This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/nodes/intern/derived_node_tree.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

254 lines
9.8 KiB
C++
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "NOD_derived_node_tree.hh"
namespace blender::nodes {
/* Construct a new derived node tree for a given root node tree. The generated derived node tree
* does not own the used node tree refs (so that those can be used by others as well). The caller
* has to make sure that the node tree refs added to #node_tree_refs live at least as long as the
* derived node tree. */
DerivedNodeTree::DerivedNodeTree(bNodeTree &btree, NodeTreeRefMap &node_tree_refs)
{
/* Construct all possible contexts immediately. This is significantly cheaper than inlining all
* node groups. If it still becomes a performance issue in the future, contexts could be
* constructed lazily when they are needed. */
root_context_ = &this->construct_context_recursively(nullptr, nullptr, btree, node_tree_refs);
}
DTreeContext &DerivedNodeTree::construct_context_recursively(DTreeContext *parent_context,
const NodeRef *parent_node,
bNodeTree &btree,
NodeTreeRefMap &node_tree_refs)
{
2021-03-07 18:05:25 +01:00
DTreeContext &context = *allocator_.construct<DTreeContext>().release();
context.parent_context_ = parent_context;
context.parent_node_ = parent_node;
context.tree_ = &get_tree_ref_from_map(node_tree_refs, btree);
used_node_tree_refs_.add(context.tree_);
for (const NodeRef *node : context.tree_->nodes()) {
if (node->is_group_node()) {
bNode *bnode = node->bnode();
bNodeTree *child_btree = reinterpret_cast<bNodeTree *>(bnode->id);
if (child_btree != nullptr) {
DTreeContext &child = this->construct_context_recursively(
&context, node, *child_btree, node_tree_refs);
context.children_.add_new(node, &child);
}
}
}
return context;
}
DerivedNodeTree::~DerivedNodeTree()
{
/* Has to be destructed manually, because the context info is allocated in a linear allocator. */
this->destruct_context_recursively(root_context_);
}
void DerivedNodeTree::destruct_context_recursively(DTreeContext *context)
{
for (DTreeContext *child : context->children_.values()) {
this->destruct_context_recursively(child);
}
context->~DTreeContext();
}
/* Returns true if there are any cycles in the node tree. */
bool DerivedNodeTree::has_link_cycles() const
{
for (const NodeTreeRef *tree_ref : used_node_tree_refs_) {
if (tree_ref->has_link_cycles()) {
return true;
}
}
return false;
}
/* Calls the given callback on all nodes in the (possibly nested) derived node tree. */
void DerivedNodeTree::foreach_node(FunctionRef<void(DNode)> callback) const
{
this->foreach_node_in_context_recursive(*root_context_, callback);
}
void DerivedNodeTree::foreach_node_in_context_recursive(const DTreeContext &context,
FunctionRef<void(DNode)> callback) const
{
for (const NodeRef *node_ref : context.tree_->nodes()) {
callback(DNode(&context, node_ref));
}
for (const DTreeContext *child_context : context.children_.values()) {
this->foreach_node_in_context_recursive(*child_context, callback);
}
}
DOutputSocket DInputSocket::get_corresponding_group_node_output() const
{
BLI_assert(*this);
BLI_assert(socket_ref_->node().is_group_output_node());
BLI_assert(socket_ref_->index() < socket_ref_->node().inputs().size() - 1);
const DTreeContext *parent_context = context_->parent_context();
const NodeRef *parent_node = context_->parent_node();
BLI_assert(parent_context != nullptr);
BLI_assert(parent_node != nullptr);
const int socket_index = socket_ref_->index();
return {parent_context, &parent_node->output(socket_index)};
}
Vector<DOutputSocket> DInputSocket::get_corresponding_group_input_sockets() const
{
BLI_assert(*this);
BLI_assert(socket_ref_->node().is_group_node());
const DTreeContext *child_context = context_->child_context(socket_ref_->node());
BLI_assert(child_context != nullptr);
const NodeTreeRef &child_tree = child_context->tree();
Span<const NodeRef *> group_input_nodes = child_tree.nodes_by_type("NodeGroupInput");
const int socket_index = socket_ref_->index();
Vector<DOutputSocket> sockets;
for (const NodeRef *group_input_node : group_input_nodes) {
sockets.append(DOutputSocket(child_context, &group_input_node->output(socket_index)));
}
return sockets;
}
DInputSocket DOutputSocket::get_corresponding_group_node_input() const
{
BLI_assert(*this);
BLI_assert(socket_ref_->node().is_group_input_node());
BLI_assert(socket_ref_->index() < socket_ref_->node().outputs().size() - 1);
const DTreeContext *parent_context = context_->parent_context();
const NodeRef *parent_node = context_->parent_node();
BLI_assert(parent_context != nullptr);
BLI_assert(parent_node != nullptr);
const int socket_index = socket_ref_->index();
return {parent_context, &parent_node->input(socket_index)};
}
DInputSocket DOutputSocket::get_active_corresponding_group_output_socket() const
{
BLI_assert(*this);
BLI_assert(socket_ref_->node().is_group_node());
const DTreeContext *child_context = context_->child_context(socket_ref_->node());
BLI_assert(child_context != nullptr);
const NodeTreeRef &child_tree = child_context->tree();
Span<const NodeRef *> group_output_nodes = child_tree.nodes_by_type("NodeGroupOutput");
const int socket_index = socket_ref_->index();
for (const NodeRef *group_output_node : group_output_nodes) {
if (group_output_node->bnode()->flag & NODE_DO_OUTPUT || group_output_nodes.size() == 1) {
return {child_context, &group_output_node->input(socket_index)};
}
}
return {};
}
/* Call the given callback for every "real" origin socket. "Real" means that reroutes, muted nodes
* and node groups are handled by this function. Origin sockets are ones where a node gets its
* inputs from. */
void DInputSocket::foreach_origin_socket(FunctionRef<void(DSocket)> callback) const
{
BLI_assert(*this);
for (const OutputSocketRef *linked_socket : socket_ref_->as_input().logically_linked_sockets()) {
const NodeRef &linked_node = linked_socket->node();
DOutputSocket linked_dsocket{context_, linked_socket};
if (linked_node.is_group_input_node()) {
if (context_->is_root()) {
/* This is a group input in the root node group. */
callback(linked_dsocket);
}
else {
DInputSocket socket_in_parent_group = linked_dsocket.get_corresponding_group_node_input();
if (socket_in_parent_group->is_logically_linked()) {
/* Follow the links coming into the corresponding socket on the parent group node. */
socket_in_parent_group.foreach_origin_socket(callback);
}
else {
/* The corresponding input on the parent group node is not connected. Therefore, we use
* the value of that input socket directly. */
callback(socket_in_parent_group);
}
}
}
else if (linked_node.is_group_node()) {
DInputSocket socket_in_group = linked_dsocket.get_active_corresponding_group_output_socket();
if (socket_in_group) {
if (socket_in_group->is_logically_linked()) {
/* Follow the links coming into the group output node of the child node group. */
socket_in_group.foreach_origin_socket(callback);
}
else {
/* The output of the child node group is not connected, so we have to get the value from
* that socket. */
callback(socket_in_group);
}
}
}
else {
/* The normal case: just use the value of a linked output socket. */
callback(linked_dsocket);
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
}
}
/* Calls the given callback for every "real" target socket. "Real" means that reroutes, muted nodes
* and node groups are handled by this function. Target sockets are on the nodes that use the value
* from this socket. */
void DOutputSocket::foreach_target_socket(FunctionRef<void(DInputSocket)> callback) const
{
for (const InputSocketRef *linked_socket : socket_ref_->as_output().logically_linked_sockets()) {
const NodeRef &linked_node = linked_socket->node();
DInputSocket linked_dsocket{context_, linked_socket};
if (linked_node.is_group_output_node()) {
if (context_->is_root()) {
/* This is a group output in the root node group. */
callback(linked_dsocket);
}
else {
/* Follow the links going out of the group node in the parent node group. */
DOutputSocket socket_in_parent_group =
linked_dsocket.get_corresponding_group_node_output();
socket_in_parent_group.foreach_target_socket(callback);
}
}
else if (linked_node.is_group_node()) {
/* Follow the links within the nested node group. */
Vector<DOutputSocket> sockets_in_group =
linked_dsocket.get_corresponding_group_input_sockets();
for (DOutputSocket socket_in_group : sockets_in_group) {
socket_in_group.foreach_target_socket(callback);
}
}
else {
/* The normal case: just use the linked input socket as target. */
callback(linked_dsocket);
}
}
}
} // namespace blender::nodes