;
while(resolu--) {
basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
/* calc sum */
2002-10-12 11:37:38 +00:00
sumdiv= 0.0;
fp= sum;
bp= nu->bp+ istart-1;
for(i= istart; i<=iend; i++, fp++) {
if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
else bp++;
*fp= basisu[i]*bp->vec[3];
sumdiv+= *fp;
}
if(sumdiv!=0.0) if(sumdiv<0.999 || sumdiv>1.001) {
/* is normalizing needed? */
2002-10-12 11:37:38 +00:00
fp= sum;
for(i= istart; i<=iend; i++, fp++) {
*fp/= sumdiv;
}
}
/* one! (1.0) real point */
2002-10-12 11:37:38 +00:00
fp= sum;
bp= nu->bp+ istart-1;
for(i= istart; i<=iend; i++, fp++) {
if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
else bp++;
if(*fp!=0.0) {
in[0]+= (*fp) * bp->vec[0];
in[1]+= (*fp) * bp->vec[1];
if(dim>=3) {
in[2]+= (*fp) * bp->vec[2];
if(dim==4) in[3]+= (*fp) * bp->alfa;
}
}
}
in+= dim;
u+= ustep;
}
/* free */
2002-10-12 11:37:38 +00:00
MEM_freeN(sum);
MEM_freeN(basisu);
}
/* forward differencing method for bezier curve */
void forward_diff_bezier(float q0, float q1, float q2, float q3, float *p, int it, int stride)
2002-10-12 11:37:38 +00:00
{
float rt0,rt1,rt2,rt3,f;
int a;
f= (float)it;
rt0= q0;
rt1= 3.0f*(q1-q0)/f;
f*= f;
rt2= 3.0f*(q0-2.0f*q1+q2)/f;
f*= it;
rt3= (q3-q0+3.0f*(q1-q2))/f;
q0= rt0;
q1= rt1+rt2+rt3;
q2= 2*rt2+6*rt3;
q3= 6*rt3;
for(a=0; a<=it; a++) {
*p= q0;
p+= stride;
2002-10-12 11:37:38 +00:00
q0+= q1;
q1+= q2;
q2+= q3;
}
}
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
void make_orco_surf(Curve *cu)
{
Nurb *nu;
int a, b, tot=0;
int sizeu, sizev;// ###
float *data;
/* first calculate the size of the datablock */
2002-10-12 11:37:38 +00:00
nu= cu->nurb.first;
while(nu) {
#ifdef STRUBI
/* this is a bad hack: as we want to avoid the seam in a cyclic nurbs
texture wrapping, reserve extra orco data space to save these extra needed
vertex based UV coordinates for the meridian vertices.
Vertices on the 0/2pi boundary are not duplicated inside the displist but later in
the renderface/vert construction.
See also blenderWorldManipulation.c: init_render_surf()
*/
sizeu = nu->resolu; sizev = nu->resolv;
if (nu->flagu & CU_CYCLIC) sizeu++;
if (nu->flagv & CU_CYCLIC) sizev++;
if(nu->pntsv>1) tot+= sizeu * sizev;
#else
if(nu->pntsv>1) tot+= nu->resolu*nu->resolv;
#endif
nu= nu->next;
}
/* makeNurbfaces wants zeros */
2002-10-12 11:37:38 +00:00
data= cu->orco= MEM_callocN(3*sizeof(float)*tot, "make_orco");
nu= cu->nurb.first;
while(nu) {
if(nu->pntsv>1) {
sizeu = nu->resolu;
sizev = nu->resolv;
#ifdef STRUBI
if (nu->flagu & CU_CYCLIC) sizeu++;
if (nu->flagv & CU_CYCLIC) sizev++;
#endif
if(cu->flag & CU_UV_ORCO) {
for(b=0; b< sizeu; b++) {
for(a=0; a< sizev; a++) {
if(sizev <2) data[0]= 0.0f;
else data[0]= -1.0f + 2.0f*((float)a)/(sizev - 1);
if(sizeu <2) data[1]= 0.0f;
else data[1]= -1.0f + 2.0f*((float)b)/(sizeu - 1);
data[2]= 0.0;
data+= 3;
}
}
}
else {
makeNurbfaces(nu, data);
#ifdef STRUBI
for(b=0; b< nu->resolu; b++) {
for(a=0; a< nu->resolv; a++) {
data = cu->orco + 3 * (b * nu->resolv + a);
data[0]= (data[0]-cu->loc[0])/cu->size[0];
data[1]= (data[1]-cu->loc[1])/cu->size[1];
data[2]= (data[2]-cu->loc[2])/cu->size[2];
}
}
copyintoExtendedArray(cu->orco, nu->resolv, nu->resolu, cu->orco, sizev, sizeu);
/* copy U/V-cyclic orco's */
if (nu->flagv & CU_CYCLIC) {
b = sizeu - 1;
for(a=0; a< sizev; a++) {
data = cu->orco + 3 * (b * sizev + a);
VECCOPY(data, cu->orco + 3*a);
}
}
if (nu->flagu & CU_CYCLIC) {
a = sizev - 1;
for(b=0; b< sizeu; b++) {
data = cu->orco + 3 * (b * sizev + a);
VECCOPY(data, cu->orco + 3 * b*sizev);
}
}
#else
tot= sizeu * sizev;
while(tot--) {
data[0]= (data[0]-cu->loc[0])/cu->size[0];
data[1]= (data[1]-cu->loc[1])/cu->size[1];
data[2]= (data[2]-cu->loc[2])/cu->size[2];
data+= 3;
}
#endif
}
}
nu= nu->next;
}
/* loadkeypostype(22, base, base); */
}
/* ***************** BEVEL ****************** */
void makebevelcurve(Object *ob, ListBase *disp)
{
DispList *dl, *dlnew;
Curve *bevcu, *cu;
float *fp, facx, facy, hoek, dhoek;
int nr, a;
cu= ob->data;
if(cu->bevobj && cu->bevobj!=ob) {
if(cu->bevobj->type==OB_CURVE) {
bevcu= cu->bevobj->data;
if(bevcu->ext1==0.0 && bevcu->ext2==0.0) {
facx= cu->bevobj->size[0];
facy= cu->bevobj->size[1];
dl= bevcu->disp.first;
if(dl==0) {
makeDispListCurveTypes(cu->bevobj);
2002-10-12 11:37:38 +00:00
dl= bevcu->disp.first;
}
while(dl) {
if ELEM(dl->type, DL_POLY, DL_SEGM) {
dlnew= MEM_mallocN(sizeof(DispList), "makebevelcurve1");
*dlnew= *dl;
dlnew->verts= MEM_mallocN(3*sizeof(float)*dl->parts*dl->nr, "makebevelcurve1");
memcpy(dlnew->verts, dl->verts, 3*sizeof(float)*dl->parts*dl->nr);
if(dlnew->type==DL_SEGM) dlnew->flag |= (DL_FRONT_CURVE|DL_BACK_CURVE);
2002-10-12 11:37:38 +00:00
BLI_addtail(disp, dlnew);
fp= dlnew->verts;
nr= dlnew->parts*dlnew->nr;
while(nr--) {
fp[2]= fp[1]*facy;
fp[1]= -fp[0]*facx;
fp[0]= 0.0;
fp+= 3;
}
}
dl= dl->next;
}
}
}
}
else if(cu->ext2==0.0) {
dl= MEM_callocN(sizeof(DispList), "makebevelcurve2");
dl->verts= MEM_mallocN(2*3*sizeof(float), "makebevelcurve2");
BLI_addtail(disp, dl);
dl->type= DL_SEGM;
dl->parts= 1;
dl->flag= DL_FRONT_CURVE|DL_BACK_CURVE;
2002-10-12 11:37:38 +00:00
dl->nr= 2;
2002-10-12 11:37:38 +00:00
fp= dl->verts;
fp[0]= fp[1]= 0.0;
fp[2]= -cu->ext1;
fp[3]= fp[4]= 0.0;
fp[5]= cu->ext1;
}
else {
short dnr;
/* bevel now in three parts, for proper vertex normals */
/* part 1 */
dnr= nr= 2+ cu->bevresol;
if( (cu->flag & (CU_FRONT|CU_BACK))==0) // we make a full round bevel in that case
nr= 3+ 2*cu->bevresol;
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1");
dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1");
2002-10-12 11:37:38 +00:00
BLI_addtail(disp, dl);
dl->type= DL_SEGM;
dl->parts= 1;
dl->flag= DL_BACK_CURVE;
2002-10-12 11:37:38 +00:00
dl->nr= nr;
/* half a circle */
2002-10-12 11:37:38 +00:00
fp= dl->verts;
dhoek= (0.5*M_PI/(dnr-1));
hoek= -(nr-1)*dhoek;
2002-10-12 11:37:38 +00:00
for(a=0; a<nr; a++) {
fp[0]= 0.0;
fp[1]= (float)(cos(hoek)*(cu->ext2));
fp[2]= (float)(sin(hoek)*(cu->ext2)) - cu->ext1;
2002-10-12 11:37:38 +00:00
hoek+= dhoek;
fp+= 3;
}
/* part 2, sidefaces */
if(cu->ext1!=0.0) {
nr= 2;
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p2");
dl->verts= MEM_callocN(nr*3*sizeof(float), "makebevelcurve p2");
BLI_addtail(disp, dl);
dl->type= DL_SEGM;
dl->parts= 1;
dl->nr= nr;
2002-10-12 11:37:38 +00:00
fp= dl->verts;
fp[1]= cu->ext2;
fp[2]= -cu->ext1;
fp[4]= cu->ext2;
fp[5]= cu->ext1;
if( (cu->flag & (CU_FRONT|CU_BACK))==0) {
dl= MEM_dupallocN(dl);
dl->verts= MEM_dupallocN(dl->verts);
BLI_addtail(disp, dl);
fp= dl->verts;
fp[1]= -fp[1];
fp[2]= -fp[2];
fp[4]= -fp[4];
fp[5]= -fp[5];
}
}
/* part 3 */
dnr= nr= 2+ cu->bevresol;
if( (cu->flag & (CU_FRONT|CU_BACK))==0)
nr= 3+ 2*cu->bevresol;
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p3");
dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p3");
BLI_addtail(disp, dl);
dl->type= DL_SEGM;
dl->flag= DL_FRONT_CURVE;
dl->parts= 1;
dl->nr= nr;
/* half a circle */
fp= dl->verts;
hoek= 0.0;
dhoek= (0.5*M_PI/(dnr-1));
for(a=0; a<nr; a++) {
fp[0]= 0.0;
fp[1]= (float)(cos(hoek)*(cu->ext2));
fp[2]= (float)(sin(hoek)*(cu->ext2)) + cu->ext1;
hoek+= dhoek;
fp+= 3;
2002-10-12 11:37:38 +00:00
}
}
}
int cu_isectLL(float *v1, float *v2, float *v3, float *v4, short cox, short coy, float *labda, float *mu, float *vec)
{
/* return:
-1: colliniar
0: no intersection of segments
1: exact intersection of segments
2: cross-intersection of segments
*/
float deler;
deler= (v1[cox]-v2[cox])*(v3[coy]-v4[coy])-(v3[cox]-v4[cox])*(v1[coy]-v2[coy]);
if(deler==0.0) return -1;
*labda= (v1[coy]-v3[coy])*(v3[cox]-v4[cox])-(v1[cox]-v3[cox])*(v3[coy]-v4[coy]);
*labda= -(*labda/deler);
deler= v3[coy]-v4[coy];
if(deler==0) {
deler=v3[cox]-v4[cox];
*mu= -(*labda*(v2[cox]-v1[cox])+v1[cox]-v3[cox])/deler;
} else {
*mu= -(*labda*(v2[coy]-v1[coy])+v1[coy]-v3[coy])/deler;
}
vec[cox]= *labda*(v2[cox]-v1[cox])+v1[cox];
vec[coy]= *labda*(v2[coy]-v1[coy])+v1[coy];
if(*labda>=0.0 && *labda<=1.0 && *mu>=0.0 && *mu<=1.0) {
if(*labda==0.0 || *labda==1.0 || *mu==0.0 || *mu==1.0) return 1;
return 2;
}
return 0;
}
short bevelinside(BevList *bl1,BevList *bl2)
{
/* is bl2 INSIDE bl1 ? with left-right method and "labda's" */
/* returns '1' if correct hole */
2002-10-12 11:37:38 +00:00
BevPoint *bevp, *prevbevp;
float min,max,vec[3],hvec1[3],hvec2[3],lab,mu;
int nr, links=0,rechts=0,mode;
/* take first vertex of possible hole */
2002-10-12 11:37:38 +00:00
bevp= (BevPoint *)(bl2+1);
hvec1[0]= bevp->x;
hvec1[1]= bevp->y;
hvec1[2]= 0.0;
VECCOPY(hvec2,hvec1);
hvec2[0]+=1000;
/* test it with all edges of potential surounding poly */
/* count number of transitions left-right */
2002-10-12 11:37:38 +00:00
bevp= (BevPoint *)(bl1+1);
nr= bl1->nr;
prevbevp= bevp+(nr-1);
while(nr--) {
min= prevbevp->y;
max= bevp->y;
if(max<min) {
min= max;
max= prevbevp->y;
}
if(min!=max) {
if(min<=hvec1[1] && max>=hvec1[1]) {
/* there's a transition, calc intersection point */
2002-10-12 11:37:38 +00:00
mode= cu_isectLL(&(prevbevp->x),&(bevp->x),hvec1,hvec2,0,1,&lab,&mu,vec);
/* if lab==0.0 or lab==1.0 then the edge intersects exactly a transition
only allow for one situation: we choose lab= 1.0
2002-10-12 11:37:38 +00:00
*/
if(mode>=0 && lab!=0.0) {
if(vec[0]<hvec1[0]) links++;
else rechts++;
}
}
}
prevbevp= bevp;
bevp++;
}
if( (links & 1) && (rechts & 1) ) return 1;
return 0;
}
struct bevelsort {
float left;
BevList *bl;
int dir;
};
int vergxcobev(const void *a1, const void *a2)
{
const struct bevelsort *x1=a1,*x2=a2;
if( x1->left > x2->left ) return 1;
else if( x1->left < x2->left) return -1;
return 0;
}
/* this function cannot be replaced with atan2, but why? */
2002-10-12 11:37:38 +00:00
void calc_bevel_sin_cos(float x1, float y1, float x2, float y2, float *sina, float *cosa)
{
float t01, t02, x3, y3;
t01= (float)sqrt(x1*x1+y1*y1);
t02= (float)sqrt(x2*x2+y2*y2);
if(t01==0.0) t01= 1.0;
if(t02==0.0) t02= 1.0;
x1/=t01;
y1/=t01;
x2/=t02;
y2/=t02;
t02= x1*x2+y1*y2;
if(fabs(t02)>=1.0) t02= .5*M_PI;
else t02= (saacos(t02))/2.0f;
t02= (float)sin(t02);
if(t02==0.0) t02= 1.0;
x3= x1-x2;
y3= y1-y2;
if(x3==0 && y3==0) {
x3= y1;
y3= -x1;
} else {
t01= (float)sqrt(x3*x3+y3*y3);
x3/=t01;
y3/=t01;
}
*sina= -y3/t02;
*cosa= x3/t02;
}
void alfa_bezpart(BezTriple *prevbezt, BezTriple *bezt, Nurb *nu, float *data_a)
{
BezTriple *pprev, *next, *last;
float fac, dfac, t[4];
int a;
last= nu->bezt+(nu->pntsu-1);
/* returns a point */
2002-10-12 11:37:38 +00:00
if(prevbezt==nu->bezt) {
if(nu->flagu & 1) pprev= last;
else pprev= prevbezt;
}
else pprev= prevbezt-1;
/* next point */
2002-10-12 11:37:38 +00:00
if(bezt==last) {
if(nu->flagu & 1) next= nu->bezt;
else next= bezt;
}
else next= bezt+1;
fac= 0.0;
dfac= 1.0f/(float)nu->resolu;
for(a=0; a<nu->resolu; a++, fac+= dfac) {
set_four_ipo(fac, t, KEY_BSPLINE);
data_a[a]= t[0]*pprev->alfa + t[1]*prevbezt->alfa + t[2]*bezt->alfa + t[3]*next->alfa;
}
}
void makeBevelList(Object *ob)
{
/*
- convert all curves to polys, with indication of resol and flags for double-vertices
- possibly; do a smart vertice removal (in case Nurb)
- separate in individual blicks with BoundBox
- AutoHole detection
*/
2002-10-12 11:37:38 +00:00
Curve *cu;
Nurb *nu;
BezTriple *bezt, *prevbezt;
BPoint *bp;
BevList *bl, *blnew, *blnext;
BevPoint *bevp, *bevp2, *bevp1 = NULL, *bevp0;
float *data, *data_a, *v1, *v2, min, inp, x1, x2, y1, y2, vec[3];
struct bevelsort *sortdata, *sd, *sd1;
int a, b, len, nr, poly;
/* this function needs an object, because of tflag and upflag */
2002-10-12 11:37:38 +00:00
cu= ob->data;
/* STEP 1: MAKE POLYS */
2002-10-12 11:37:38 +00:00
BLI_freelistN(&(cu->bev));
if(ob==G.obedit) nu= editNurb.first;
else nu= cu->nurb.first;
while(nu) {
if(nu->pntsu>1) {
if((nu->type & 7)==CU_POLY) {
len= nu->pntsu;
bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList");
BLI_addtail(&(cu->bev), bl);
if(nu->flagu & 1) bl->poly= 0;
else bl->poly= -1;
bl->nr= len;
bl->flag= 0;
bevp= (BevPoint *)(bl+1);
bp= nu->bp;
while(len--) {
bevp->x= bp->vec[0];
bevp->y= bp->vec[1];
bevp->z= bp->vec[2];
bevp->alfa= bp->alfa;
bevp->f1= 1;
bevp++;
bp++;
}
}
else if((nu->type & 7)==CU_BEZIER) {
len= nu->resolu*(nu->pntsu+ (nu->flagu & 1) -1)+1; /* in case last point is not cyclic */
2002-10-12 11:37:38 +00:00
bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList");
BLI_addtail(&(cu->bev), bl);
if(nu->flagu & 1) bl->poly= 0;
else bl->poly= -1;
bevp= (BevPoint *)(bl+1);
a= nu->pntsu-1;
bezt= nu->bezt;
if(nu->flagu & 1) {
a++;
prevbezt= nu->bezt+(nu->pntsu-1);
}
else {
prevbezt= bezt;
bezt++;
}
data= MEM_mallocN(3*sizeof(float)*(nu->resolu+1), "makeBevelList2");
data_a= MEM_callocN(sizeof(float)*(nu->resolu+1), "data_a");
while(a--) {
if(prevbezt->h2==HD_VECT && bezt->h1==HD_VECT) {
bevp->x= prevbezt->vec[1][0];
bevp->y= prevbezt->vec[1][1];
bevp->z= prevbezt->vec[1][2];
bevp->alfa= prevbezt->alfa;
bevp->f1= 1;
bevp->f2= 0;
bevp++;
bl->nr++;
bl->flag= 1;
}
else {
v1= prevbezt->vec[1];
v2= bezt->vec[0];
/* always do all three, to prevent data hanging around */
forward_diff_bezier(v1[0], v1[3], v2[0], v2[3], data, nu->resolu, 3);
forward_diff_bezier(v1[1], v1[4], v2[1], v2[4], data+1, nu->resolu, 3);
forward_diff_bezier(v1[2], v1[5], v2[2], v2[5], data+2, nu->resolu, 3);
2002-10-12 11:37:38 +00:00
if((nu->type & CU_2D)==0) {
if(cu->flag & CU_3D) {
alfa_bezpart(prevbezt, bezt, nu, data_a);
}
}
/* indicate with handlecodes double points */
2002-10-12 11:37:38 +00:00
if(prevbezt->h1==prevbezt->h2) {
if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->f1= 1;
}
else {
if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->f1= 1;
else if(prevbezt->h2==0 || prevbezt->h2==HD_VECT) bevp->f1= 1;
}
v1= data;
v2= data_a;
nr= nu->resolu;
while(nr--) {
bevp->x= v1[0];
bevp->y= v1[1];
bevp->z= v1[2];
bevp->alfa= v2[0];
bevp++;
v1+=3;
v2++;
}
bl->nr+= nu->resolu;
}
prevbezt= bezt;
bezt++;
}
MEM_freeN(data);
MEM_freeN(data_a);
if((nu->flagu & 1)==0) { /* not cyclic: endpoint */
2002-10-12 11:37:38 +00:00
bevp->x= prevbezt->vec[1][0];
bevp->y= prevbezt->vec[1][1];
bevp->z= prevbezt->vec[1][2];
bl->nr++;
}
}
else if((nu->type & 7)==CU_NURBS) {
if(nu->pntsv==1) {
len= nu->resolu*nu->pntsu;
bl= MEM_mallocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList3");
BLI_addtail(&(cu->bev), bl);
bl->nr= len;
bl->flag= 0;
if(nu->flagu & 1) bl->poly= 0;
else bl->poly= -1;
bevp= (BevPoint *)(bl+1);
data= MEM_callocN(4*sizeof(float)*len, "makeBevelList4"); /* has to be zero-ed */
2002-10-12 11:37:38 +00:00
makeNurbcurve(nu, data, 4);
v1= data;
while(len--) {
bevp->x= v1[0];
bevp->y= v1[1];
bevp->z= v1[2];
bevp->alfa= v1[3];
bevp->f1= bevp->f2= 0;
bevp++;
v1+=4;
}
MEM_freeN(data);
}
}
}
nu= nu->next;
}
/* STEP 2: DOUBLE POINTS AND AUTOMATIC RESOLUTION, REDUCE DATABLOCKS */
2002-10-12 11:37:38 +00:00
bl= cu->bev.first;
while(bl) {
nr= bl->nr;
bevp1= (BevPoint *)(bl+1);
bevp0= bevp1+(nr-1);
nr--;
while(nr--) {
if( fabs(bevp0->x-bevp1->x)<0.00001 ) {
if( fabs(bevp0->y-bevp1->y)<0.00001 ) {
if( fabs(bevp0->z-bevp1->z)<0.00001 ) {
bevp0->f2= 1;
bl->flag++;
}
}
}
bevp0= bevp1;
bevp1++;
}
bl= bl->next;
}
bl= cu->bev.first;
while(bl) {
blnext= bl->next;
if(bl->flag) {
nr= bl->nr- bl->flag+1; /* +1 because vectorbezier sets flag too */
2002-10-12 11:37:38 +00:00
blnew= MEM_mallocN(sizeof(BevList)+nr*sizeof(BevPoint), "makeBevelList");
memcpy(blnew, bl, sizeof(BevList));
blnew->nr= 0;
BLI_remlink(&(cu->bev), bl);
BLI_insertlinkbefore(&(cu->bev),blnext,blnew); /* to make sure bevlijst is tuned with nurblist */
2002-10-12 11:37:38 +00:00
bevp0= (BevPoint *)(bl+1);
bevp1= (BevPoint *)(blnew+1);
nr= bl->nr;
while(nr--) {
if(bevp0->f2==0) {
memcpy(bevp1, bevp0, sizeof(BevPoint));
bevp1++;
blnew->nr++;
}
bevp0++;
}
MEM_freeN(bl);
blnew->flag= 0;
}
bl= blnext;
}
/* STEP 3: COUNT POLYS TELLEN AND AUTOHOLE */
2002-10-12 11:37:38 +00:00
bl= cu->bev.first;
poly= 0;
while(bl) {
if(bl->poly>=0) {
poly++;
bl->poly= poly;
bl->gat= 0; /* 'gat' is dutch for hole */
2002-10-12 11:37:38 +00:00
}
bl= bl->next;
}
/* find extreme left points, also test (turning) direction */
2002-10-12 11:37:38 +00:00
if(poly>0) {
sd= sortdata= MEM_mallocN(sizeof(struct bevelsort)*poly, "makeBevelList5");
bl= cu->bev.first;
while(bl) {
if(bl->poly>0) {
min= 300000.0;
bevp= (BevPoint *)(bl+1);
nr= bl->nr;
while(nr--) {
if(min>bevp->x) {
min= bevp->x;
bevp1= bevp;
}
bevp++;
}
sd->bl= bl;
sd->left= min;
bevp= (BevPoint *)(bl+1);
if(bevp1== bevp) bevp0= bevp+ (bl->nr-1);
else bevp0= bevp1-1;
bevp= bevp+ (bl->nr-1);
if(bevp1== bevp) bevp2= (BevPoint *)(bl+1);
else bevp2= bevp1+1;
inp= (bevp1->x- bevp0->x)*(bevp0->y- bevp2->y)
+(bevp0->y- bevp1->y)*(bevp0->x- bevp2->x);
if(inp>0.0) sd->dir= 1;
else sd->dir= 0;
sd++;
}
bl= bl->next;
}
qsort(sortdata,poly,sizeof(struct bevelsort), vergxcobev);
sd= sortdata+1;
for(a=1; a<poly; a++, sd++) {
bl= sd->bl; /* is bl a hole? */
2002-10-12 11:37:38 +00:00
sd1= sortdata+ (a-1);
for(b=a-1; b>=0; b--, sd1--) { /* all polys to the left */
2002-10-12 11:37:38 +00:00
if(bevelinside(sd1->bl, bl)) {
bl->gat= 1- sd1->bl->gat;
break;
}
}
}
/* turning direction */
2002-10-12 11:37:38 +00:00
if((cu->flag & CU_3D)==0) {
sd= sortdata;
for(a=0; a<poly; a++, sd++) {
if(sd->bl->gat==sd->dir) {
bl= sd->bl;
bevp1= (BevPoint *)(bl+1);
bevp2= bevp1+ (bl->nr-1);
nr= bl->nr/2;
while(nr--) {
SWAP(BevPoint, *bevp1, *bevp2);
bevp1++;
bevp2--;
}
}
}
}
MEM_freeN(sortdata);
}
/* STEP 4: COSINES */
2002-10-12 11:37:38 +00:00
bl= cu->bev.first;
while(bl) {
if(bl->nr==2) { /* 2 pnt, treat separate */
2002-10-12 11:37:38 +00:00
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+1;
x1= bevp1->x- bevp2->x;
y1= bevp1->y- bevp2->y;
calc_bevel_sin_cos(x1, y1, -x1, -y1, &(bevp1->sina), &(bevp1->cosa));
bevp2->sina= bevp1->sina;
bevp2->cosa= bevp1->cosa;
if(cu->flag & CU_3D) { /* 3D */
float *quat, q[4];
vec[0]= bevp1->x - bevp2->x;
vec[1]= bevp1->y - bevp2->y;
vec[2]= bevp1->z - bevp2->z;
quat= vectoquat(vec, 5, 1);
Normalise(vec);
q[0]= (float)cos(0.5*bevp1->alfa);
x1= (float)sin(0.5*bevp1->alfa);
q[1]= x1*vec[0];
q[2]= x1*vec[1];
q[3]= x1*vec[2];
QuatMul(quat, q, quat);
QuatToMat3(quat, bevp1->mat);
Mat3CpyMat3(bevp2->mat, bevp1->mat);
}
}
else if(bl->nr>2) {
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
if(cu->flag & CU_3D) { /* 3D */
float *quat, q[4];
vec[0]= bevp2->x - bevp0->x;
vec[1]= bevp2->y - bevp0->y;
vec[2]= bevp2->z - bevp0->z;
Normalise(vec);
quat= vectoquat(vec, 5, 1);
q[0]= (float)cos(0.5*bevp1->alfa);
x1= (float)sin(0.5*bevp1->alfa);
q[1]= x1*vec[0];
q[2]= x1*vec[1];
q[3]= x1*vec[2];
QuatMul(quat, q, quat);
QuatToMat3(quat, bevp1->mat);
}
x1= bevp1->x- bevp0->x;
x2= bevp1->x- bevp2->x;
y1= bevp1->y- bevp0->y;
y2= bevp1->y- bevp2->y;
calc_bevel_sin_cos(x1, y1, x2, y2, &(bevp1->sina), &(bevp1->cosa));
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
/* correct non-cyclic cases */
2002-10-12 11:37:38 +00:00
if(bl->poly== -1) {
if(bl->nr>2) {
bevp= (BevPoint *)(bl+1);
bevp1= bevp+1;
bevp->sina= bevp1->sina;
bevp->cosa= bevp1->cosa;
Mat3CpyMat3(bevp->mat, bevp1->mat);
bevp= (BevPoint *)(bl+1);
bevp+= (bl->nr-1);
bevp1= bevp-1;
bevp->sina= bevp1->sina;
bevp->cosa= bevp1->cosa;
Mat3CpyMat3(bevp->mat, bevp1->mat);
}
}
}
bl= bl->next;
}
}
/* ****************** HANDLES ************** */
/*
* handlecodes:
* 1: nothing, 1:auto, 2:vector, 3:aligned
2002-10-12 11:37:38 +00:00
*/
/* mode: is not zero when IpoCurve, is 2 when forced horizontal for autohandles */
void calchandleNurb(BezTriple *bezt, BezTriple *prev, BezTriple *next, int mode)
2002-10-12 11:37:38 +00:00
{
float *p1,*p2,*p3,pt[3];
float dx1,dy1,dz1,dx,dy,dz,vx,vy,vz,len,len1,len2;
if(bezt->h1==0 && bezt->h2==0) return;
p2= bezt->vec[1];
if(prev==0) {
p3= next->vec[1];
pt[0]= 2*p2[0]- p3[0];
pt[1]= 2*p2[1]- p3[1];
pt[2]= 2*p2[2]- p3[2];
p1= pt;
}
else p1= prev->vec[1];
if(next==0) {
pt[0]= 2*p2[0]- p1[0];
pt[1]= 2*p2[1]- p1[1];
pt[2]= 2*p2[2]- p1[2];
p3= pt;
}
else p3= next->vec[1];
if(mode && bezt->h1==HD_AUTO && prev) {
dx= p2[0] - (p1[0]+p1[3])/2.0f;
dy= p2[1] - (p1[1]+p1[4])/2.0f;
dz= p2[2] - (p1[2]+p1[5])/2.0f;
}
else {
dx= p2[0]- p1[0];
dy= p2[1]- p1[1];
dz= p2[2]- p1[2];
}
len1= (float)sqrt(dx*dx+dy*dy+dz*dz);
if(mode && bezt->h2==HD_AUTO && next) {
dx1= (p3[0]+p3[-3])/2.0f - p2[0];
dy1= (p3[1]+p3[-2])/2.0f - p2[1];
dz1= (p3[2]+p3[-1])/2.0f - p2[2];
}
else {
dx1= p3[0]- p2[0];
dy1= p3[1]- p2[1];
dz1= p3[2]- p2[2];
}
len2= (float)sqrt(dx1*dx1+dy1*dy1+dz1*dz1);
if(len1==0.0f) len1=1.0f;
if(len2==0.0f) len2=1.0f;
if(bezt->h1==HD_AUTO || bezt->h2==HD_AUTO) { /* auto */
vx= dx1/len2 + dx/len1;
vy= dy1/len2 + dy/len1;
vz= dz1/len2 + dz/len1;
len= 2.5614f*(float)sqrt(vx*vx + vy*vy + vz*vz);
2002-10-12 11:37:38 +00:00
if(len!=0.0f) {
if(len1>5.0f*len2) len1= 5.0f*len2;
if(len2>5.0f*len1) len2= 5.0f*len1;
if(bezt->h1==HD_AUTO) {
len1/=len;
*(p2-3)= *p2-vx*len1;
*(p2-2)= *(p2+1)-vy*len1;
*(p2-1)= *(p2+2)-vz*len1;
if(mode==2 && next && prev) { // keep horizontal if extrema
float ydiff1= prev->vec[1][1] - bezt->vec[1][1];
float ydiff2= next->vec[1][1] - bezt->vec[1][1];
if( (ydiff1<=0.0 && ydiff2<=0.0) || (ydiff1>=0.0 && ydiff2>=0.0) ) {
bezt->vec[0][1]= bezt->vec[1][1];
}
}
2002-10-12 11:37:38 +00:00
}
if(bezt->h2==HD_AUTO) {
len2/=len;
*(p2+3)= *p2+vx*len2;
*(p2+4)= *(p2+1)+vy*len2;
*(p2+5)= *(p2+2)+vz*len2;
if(mode==2 && next && prev) { // keep horizontal if extrema
float ydiff1= prev->vec[1][1] - bezt->vec[1][1];
float ydiff2= next->vec[1][1] - bezt->vec[1][1];
if( (ydiff1<=0.0 && ydiff2<=0.0) || (ydiff1>=0.0 && ydiff2>=0.0) ) {
bezt->vec[2][1]= bezt->vec[1][1];
}
}
2002-10-12 11:37:38 +00:00
}
2002-10-12 11:37:38 +00:00
}
}
if(bezt->h1==HD_VECT) { /* vector */
dx/=3.0;
dy/=3.0;
dz/=3.0;
*(p2-3)= *p2-dx;
*(p2-2)= *(p2+1)-dy;
*(p2-1)= *(p2+2)-dz;
}
if(bezt->h2==HD_VECT) {
dx1/=3.0;
dy1/=3.0;
dz1/=3.0;
*(p2+3)= *p2+dx1;
*(p2+4)= *(p2+1)+dy1;
*(p2+5)= *(p2+2)+dz1;
}
len2= VecLenf(p2, p2+3);
len1= VecLenf(p2, p2-3);
if(len1==0.0) len1=1.0;
if(len2==0.0) len2=1.0;
if(bezt->f1 & 1) { /* order of calculation */
2002-10-12 11:37:38 +00:00
if(bezt->h2==HD_ALIGN) { /* aligned */
len= len2/len1;
p2[3]= p2[0]+len*(p2[0]-p2[-3]);
p2[4]= p2[1]+len*(p2[1]-p2[-2]);
p2[5]= p2[2]+len*(p2[2]-p2[-1]);
}
if(bezt->h1==HD_ALIGN) {
len= len1/len2;
p2[-3]= p2[0]+len*(p2[0]-p2[3]);
p2[-2]= p2[1]+len*(p2[1]-p2[4]);
p2[-1]= p2[2]+len*(p2[2]-p2[5]);
}
}
else {
if(bezt->h1==HD_ALIGN) {
len= len1/len2;
p2[-3]= p2[0]+len*(p2[0]-p2[3]);
p2[-2]= p2[1]+len*(p2[1]-p2[4]);
p2[-1]= p2[2]+len*(p2[2]-p2[5]);
}
if(bezt->h2==HD_ALIGN) { /* aligned */
len= len2/len1;
p2[3]= p2[0]+len*(p2[0]-p2[-3]);
p2[4]= p2[1]+len*(p2[1]-p2[-2]);
p2[5]= p2[2]+len*(p2[2]-p2[-1]);
}
}
}
void calchandlesNurb(Nurb *nu) /* first, if needed, set handle flags */
2002-10-12 11:37:38 +00:00
{
BezTriple *bezt, *prev, *next;
short a;
if((nu->type & 7)!=1) return;
if(nu->pntsu<2) return;
a= nu->pntsu;
bezt= nu->bezt;
if(nu->flagu & 1) prev= bezt+(a-1);
else prev= 0;
next= bezt+1;
while(a--) {
calchandleNurb(bezt, prev, next, 0);
prev= bezt;
if(a==1) {
if(nu->flagu & 1) next= nu->bezt;
else next= 0;
}
else next++;
bezt++;
}
}
void testhandlesNurb(Nurb *nu)
{
/* use when something has changed with handles.
it treats all BezTriples with the following rules:
PHASE 1: do types have to be altered?
Auto handles: become aligned when selection status is NOT(000 || 111)
Vector handles: become 'nothing' when (one half selected AND other not)
PHASE 2: recalculate handles
*/
2002-10-12 11:37:38 +00:00
BezTriple *bezt;
short flag, a;
if((nu->type & 7)!=CU_BEZIER) return;
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
flag= 0;
if(bezt->f1 & 1) flag++;
if(bezt->f2 & 1) flag += 2;
if(bezt->f3 & 1) flag += 4;
if( !(flag==0 || flag==7) ) {
if(bezt->h1==HD_AUTO) { /* auto */
bezt->h1= HD_ALIGN;
}
if(bezt->h2==HD_AUTO) { /* auto */
bezt->h2= HD_ALIGN;
}
if(bezt->h1==HD_VECT) { /* vector */
if(flag < 4) bezt->h1= 0;
}
if(bezt->h2==HD_VECT) { /* vector */
if( flag > 3) bezt->h2= 0;
}
}
bezt++;
}
calchandlesNurb(nu);
}
void autocalchandlesNurb(Nurb *nu, int flag)
{
/* checks handle coordinates and calculates type */
2002-10-12 11:37:38 +00:00
BezTriple *bezt2, *bezt1, *bezt0;
int i, align, leftsmall, rightsmall;
if(nu==0 || nu->bezt==0) return;
bezt2 = nu->bezt;
bezt1 = bezt2 + (nu->pntsu-1);
bezt0 = bezt1 - 1;
i = nu->pntsu;
while(i--) {
align= leftsmall= rightsmall= 0;
/* left handle: */
2002-10-12 11:37:38 +00:00
if(flag==0 || (bezt1->f1 & flag) ) {
bezt1->h1= 0;
/* distance too short: vectorhandle */
2002-10-12 11:37:38 +00:00
if( VecLenf( bezt1->vec[1], bezt0->vec[1] ) < 0.0001) {
bezt1->h1= HD_VECT;
leftsmall= 1;
}
else {
/* aligned handle? */
if(DistVL2Dfl(bezt1->vec[1], bezt1->vec[0], bezt1->vec[2]) < 0.0001) {
align= 1;
bezt1->h1= HD_ALIGN;
}
/* or vector handle? */
2002-10-12 11:37:38 +00:00
if(DistVL2Dfl(bezt1->vec[0], bezt1->vec[1], bezt0->vec[1]) < 0.0001)
bezt1->h1= HD_VECT;
}
}
/* right handle: */
2002-10-12 11:37:38 +00:00
if(flag==0 || (bezt1->f3 & flag) ) {
bezt1->h2= 0;
/* distance too short: vectorhandle */
2002-10-12 11:37:38 +00:00
if( VecLenf( bezt1->vec[1], bezt2->vec[1] ) < 0.0001) {
bezt1->h2= HD_VECT;
rightsmall= 1;
}
else {
/* aligned handle? */
if(align) bezt1->h2= HD_ALIGN;
/* or vector handle? */
2002-10-12 11:37:38 +00:00
if(DistVL2Dfl(bezt1->vec[2], bezt1->vec[1], bezt2->vec[1]) < 0.0001)
bezt1->h2= HD_VECT;
}
}
if(leftsmall && bezt1->h2==HD_ALIGN) bezt1->h2= 0;
if(rightsmall && bezt1->h1==HD_ALIGN) bezt1->h1= 0;
/* undesired combination: */
2002-10-12 11:37:38 +00:00
if(bezt1->h1==HD_ALIGN && bezt1->h2==HD_VECT) bezt1->h1= 0;
if(bezt1->h2==HD_ALIGN && bezt1->h1==HD_VECT) bezt1->h2= 0;
bezt0= bezt1;
bezt1= bezt2;
bezt2++;
}
calchandlesNurb(nu);
}
void autocalchandlesNurb_all(int flag)
{
Nurb *nu;
nu= editNurb.first;
while(nu) {
autocalchandlesNurb(nu, flag);
nu= nu->next;
}
}
void sethandlesNurb(short code)
{
/* code==1: set autohandle */
/* code==2: set vectorhandle */
/* code==3 (HD_ALIGN) it toggle, vectorhandles become HD_FREE */
/* code==4: sets icu flag to become IPO_AUTO_HORIZ, horizontal extremes on auto-handles */
2002-10-12 11:37:38 +00:00
Nurb *nu;
BezTriple *bezt;
short a, ok=0;
if(code==1 || code==2) {
nu= editNurb.first;
while(nu) {
if( (nu->type & 7)==1) {
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
if(bezt->f1 || bezt->f3) {
if(bezt->f1) bezt->h1= code;
if(bezt->f3) bezt->h2= code;
if(bezt->h1!=bezt->h2) {
if ELEM(bezt->h1, HD_ALIGN, HD_AUTO) bezt->h1= HD_FREE;
if ELEM(bezt->h2, HD_ALIGN, HD_AUTO) bezt->h2= HD_FREE;
}
}
bezt++;
}
calchandlesNurb(nu);
}
nu= nu->next;
}
}
else {
/* there is 1 handle not FREE: FREE it all, else make ALIGNED */
2002-10-12 11:37:38 +00:00
nu= editNurb.first;
while(nu) {
if( (nu->type & 7)==1) {
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
if(bezt->f1 && bezt->h1) ok= 1;
if(bezt->f3 && bezt->h2) ok= 1;
if(ok) break;
bezt++;
}
}
nu= nu->next;
}
if(ok) ok= HD_FREE;
else ok= HD_ALIGN;
nu= editNurb.first;
while(nu) {
if( (nu->type & 7)==1) {
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
if(bezt->f1) bezt->h1= ok;
if(bezt->f3 ) bezt->h2= ok;
bezt++;
}
calchandlesNurb(nu);
}
nu= nu->next;
}
}
}
void swapdata(void *adr1, void *adr2, int len)
{
if(len<=0) return;
if(len<65) {
char adr[64];
memcpy(adr, adr1, len);
memcpy(adr1, adr2, len);
memcpy(adr2, adr, len);
}
else {
char *adr;
adr= (char *)MEM_mallocN(len, "curve swap");
2002-10-12 11:37:38 +00:00
memcpy(adr, adr1, len);
memcpy(adr1, adr2, len);
memcpy(adr2, adr, len);
MEM_freeN(adr);
2002-10-12 11:37:38 +00:00
}
}
void switchdirectionNurb(Nurb *nu)
{
BezTriple *bezt1, *bezt2;
BPoint *bp1, *bp2;
float *fp1, *fp2, *tempf;
int a, b;
if(nu->pntsu==1 && nu->pntsv==1) return;
if((nu->type & 7)==CU_BEZIER) {
a= nu->pntsu;
bezt1= nu->bezt;
bezt2= bezt1+(a-1);
if(a & 1) a+= 1; /* if odd, also swap middle content */
2002-10-12 11:37:38 +00:00
a/= 2;
while(a>0) {
if(bezt1!=bezt2) SWAP(BezTriple, *bezt1, *bezt2);
swapdata(bezt1->vec[0], bezt1->vec[2], 12);
if(bezt1!=bezt2) swapdata(bezt2->vec[0], bezt2->vec[2], 12);
SWAP(char, bezt1->h1, bezt1->h2);
SWAP(short, bezt1->f1, bezt1->f3);
if(bezt1!=bezt2) {
SWAP(char, bezt2->h1, bezt2->h2);
SWAP(short, bezt2->f1, bezt2->f3);
bezt1->alfa= -bezt1->alfa;
bezt2->alfa= -bezt2->alfa;
}
a--;
bezt1++;
bezt2--;
}
}
else if(nu->pntsv==1) {
a= nu->pntsu;
bp1= nu->bp;
bp2= bp1+(a-1);
a/= 2;
while(bp1!=bp2 && a>0) {
SWAP(BPoint, *bp1, *bp2);
a--;
bp1->alfa= -bp1->alfa;
bp2->alfa= -bp2->alfa;
bp1++;
bp2--;
}
if((nu->type & 7)==CU_NURBS) {
/* inverse knots */
2002-10-12 11:37:38 +00:00
a= KNOTSU(nu);
fp1= nu->knotsu;
fp2= fp1+(a-1);
a/= 2;
while(fp1!=fp2 && a>0) {
SWAP(float, *fp1, *fp2);
a--;
fp1++;
fp2--;
}
/* and make in increasing order again */
2002-10-12 11:37:38 +00:00
a= KNOTSU(nu);
fp1= nu->knotsu;
fp2=tempf= MEM_mallocN(sizeof(float)*a, "switchdirect");
while(a--) {
fp2[0]= fabs(fp1[1]-fp1[0]);
fp1++;
fp2++;
}
a= KNOTSU(nu)-1;
fp1= nu->knotsu;
fp2= tempf;
fp1[0]= 0.0;
fp1++;
while(a--) {
fp1[0]= fp1[-1]+fp2[0];
fp1++;
fp2++;
}
MEM_freeN(tempf);
}
}
else {
for(b=0; b<nu->pntsv; b++) {
bp1= nu->bp+b*nu->pntsu;
a= nu->pntsu;
bp2= bp1+(a-1);
a/= 2;
while(bp1!=bp2 && a>0) {
SWAP(BPoint, *bp1, *bp2);
a--;
bp1++;
bp2--;
}
}
}
}