This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/pbvh.c

1695 lines
39 KiB
C
Raw Normal View History

/*
2009-11-02 18:47:03 +00:00
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
2009-11-02 18:47:03 +00:00
*
* ***** END GPL LICENSE BLOCK *****
*/
2011-02-27 20:37:56 +00:00
/** \file blender/blenlib/intern/pbvh.c
* \ingroup bli
*/
2009-11-02 18:47:03 +00:00
#include "DNA_meshdata_types.h"
#include "MEM_guardedalloc.h"
#include "BLI_bitmap.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BLI_ghash.h"
#include "BLI_pbvh.h"
#include "BKE_DerivedMesh.h"
#include "BKE_mesh.h" /* for mesh_calc_normals */
#include "BKE_global.h" /* for mesh_calc_normals */
#include "GPU_buffers.h"
#define LEAF_LIMIT 10000
//#define PERFCNTRS
/* Axis-aligned bounding box */
typedef struct {
float bmin[3], bmax[3];
} BB;
/* Axis-aligned bounding box with centroid */
typedef struct {
float bmin[3], bmax[3], bcentroid[3];
} BBC;
2009-11-02 18:47:03 +00:00
struct PBVHNode {
/* Opaque handle for drawing code */
GPU_Buffers *draw_buffers;
/* Voxel bounds */
BB vb;
BB orig_vb;
/* For internal nodes, the offset of the children in the PBVH
* 'nodes' array. */
int children_offset;
/* Pointer into the PBVH prim_indices array and the number of
* primitives used by this leaf node.
*
* Used for leaf nodes in both mesh- and multires-based PBVHs.
*/
int *prim_indices;
unsigned int totprim;
/* Array of indices into the mesh's MVert array. Contains the
* indices of all vertices used by faces that are within this
* node's bounding box.
*
* Note that a vertex might be used by a multiple faces, and
* these faces might be in different leaf nodes. Such a vertex
* will appear in the vert_indices array of each of those leaf
* nodes.
*
* In order to support cases where you want access to multiple
* nodes' vertices without duplication, the vert_indices array
* is ordered such that the first part of the array, up to
* index 'uniq_verts', contains "unique" vertex indices. These
* vertices might not be truly unique to this node, but if
* they appear in another node's vert_indices array, they will
* be above that node's 'uniq_verts' value.
*
* Used for leaf nodes in a mesh-based PBVH (not multires.)
*/
int *vert_indices;
unsigned int uniq_verts, face_verts;
/* An array mapping face corners into the vert_indices
* array. The array is sized to match 'totprim', and each of
* the face's corners gets an index into the vert_indices
* array, in the same order as the corners in the original
* MFace. The fourth value should not be used if the original
* face is a triangle.
*
* Used for leaf nodes in a mesh-based PBVH (not multires.)
*/
int (*face_vert_indices)[4];
/* Indicates whether this node is a leaf or not; also used for
* marking various updates that need to be applied. */
PBVHNodeFlags flag : 8;
/* Used for raycasting: how close bb is to the ray point. */
float tmin;
int proxy_count;
PBVHProxyNode* proxies;
2009-11-02 18:47:03 +00:00
};
2009-11-02 18:47:03 +00:00
struct PBVH {
PBVHNode *nodes;
int node_mem_count, totnode;
int *prim_indices;
int totprim;
int totvert;
int leaf_limit;
/* Mesh data */
MVert *verts;
MFace *faces;
/* Grid Data */
DMGridData **grids;
DMGridAdjacency *gridadj;
void **gridfaces;
int totgrid;
int gridsize;
/* Only used during BVH build and update,
* don't need to remain valid after */
BLI_bitmap vert_bitmap;
#ifdef PERFCNTRS
int perf_modified;
#endif
/* flag are verts/faces deformed */
int deformed;
2009-11-02 18:47:03 +00:00
};
#define STACK_FIXED_DEPTH 100
typedef struct PBVHStack {
PBVHNode *node;
int revisiting;
} PBVHStack;
typedef struct PBVHIter {
PBVH *bvh;
BLI_pbvh_SearchCallback scb;
void *search_data;
PBVHStack *stack;
int stacksize;
PBVHStack stackfixed[STACK_FIXED_DEPTH];
int stackspace;
} PBVHIter;
static void BB_reset(BB *bb)
{
bb->bmin[0] = bb->bmin[1] = bb->bmin[2] = FLT_MAX;
bb->bmax[0] = bb->bmax[1] = bb->bmax[2] = -FLT_MAX;
}
/* Expand the bounding box to include a new coordinate */
static void BB_expand(BB *bb, float co[3])
{
2009-11-02 18:47:03 +00:00
int i;
for(i = 0; i < 3; ++i) {
bb->bmin[i] = MIN2(bb->bmin[i], co[i]);
bb->bmax[i] = MAX2(bb->bmax[i], co[i]);
}
}
/* Expand the bounding box to include another bounding box */
static void BB_expand_with_bb(BB *bb, BB *bb2)
{
int i;
for(i = 0; i < 3; ++i) {
bb->bmin[i] = MIN2(bb->bmin[i], bb2->bmin[i]);
bb->bmax[i] = MAX2(bb->bmax[i], bb2->bmax[i]);
}
}
/* Return 0, 1, or 2 to indicate the widest axis of the bounding box */
static int BB_widest_axis(BB *bb)
{
float dim[3];
int i;
for(i = 0; i < 3; ++i)
dim[i] = bb->bmax[i] - bb->bmin[i];
if(dim[0] > dim[1]) {
if(dim[0] > dim[2])
return 0;
else
return 2;
}
else {
if(dim[1] > dim[2])
return 1;
else
return 2;
}
}
static void BBC_update_centroid(BBC *bbc)
{
int i;
for(i = 0; i < 3; ++i)
bbc->bcentroid[i] = (bbc->bmin[i] + bbc->bmax[i]) * 0.5f;
}
/* Not recursive */
2009-11-02 18:47:03 +00:00
static void update_node_vb(PBVH *bvh, PBVHNode *node)
{
2009-11-02 18:47:03 +00:00
BB vb;
BB_reset(&vb);
if(node->flag & PBVH_Leaf) {
PBVHVertexIter vd;
2009-11-02 18:47:03 +00:00
BLI_pbvh_vertex_iter_begin(bvh, node, vd, PBVH_ITER_ALL) {
BB_expand(&vb, vd.co);
}
BLI_pbvh_vertex_iter_end;
}
else {
2009-11-02 18:47:03 +00:00
BB_expand_with_bb(&vb,
&bvh->nodes[node->children_offset].vb);
2009-11-02 18:47:03 +00:00
BB_expand_with_bb(&vb,
&bvh->nodes[node->children_offset + 1].vb);
}
2009-11-02 18:47:03 +00:00
node->vb= vb;
}
//void BLI_pbvh_node_BB_reset(PBVHNode* node)
//{
// BB_reset(&node->vb);
//}
//
//void BLI_pbvh_node_BB_expand(PBVHNode* node, float co[3])
//{
// BB_expand(&node->vb, co);
//}
/* Adapted from BLI_kdopbvh.c */
/* Returns the index of the first element on the right of the partition */
static int partition_indices(int *prim_indices, int lo, int hi, int axis,
float mid, BBC *prim_bbc)
{
int i=lo, j=hi;
for(;;) {
for(; prim_bbc[prim_indices[i]].bcentroid[axis] < mid; i++);
for(; mid < prim_bbc[prim_indices[j]].bcentroid[axis]; j--);
if(!(i < j))
return i;
SWAP(int, prim_indices[i], prim_indices[j]);
i++;
}
}
static void check_partitioning(int *prim_indices, int lo, int hi, int axis,
float mid, BBC *prim_bbc, int index_of_2nd_partition)
{
int i;
for(i = lo; i <= hi; ++i) {
const float c = prim_bbc[prim_indices[i]].bcentroid[axis];
if((i < index_of_2nd_partition && c > mid) ||
(i > index_of_2nd_partition && c < mid)) {
printf("fail\n");
}
}
}
static void grow_nodes(PBVH *bvh, int totnode)
{
if(totnode > bvh->node_mem_count) {
2009-11-02 18:47:03 +00:00
PBVHNode *prev = bvh->nodes;
bvh->node_mem_count *= 1.33;
if(bvh->node_mem_count < totnode)
bvh->node_mem_count = totnode;
2009-11-02 18:47:03 +00:00
bvh->nodes = MEM_callocN(sizeof(PBVHNode) * bvh->node_mem_count,
"bvh nodes");
2009-11-02 18:47:03 +00:00
memcpy(bvh->nodes, prev, bvh->totnode * sizeof(PBVHNode));
MEM_freeN(prev);
}
bvh->totnode = totnode;
}
/* Add a vertex to the map, with a positive value for unique vertices and
* a negative value for additional vertices */
static int map_insert_vert(PBVH *bvh, GHash *map,
unsigned int *face_verts,
unsigned int *uniq_verts, int vertex)
{
void *value, *key = SET_INT_IN_POINTER(vertex);
if(!BLI_ghash_haskey(map, key)) {
if(BLI_BITMAP_GET(bvh->vert_bitmap, vertex)) {
value = SET_INT_IN_POINTER(~(*face_verts));
++(*face_verts);
}
else {
BLI_BITMAP_SET(bvh->vert_bitmap, vertex);
value = SET_INT_IN_POINTER(*uniq_verts);
++(*uniq_verts);
}
BLI_ghash_insert(map, key, value);
return GET_INT_FROM_POINTER(value);
}
else
return GET_INT_FROM_POINTER(BLI_ghash_lookup(map, key));
}
/* Find vertices used by the faces in this node and update the draw buffers */
static void build_mesh_leaf_node(PBVH *bvh, PBVHNode *node)
{
GHashIterator *iter;
GHash *map;
2009-11-02 18:47:03 +00:00
int i, j, totface;
map = BLI_ghash_new(BLI_ghashutil_inthash, BLI_ghashutil_intcmp, "build_mesh_leaf_node gh");
node->uniq_verts = node->face_verts = 0;
totface= node->totprim;
node->face_vert_indices = MEM_callocN(sizeof(int) * 4*totface,
"bvh node face vert indices");
2009-11-02 18:47:03 +00:00
for(i = 0; i < totface; ++i) {
MFace *f = bvh->faces + node->prim_indices[i];
int sides = f->v4 ? 4 : 3;
for(j = 0; j < sides; ++j) {
node->face_vert_indices[i][j]=
map_insert_vert(bvh, map, &node->face_verts,
&node->uniq_verts, (&f->v1)[j]);
}
}
node->vert_indices = MEM_callocN(sizeof(int) *
(node->uniq_verts + node->face_verts),
"bvh node vert indices");
/* Build the vertex list, unique verts first */
for(iter = BLI_ghashIterator_new(map), i = 0;
!BLI_ghashIterator_isDone(iter);
BLI_ghashIterator_step(iter), ++i) {
void *value = BLI_ghashIterator_getValue(iter);
int ndx = GET_INT_FROM_POINTER(value);
if(ndx < 0)
ndx = -ndx + node->uniq_verts - 1;
node->vert_indices[ndx] =
GET_INT_FROM_POINTER(BLI_ghashIterator_getKey(iter));
}
BLI_ghashIterator_free(iter);
for(i = 0; i < totface; ++i) {
MFace *f = bvh->faces + node->prim_indices[i];
int sides = f->v4 ? 4 : 3;
for(j = 0; j < sides; ++j) {
if(node->face_vert_indices[i][j] < 0)
node->face_vert_indices[i][j]=
-node->face_vert_indices[i][j] +
node->uniq_verts - 1;
}
}
if(!G.background) {
node->draw_buffers =
GPU_build_mesh_buffers(node->face_vert_indices,
bvh->faces,
node->prim_indices,
node->totprim);
}
node->flag |= PBVH_UpdateDrawBuffers;
BLI_ghash_free(map, NULL, NULL);
}
static void build_grids_leaf_node(PBVH *bvh, PBVHNode *node)
{
if(!G.background) {
node->draw_buffers =
GPU_build_grid_buffers(node->totprim, bvh->gridsize);
}
node->flag |= PBVH_UpdateDrawBuffers;
}
static void build_leaf(PBVH *bvh, int node_index, const BBC *prim_bbc,
int offset, int count)
{
int i;
bvh->nodes[node_index].flag |= PBVH_Leaf;
bvh->nodes[node_index].prim_indices = bvh->prim_indices + offset;
bvh->nodes[node_index].totprim = count;
/* Still need vb for searches */
BB_reset(&bvh->nodes[node_index].vb);
for(i = offset + count - 1; i >= offset; --i) {
BB_expand_with_bb(&bvh->nodes[node_index].vb,
(BB*)(prim_bbc +
bvh->prim_indices[i]));
}
if(bvh->faces)
build_mesh_leaf_node(bvh, bvh->nodes + node_index);
else
build_grids_leaf_node(bvh, bvh->nodes + node_index);
bvh->nodes[node_index].orig_vb= bvh->nodes[node_index].vb;
}
/* Recursively build a node in the tree
*
* vb is the voxel box around all of the primitives contained in
* this node.
*
* cb is the bounding box around all the centroids of the primitives
* contained in this node
*
* offset and start indicate a range in the array of primitive indices
*/
static void build_sub(PBVH *bvh, int node_index, BB *cb, BBC *prim_bbc,
int offset, int count)
{
int i, axis, end;
BB cb_backing;
/* Decide whether this is a leaf or not */
if(count <= bvh->leaf_limit) {
build_leaf(bvh, node_index, prim_bbc, offset, count);
return;
}
BB_reset(&bvh->nodes[node_index].vb);
bvh->nodes[node_index].children_offset = bvh->totnode;
grow_nodes(bvh, bvh->totnode + 2);
if(!cb) {
cb = &cb_backing;
BB_reset(cb);
for(i = offset + count - 1; i >= offset; --i)
BB_expand(cb, prim_bbc[bvh->prim_indices[i]].bcentroid);
}
axis = BB_widest_axis(cb);
for(i = offset + count - 1; i >= offset; --i) {
BB_expand_with_bb(&bvh->nodes[node_index].vb,
(BB*)(prim_bbc + bvh->prim_indices[i]));
}
bvh->nodes[node_index].orig_vb= bvh->nodes[node_index].vb;
end = partition_indices(bvh->prim_indices, offset, offset + count - 1,
axis,
(cb->bmax[axis] + cb->bmin[axis]) * 0.5f,
prim_bbc);
check_partitioning(bvh->prim_indices, offset, offset + count - 1,
axis,
(cb->bmax[axis] + cb->bmin[axis]) * 0.5f,
prim_bbc, end);
build_sub(bvh, bvh->nodes[node_index].children_offset, NULL,
prim_bbc, offset, end - offset);
build_sub(bvh, bvh->nodes[node_index].children_offset + 1, NULL,
prim_bbc, end, offset + count - end);
}
static void pbvh_build(PBVH *bvh, BB *cb, BBC *prim_bbc, int totprim)
{
int i;
if(totprim != bvh->totprim) {
bvh->totprim = totprim;
if(bvh->nodes) MEM_freeN(bvh->nodes);
if(bvh->prim_indices) MEM_freeN(bvh->prim_indices);
bvh->prim_indices = MEM_callocN(sizeof(int) * totprim,
"bvh prim indices");
for(i = 0; i < totprim; ++i)
bvh->prim_indices[i] = i;
bvh->totnode = 0;
if(bvh->node_mem_count < 100) {
bvh->node_mem_count = 100;
2009-11-02 18:47:03 +00:00
bvh->nodes = MEM_callocN(sizeof(PBVHNode) *
bvh->node_mem_count,
"bvh initial nodes");
}
}
bvh->totnode = 1;
build_sub(bvh, 0, cb, prim_bbc, 0, totprim);
}
/* Do a full rebuild with on Mesh data structure */
void BLI_pbvh_build_mesh(PBVH *bvh, MFace *faces, MVert *verts, int totface, int totvert)
{
BBC *prim_bbc = NULL;
BB cb;
int i, j;
bvh->faces = faces;
bvh->verts = verts;
bvh->vert_bitmap = BLI_BITMAP_NEW(totvert, "bvh->vert_bitmap");
bvh->totvert = totvert;
bvh->leaf_limit = LEAF_LIMIT;
BB_reset(&cb);
/* For each face, store the AABB and the AABB centroid */
prim_bbc = MEM_mallocN(sizeof(BBC) * totface, "prim_bbc");
for(i = 0; i < totface; ++i) {
MFace *f = faces + i;
const int sides = f->v4 ? 4 : 3;
BBC *bbc = prim_bbc + i;
BB_reset((BB*)bbc);
for(j = 0; j < sides; ++j)
BB_expand((BB*)bbc, verts[(&f->v1)[j]].co);
BBC_update_centroid(bbc);
BB_expand(&cb, bbc->bcentroid);
}
if(totface)
pbvh_build(bvh, &cb, prim_bbc, totface);
MEM_freeN(prim_bbc);
MEM_freeN(bvh->vert_bitmap);
}
/* Do a full rebuild with on Grids data structure */
void BLI_pbvh_build_grids(PBVH *bvh, DMGridData **grids, DMGridAdjacency *gridadj,
int totgrid, int gridsize, void **gridfaces)
{
BBC *prim_bbc = NULL;
BB cb;
int i, j;
bvh->grids= grids;
bvh->gridadj= gridadj;
bvh->gridfaces= gridfaces;
bvh->totgrid= totgrid;
bvh->gridsize= gridsize;
bvh->leaf_limit = MAX2(LEAF_LIMIT/((gridsize-1)*(gridsize-1)), 1);
BB_reset(&cb);
/* For each grid, store the AABB and the AABB centroid */
prim_bbc = MEM_mallocN(sizeof(BBC) * totgrid, "prim_bbc");
for(i = 0; i < totgrid; ++i) {
DMGridData *grid= grids[i];
BBC *bbc = prim_bbc + i;
BB_reset((BB*)bbc);
for(j = 0; j < gridsize*gridsize; ++j)
BB_expand((BB*)bbc, grid[j].co);
BBC_update_centroid(bbc);
BB_expand(&cb, bbc->bcentroid);
}
if(totgrid)
pbvh_build(bvh, &cb, prim_bbc, totgrid);
MEM_freeN(prim_bbc);
}
2009-11-02 18:47:03 +00:00
PBVH *BLI_pbvh_new(void)
{
PBVH *bvh = MEM_callocN(sizeof(PBVH), "pbvh");
return bvh;
}
void BLI_pbvh_free(PBVH *bvh)
{
PBVHNode *node;
int i;
for(i = 0; i < bvh->totnode; ++i) {
node= &bvh->nodes[i];
if(node->flag & PBVH_Leaf) {
if(node->draw_buffers)
GPU_free_buffers(node->draw_buffers);
if(node->vert_indices)
MEM_freeN(node->vert_indices);
if(node->face_vert_indices)
MEM_freeN(node->face_vert_indices);
}
}
if (bvh->deformed) {
if (bvh->verts) {
/* if pbvh was deformed, new memory was allocated for verts/faces -- free it */
MEM_freeN(bvh->verts);
if(bvh->faces)
MEM_freeN(bvh->faces);
}
}
if(bvh->nodes)
MEM_freeN(bvh->nodes);
if(bvh->prim_indices)
MEM_freeN(bvh->prim_indices);
MEM_freeN(bvh);
}
2009-11-02 18:47:03 +00:00
static void pbvh_iter_begin(PBVHIter *iter, PBVH *bvh, BLI_pbvh_SearchCallback scb, void *search_data)
{
iter->bvh= bvh;
iter->scb= scb;
iter->search_data= search_data;
iter->stack= iter->stackfixed;
iter->stackspace= STACK_FIXED_DEPTH;
iter->stack[0].node= bvh->nodes;
iter->stack[0].revisiting= 0;
iter->stacksize= 1;
}
static void pbvh_iter_end(PBVHIter *iter)
{
if(iter->stackspace > STACK_FIXED_DEPTH)
MEM_freeN(iter->stack);
}
static void pbvh_stack_push(PBVHIter *iter, PBVHNode *node, int revisiting)
{
if(iter->stacksize == iter->stackspace) {
PBVHStack *newstack;
iter->stackspace *= 2;
newstack= MEM_callocN(sizeof(PBVHStack)*iter->stackspace, "PBVHStack");
memcpy(newstack, iter->stack, sizeof(PBVHStack)*iter->stacksize);
if(iter->stackspace > STACK_FIXED_DEPTH)
MEM_freeN(iter->stack);
iter->stack= newstack;
}
2009-11-02 18:47:03 +00:00
iter->stack[iter->stacksize].node= node;
iter->stack[iter->stacksize].revisiting= revisiting;
iter->stacksize++;
}
2009-11-02 18:47:03 +00:00
static PBVHNode *pbvh_iter_next(PBVHIter *iter)
{
2009-11-02 18:47:03 +00:00
PBVHNode *node;
int revisiting;
/* purpose here is to traverse tree, visiting child nodes before their
* parents, this order is necessary for e.g. computing bounding boxes */
2009-11-02 18:47:03 +00:00
while(iter->stacksize) {
/* pop node */
2009-11-02 18:47:03 +00:00
iter->stacksize--;
node= iter->stack[iter->stacksize].node;
/* on a mesh with no faces this can happen
* can remove this check if we know meshes have at least 1 face */
if(node==NULL)
return NULL;
2009-11-02 18:47:03 +00:00
revisiting= iter->stack[iter->stacksize].revisiting;
2009-11-02 18:47:03 +00:00
/* revisiting node already checked */
if(revisiting)
return node;
if(iter->scb && !iter->scb(node, iter->search_data))
2009-11-02 18:47:03 +00:00
continue; /* don't traverse, outside of search zone */
if(node->flag & PBVH_Leaf) {
2009-11-02 18:47:03 +00:00
/* immediately hit leaf node */
return node;
}
else {
/* come back later when children are done */
pbvh_stack_push(iter, node, 1);
/* push two child nodes on the stack */
pbvh_stack_push(iter, iter->bvh->nodes+node->children_offset+1, 0);
pbvh_stack_push(iter, iter->bvh->nodes+node->children_offset, 0);
}
}
return NULL;
}
static PBVHNode *pbvh_iter_next_occluded(PBVHIter *iter)
{
PBVHNode *node;
while(iter->stacksize) {
/* pop node */
iter->stacksize--;
node= iter->stack[iter->stacksize].node;
/* on a mesh with no faces this can happen
* can remove this check if we know meshes have at least 1 face */
if(node==NULL) return NULL;
if(iter->scb && !iter->scb(node, iter->search_data)) continue; /* don't traverse, outside of search zone */
if(node->flag & PBVH_Leaf) {
/* immediately hit leaf node */
return node;
}
else {
pbvh_stack_push(iter, iter->bvh->nodes+node->children_offset+1, 0);
pbvh_stack_push(iter, iter->bvh->nodes+node->children_offset, 0);
}
}
return NULL;
}
2009-11-02 18:47:03 +00:00
void BLI_pbvh_search_gather(PBVH *bvh,
BLI_pbvh_SearchCallback scb, void *search_data,
PBVHNode ***r_array, int *r_tot)
{
PBVHIter iter;
PBVHNode **array= NULL, **newarray, *node;
int tot= 0, space= 0;
pbvh_iter_begin(&iter, bvh, scb, search_data);
while((node=pbvh_iter_next(&iter))) {
if(node->flag & PBVH_Leaf) {
if(tot == space) {
/* resize array if needed */
space= (tot == 0)? 32: space*2;
newarray= MEM_callocN(sizeof(PBVHNode)*space, "PBVHNodeSearch");
if(array) {
memcpy(newarray, array, sizeof(PBVHNode)*tot);
MEM_freeN(array);
}
2009-11-02 18:47:03 +00:00
array= newarray;
}
2009-11-02 18:47:03 +00:00
array[tot]= node;
tot++;
}
}
pbvh_iter_end(&iter);
if(tot == 0 && array) {
MEM_freeN(array);
array= NULL;
}
2009-11-02 18:47:03 +00:00
*r_array= array;
*r_tot= tot;
}
void BLI_pbvh_search_callback(PBVH *bvh,
BLI_pbvh_SearchCallback scb, void *search_data,
BLI_pbvh_HitCallback hcb, void *hit_data)
{
PBVHIter iter;
PBVHNode *node;
pbvh_iter_begin(&iter, bvh, scb, search_data);
while((node=pbvh_iter_next(&iter)))
if (node->flag & PBVH_Leaf)
hcb(node, hit_data);
2009-11-02 18:47:03 +00:00
pbvh_iter_end(&iter);
}
typedef struct node_tree {
PBVHNode* data;
struct node_tree* left;
struct node_tree* right;
} node_tree;
static void node_tree_insert(node_tree* tree, node_tree* new_node)
{
if (new_node->data->tmin < tree->data->tmin) {
if (tree->left) {
node_tree_insert(tree->left, new_node);
}
else {
tree->left = new_node;
}
}
else {
if (tree->right) {
node_tree_insert(tree->right, new_node);
}
else {
tree->right = new_node;
}
}
}
static void traverse_tree(node_tree* tree, BLI_pbvh_HitOccludedCallback hcb, void* hit_data, float* tmin)
{
if (tree->left) traverse_tree(tree->left, hcb, hit_data, tmin);
hcb(tree->data, hit_data, tmin);
if (tree->right) traverse_tree(tree->right, hcb, hit_data, tmin);
}
static void free_tree(node_tree* tree)
{
if (tree->left) {
free_tree(tree->left);
tree->left = 0;
}
if (tree->right) {
free_tree(tree->right);
tree->right = 0;
}
free(tree);
}
float BLI_pbvh_node_get_tmin(PBVHNode* node)
{
return node->tmin;
}
static void BLI_pbvh_search_callback_occluded(PBVH *bvh,
BLI_pbvh_SearchCallback scb, void *search_data,
BLI_pbvh_HitOccludedCallback hcb, void *hit_data)
{
PBVHIter iter;
PBVHNode *node;
node_tree *tree = 0;
pbvh_iter_begin(&iter, bvh, scb, search_data);
while((node=pbvh_iter_next_occluded(&iter))) {
if(node->flag & PBVH_Leaf) {
node_tree* new_node = malloc(sizeof(node_tree));
new_node->data = node;
new_node->left = NULL;
new_node->right = NULL;
if (tree) {
node_tree_insert(tree, new_node);
}
else {
tree = new_node;
}
}
}
pbvh_iter_end(&iter);
if (tree) {
float tmin = FLT_MAX;
traverse_tree(tree, hcb, hit_data, &tmin);
free_tree(tree);
}
}
static int update_search_cb(PBVHNode *node, void *data_v)
2009-11-02 18:47:03 +00:00
{
int flag= GET_INT_FROM_POINTER(data_v);
2009-11-02 18:47:03 +00:00
if(node->flag & PBVH_Leaf)
return (node->flag & flag);
2009-11-02 18:47:03 +00:00
return 1;
}
static void pbvh_update_normals(PBVH *bvh, PBVHNode **nodes,
2009-11-02 18:47:03 +00:00
int totnode, float (*face_nors)[3])
{
float (*vnor)[3];
2009-11-02 18:47:03 +00:00
int n;
if(bvh->grids)
return;
/* could be per node to save some memory, but also means
* we have to store for each vertex which node it is in */
vnor= MEM_callocN(sizeof(float)*3*bvh->totvert, "bvh temp vnors");
/* subtle assumptions:
* - We know that for all edited vertices, the nodes with faces
* adjacent to these vertices have been marked with PBVH_UpdateNormals.
* This is true because if the vertex is inside the brush radius, the
* bounding box of it's adjacent faces will be as well.
* - However this is only true for the vertices that have actually been
* edited, not for all vertices in the nodes marked for update, so we
* can only update vertices marked with ME_VERT_PBVH_UPDATE.
*/
2009-11-02 18:47:03 +00:00
#pragma omp parallel for private(n) schedule(static)
for(n = 0; n < totnode; n++) {
PBVHNode *node= nodes[n];
2009-11-02 18:47:03 +00:00
if((node->flag & PBVH_UpdateNormals)) {
int i, j, totface, *faces;
2009-11-02 18:47:03 +00:00
faces= node->prim_indices;
totface= node->totprim;
2009-11-02 18:47:03 +00:00
for(i = 0; i < totface; ++i) {
MFace *f= bvh->faces + faces[i];
float fn[3];
unsigned int *fv = &f->v1;
int sides= (f->v4)? 4: 3;
2009-11-02 18:47:03 +00:00
if(f->v4)
normal_quad_v3(fn, bvh->verts[f->v1].co, bvh->verts[f->v2].co,
bvh->verts[f->v3].co, bvh->verts[f->v4].co);
2009-11-02 18:47:03 +00:00
else
normal_tri_v3(fn, bvh->verts[f->v1].co, bvh->verts[f->v2].co,
bvh->verts[f->v3].co);
for(j = 0; j < sides; ++j) {
int v= fv[j];
if(bvh->verts[v].flag & ME_VERT_PBVH_UPDATE) {
/* this seems like it could be very slow but profile
* does not show this, so just leave it for now? */
#pragma omp atomic
vnor[v][0] += fn[0];
#pragma omp atomic
vnor[v][1] += fn[1];
#pragma omp atomic
vnor[v][2] += fn[2];
}
}
if(face_nors)
copy_v3_v3(face_nors[faces[i]], fn);
2009-11-02 18:47:03 +00:00
}
}
2009-11-02 18:47:03 +00:00
}
#pragma omp parallel for private(n) schedule(static)
for(n = 0; n < totnode; n++) {
PBVHNode *node= nodes[n];
2009-11-02 18:47:03 +00:00
if(node->flag & PBVH_UpdateNormals) {
2009-11-02 18:47:03 +00:00
int i, *verts, totvert;
verts= node->vert_indices;
totvert= node->uniq_verts;
2009-11-02 18:47:03 +00:00
for(i = 0; i < totvert; ++i) {
const int v = verts[i];
MVert *mvert= &bvh->verts[v];
if(mvert->flag & ME_VERT_PBVH_UPDATE) {
float no[3];
copy_v3_v3(no, vnor[v]);
normalize_v3(no);
mvert->no[0] = (short)(no[0]*32767.0f);
mvert->no[1] = (short)(no[1]*32767.0f);
mvert->no[2] = (short)(no[2]*32767.0f);
mvert->flag &= ~ME_VERT_PBVH_UPDATE;
}
2009-11-02 18:47:03 +00:00
}
node->flag &= ~PBVH_UpdateNormals;
}
}
MEM_freeN(vnor);
}
static void pbvh_update_BB_redraw(PBVH *bvh, PBVHNode **nodes,
int totnode, int flag)
{
int n;
/* update BB, redraw flag */
#pragma omp parallel for private(n) schedule(static)
for(n = 0; n < totnode; n++) {
PBVHNode *node= nodes[n];
if((flag & PBVH_UpdateBB) && (node->flag & PBVH_UpdateBB))
/* don't clear flag yet, leave it for flushing later */
update_node_vb(bvh, node);
2009-11-02 18:47:03 +00:00
if((flag & PBVH_UpdateOriginalBB) && (node->flag & PBVH_UpdateOriginalBB))
node->orig_vb= node->vb;
2009-11-02 18:47:03 +00:00
if((flag & PBVH_UpdateRedraw) && (node->flag & PBVH_UpdateRedraw))
node->flag &= ~PBVH_UpdateRedraw;
}
2009-11-02 18:47:03 +00:00
}
static void pbvh_update_draw_buffers(PBVH *bvh, PBVHNode **nodes, int totnode, int smooth)
2009-11-02 18:47:03 +00:00
{
PBVHNode *node;
int n;
/* can't be done in parallel with OpenGL */
for(n = 0; n < totnode; n++) {
node= nodes[n];
if(node->flag & PBVH_UpdateDrawBuffers) {
if(bvh->grids) {
GPU_update_grid_buffers(node->draw_buffers,
bvh->grids,
node->prim_indices,
node->totprim,
bvh->gridsize,
smooth);
}
else {
GPU_update_mesh_buffers(node->draw_buffers,
bvh->verts,
node->vert_indices,
node->uniq_verts +
node->face_verts,
smooth);
}
2009-11-02 18:47:03 +00:00
node->flag &= ~PBVH_UpdateDrawBuffers;
}
}
2009-11-02 18:47:03 +00:00
}
static int pbvh_flush_bb(PBVH *bvh, PBVHNode *node, int flag)
2009-11-02 18:47:03 +00:00
{
int update= 0;
/* difficult to multithread well, we just do single threaded recursive */
if(node->flag & PBVH_Leaf) {
if(flag & PBVH_UpdateBB) {
update |= (node->flag & PBVH_UpdateBB);
node->flag &= ~PBVH_UpdateBB;
}
if(flag & PBVH_UpdateOriginalBB) {
update |= (node->flag & PBVH_UpdateOriginalBB);
node->flag &= ~PBVH_UpdateOriginalBB;
}
2009-11-02 18:47:03 +00:00
return update;
}
else {
update |= pbvh_flush_bb(bvh, bvh->nodes + node->children_offset, flag);
update |= pbvh_flush_bb(bvh, bvh->nodes + node->children_offset + 1, flag);
2009-11-02 18:47:03 +00:00
if(update & PBVH_UpdateBB)
update_node_vb(bvh, node);
if(update & PBVH_UpdateOriginalBB)
node->orig_vb= node->vb;
}
2009-11-02 18:47:03 +00:00
return update;
}
void BLI_pbvh_update(PBVH *bvh, int flag, float (*face_nors)[3])
{
2009-11-02 18:47:03 +00:00
PBVHNode **nodes;
int totnode;
if(!bvh->nodes)
return;
BLI_pbvh_search_gather(bvh, update_search_cb, SET_INT_IN_POINTER(flag),
&nodes, &totnode);
2009-11-02 18:47:03 +00:00
if(flag & PBVH_UpdateNormals)
pbvh_update_normals(bvh, nodes, totnode, face_nors);
2009-11-02 18:47:03 +00:00
if(flag & (PBVH_UpdateBB|PBVH_UpdateOriginalBB|PBVH_UpdateRedraw))
pbvh_update_BB_redraw(bvh, nodes, totnode, flag);
2009-11-02 18:47:03 +00:00
if(flag & (PBVH_UpdateBB|PBVH_UpdateOriginalBB))
pbvh_flush_bb(bvh, bvh->nodes, flag);
2009-11-02 18:47:03 +00:00
if(nodes) MEM_freeN(nodes);
}
void BLI_pbvh_redraw_BB(PBVH *bvh, float bb_min[3], float bb_max[3])
2009-11-02 18:47:03 +00:00
{
PBVHIter iter;
PBVHNode *node;
BB bb;
BB_reset(&bb);
pbvh_iter_begin(&iter, bvh, NULL, NULL);
while((node=pbvh_iter_next(&iter)))
if(node->flag & PBVH_UpdateRedraw)
BB_expand_with_bb(&bb, &node->vb);
pbvh_iter_end(&iter);
copy_v3_v3(bb_min, bb.bmin);
copy_v3_v3(bb_max, bb.bmax);
2009-11-02 18:47:03 +00:00
}
void BLI_pbvh_get_grid_updates(PBVH *bvh, int clear, void ***gridfaces, int *totface)
{
PBVHIter iter;
PBVHNode *node;
GHashIterator *hiter;
GHash *map;
void *face, **faces;
unsigned i;
int tot;
map = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp, "pbvh_get_grid_updates gh");
pbvh_iter_begin(&iter, bvh, NULL, NULL);
while((node=pbvh_iter_next(&iter))) {
if(node->flag & PBVH_UpdateNormals) {
for(i = 0; i < node->totprim; ++i) {
face= bvh->gridfaces[node->prim_indices[i]];
if(!BLI_ghash_lookup(map, face))
BLI_ghash_insert(map, face, face);
}
if(clear)
node->flag &= ~PBVH_UpdateNormals;
}
}
pbvh_iter_end(&iter);
tot= BLI_ghash_size(map);
if(tot == 0) {
*totface= 0;
*gridfaces= NULL;
BLI_ghash_free(map, NULL, NULL);
return;
}
faces= MEM_callocN(sizeof(void*)*tot, "PBVH Grid Faces");
for(hiter = BLI_ghashIterator_new(map), i = 0;
!BLI_ghashIterator_isDone(hiter);
BLI_ghashIterator_step(hiter), ++i)
faces[i]= BLI_ghashIterator_getKey(hiter);
BLI_ghashIterator_free(hiter);
BLI_ghash_free(map, NULL, NULL);
*totface= tot;
*gridfaces= faces;
}
2009-11-02 18:47:03 +00:00
/***************************** Node Access ***********************************/
void BLI_pbvh_node_mark_update(PBVHNode *node)
{
node->flag |= PBVH_UpdateNormals|PBVH_UpdateBB|PBVH_UpdateOriginalBB|PBVH_UpdateDrawBuffers|PBVH_UpdateRedraw;
2009-11-02 18:47:03 +00:00
}
void BLI_pbvh_node_get_verts(PBVH *bvh, PBVHNode *node, int **vert_indices, MVert **verts)
2009-11-02 18:47:03 +00:00
{
if(vert_indices) *vert_indices= node->vert_indices;
if(verts) *verts= bvh->verts;
2009-11-02 18:47:03 +00:00
}
void BLI_pbvh_node_num_verts(PBVH *bvh, PBVHNode *node, int *uniquevert, int *totvert)
2009-11-02 18:47:03 +00:00
{
if(bvh->grids) {
2011-07-09 19:59:32 +00:00
const int tot= node->totprim*bvh->gridsize*bvh->gridsize;
if(totvert) *totvert= tot;
if(uniquevert) *uniquevert= tot;
}
else {
if(totvert) *totvert= node->uniq_verts + node->face_verts;
if(uniquevert) *uniquevert= node->uniq_verts;
}
2009-11-02 18:47:03 +00:00
}
void BLI_pbvh_node_get_grids(PBVH *bvh, PBVHNode *node, int **grid_indices, int *totgrid, int *maxgrid, int *gridsize, DMGridData ***griddata, DMGridAdjacency **gridadj)
2009-11-02 18:47:03 +00:00
{
if(bvh->grids) {
if(grid_indices) *grid_indices= node->prim_indices;
if(totgrid) *totgrid= node->totprim;
if(maxgrid) *maxgrid= bvh->totgrid;
if(gridsize) *gridsize= bvh->gridsize;
if(griddata) *griddata= bvh->grids;
if(gridadj) *gridadj= bvh->gridadj;
}
else {
if(grid_indices) *grid_indices= NULL;
if(totgrid) *totgrid= 0;
if(maxgrid) *maxgrid= 0;
if(gridsize) *gridsize= 0;
if(griddata) *griddata= NULL;
if(gridadj) *gridadj= NULL;
}
2009-11-02 18:47:03 +00:00
}
void BLI_pbvh_node_get_BB(PBVHNode *node, float bb_min[3], float bb_max[3])
{
copy_v3_v3(bb_min, node->vb.bmin);
copy_v3_v3(bb_max, node->vb.bmax);
}
void BLI_pbvh_node_get_original_BB(PBVHNode *node, float bb_min[3], float bb_max[3])
{
copy_v3_v3(bb_min, node->orig_vb.bmin);
copy_v3_v3(bb_max, node->orig_vb.bmax);
}
void BLI_pbvh_node_get_proxies(PBVHNode* node, PBVHProxyNode** proxies, int* proxy_count)
{
if (node->proxy_count > 0) {
if (proxies) *proxies = node->proxies;
if (proxy_count) *proxy_count = node->proxy_count;
}
else {
if (proxies) *proxies = 0;
if (proxy_count) *proxy_count = 0;
}
}
2009-11-02 18:47:03 +00:00
/********************************* Raycast ***********************************/
typedef struct {
/* Ray */
float start[3];
int sign[3];
float inv_dir[3];
int original;
} RaycastData;
/* Adapted from here: http://www.gamedev.net/community/forums/topic.asp?topic_id=459973 */
static int ray_aabb_intersect(PBVHNode *node, void *data_v)
{
RaycastData *ray = data_v;
float bbox[2][3];
float tmin, tmax, tymin, tymax, tzmin, tzmax;
if(ray->original)
BLI_pbvh_node_get_original_BB(node, bbox[0], bbox[1]);
else
BLI_pbvh_node_get_BB(node, bbox[0], bbox[1]);
tmin = (bbox[ray->sign[0]][0] - ray->start[0]) * ray->inv_dir[0];
tmax = (bbox[1-ray->sign[0]][0] - ray->start[0]) * ray->inv_dir[0];
tymin = (bbox[ray->sign[1]][1] - ray->start[1]) * ray->inv_dir[1];
tymax = (bbox[1-ray->sign[1]][1] - ray->start[1]) * ray->inv_dir[1];
if((tmin > tymax) || (tymin > tmax))
return 0;
if(tymin > tmin)
tmin = tymin;
if(tymax < tmax)
tmax = tymax;
tzmin = (bbox[ray->sign[2]][2] - ray->start[2]) * ray->inv_dir[2];
tzmax = (bbox[1-ray->sign[2]][2] - ray->start[2]) * ray->inv_dir[2];
if((tmin > tzmax) || (tzmin > tmax))
return 0;
if(tzmin > tmin)
tmin = tzmin;
// XXX jwilkins: tmax does not need to be updated since we don't use it
// keeping this here for future reference
//if(tzmax < tmax) tmax = tzmax;
node->tmin = tmin;
return 1;
}
void BLI_pbvh_raycast(PBVH *bvh, BLI_pbvh_HitOccludedCallback cb, void *data,
float ray_start[3], float ray_normal[3], int original)
{
RaycastData rcd;
copy_v3_v3(rcd.start, ray_start);
rcd.inv_dir[0] = 1.0f / ray_normal[0];
rcd.inv_dir[1] = 1.0f / ray_normal[1];
rcd.inv_dir[2] = 1.0f / ray_normal[2];
rcd.sign[0] = rcd.inv_dir[0] < 0;
rcd.sign[1] = rcd.inv_dir[1] < 0;
rcd.sign[2] = rcd.inv_dir[2] < 0;
rcd.original = original;
BLI_pbvh_search_callback_occluded(bvh, ray_aabb_intersect, &rcd, cb, data);
}
static int ray_face_intersection(float ray_start[3], float ray_normal[3],
float *t0, float *t1, float *t2, float *t3,
float *fdist)
{
float dist;
if ((isect_ray_tri_epsilon_v3(ray_start, ray_normal, t0, t1, t2, &dist, NULL, 0.1f) && dist < *fdist) ||
(t3 && isect_ray_tri_epsilon_v3(ray_start, ray_normal, t0, t2, t3, &dist, NULL, 0.1f) && dist < *fdist))
{
*fdist = dist;
return 1;
}
else {
return 0;
}
}
int BLI_pbvh_node_raycast(PBVH *bvh, PBVHNode *node, float (*origco)[3],
float ray_start[3], float ray_normal[3], float *dist)
{
int hit= 0;
if(bvh->faces) {
MVert *vert = bvh->verts;
int *faces= node->prim_indices;
int totface= node->totprim;
int i;
for(i = 0; i < totface; ++i) {
MFace *f = bvh->faces + faces[i];
int *face_verts = node->face_vert_indices[i];
if(origco) {
/* intersect with backuped original coordinates */
hit |= ray_face_intersection(ray_start, ray_normal,
origco[face_verts[0]],
origco[face_verts[1]],
origco[face_verts[2]],
f->v4? origco[face_verts[3]]: NULL,
dist);
}
else {
/* intersect with current coordinates */
hit |= ray_face_intersection(ray_start, ray_normal,
vert[f->v1].co,
vert[f->v2].co,
vert[f->v3].co,
f->v4 ? vert[f->v4].co : NULL,
dist);
}
}
}
else {
int totgrid= node->totprim;
int gridsize= bvh->gridsize;
int i, x, y;
for(i = 0; i < totgrid; ++i) {
DMGridData *grid= bvh->grids[node->prim_indices[i]];
2010-05-03 16:06:36 +00:00
if (!grid)
continue;
for(y = 0; y < gridsize-1; ++y) {
for(x = 0; x < gridsize-1; ++x) {
if(origco) {
hit |= ray_face_intersection(ray_start, ray_normal,
origco[y*gridsize + x],
origco[y*gridsize + x+1],
origco[(y+1)*gridsize + x+1],
origco[(y+1)*gridsize + x],
dist);
}
else {
hit |= ray_face_intersection(ray_start, ray_normal,
grid[y*gridsize + x].co,
grid[y*gridsize + x+1].co,
grid[(y+1)*gridsize + x+1].co,
grid[(y+1)*gridsize + x].co,
dist);
}
}
}
if(origco)
origco += gridsize*gridsize;
}
}
return hit;
}
//#include <GL/glew.h>
void BLI_pbvh_node_draw(PBVHNode *node, void *UNUSED(data))
{
#if 0
/* XXX: Just some quick code to show leaf nodes in different colors */
float col[3]; int i;
if(0) { //is_partial) {
col[0] = (rand() / (float)RAND_MAX); col[1] = col[2] = 0.6;
}
else {
srand((long long)node);
for(i = 0; i < 3; ++i)
col[i] = (rand() / (float)RAND_MAX) * 0.3 + 0.7;
}
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, col);
glColor3f(1, 0, 0);
#endif
GPU_draw_buffers(node->draw_buffers);
}
/* Adapted from:
* http://www.gamedev.net/community/forums/topic.asp?topic_id=512123
* Returns true if the AABB is at least partially within the frustum
* (ok, not a real frustum), false otherwise.
*/
int BLI_pbvh_node_planes_contain_AABB(PBVHNode *node, void *data)
{
float (*planes)[4] = data;
int i, axis;
float vmin[3] /*, vmax[3]*/, bb_min[3], bb_max[3];
BLI_pbvh_node_get_BB(node, bb_min, bb_max);
for(i = 0; i < 4; ++i) {
for(axis = 0; axis < 3; ++axis) {
if(planes[i][axis] > 0) {
vmin[axis] = bb_min[axis];
/*vmax[axis] = bb_max[axis];*/ /*UNUSED*/
}
else {
vmin[axis] = bb_max[axis];
/*vmax[axis] = bb_min[axis];*/ /*UNUSED*/
}
}
if(dot_v3v3(planes[i], vmin) + planes[i][3] > 0)
return 0;
}
return 1;
}
void BLI_pbvh_draw(PBVH *bvh, float (*planes)[4], float (*face_nors)[3], int smooth)
{
PBVHNode **nodes;
int totnode;
BLI_pbvh_search_gather(bvh, update_search_cb, SET_INT_IN_POINTER(PBVH_UpdateNormals|PBVH_UpdateDrawBuffers),
&nodes, &totnode);
pbvh_update_normals(bvh, nodes, totnode, face_nors);
pbvh_update_draw_buffers(bvh, nodes, totnode, smooth);
if(nodes) MEM_freeN(nodes);
if(planes) {
BLI_pbvh_search_callback(bvh, BLI_pbvh_node_planes_contain_AABB,
planes, BLI_pbvh_node_draw, NULL);
}
else {
BLI_pbvh_search_callback(bvh, NULL, NULL, BLI_pbvh_node_draw, NULL);
}
}
void BLI_pbvh_grids_update(PBVH *bvh, DMGridData **grids, DMGridAdjacency *gridadj, void **gridfaces)
{
bvh->grids= grids;
bvh->gridadj= gridadj;
bvh->gridfaces= gridfaces;
}
float (*BLI_pbvh_get_vertCos(PBVH *pbvh))[3]
{
int a;
float (*vertCos)[3]= NULL;
if (pbvh->verts) {
float *co;
MVert *mvert= pbvh->verts;
vertCos= MEM_callocN(3*pbvh->totvert*sizeof(float), "BLI_pbvh_get_vertCoords");
co= (float*)vertCos;
for (a= 0; a<pbvh->totvert; a++, mvert++, co+= 3) {
copy_v3_v3(co, mvert->co);
}
}
return vertCos;
}
void BLI_pbvh_apply_vertCos(PBVH *pbvh, float (*vertCos)[3])
{
int a;
if (!pbvh->deformed) {
if (pbvh->verts) {
/* if pbvh is not already deformed, verts/faces points to the */
/* original data and applying new coords to this arrays would lead to */
/* unneeded deformation -- duplicate verts/faces to avoid this */
pbvh->verts= MEM_dupallocN(pbvh->verts);
pbvh->faces= MEM_dupallocN(pbvh->faces);
pbvh->deformed= 1;
}
}
if (pbvh->verts) {
MVert *mvert= pbvh->verts;
/* copy new verts coords */
for (a= 0; a < pbvh->totvert; ++a, ++mvert) {
copy_v3_v3(mvert->co, vertCos[a]);
mvert->flag |= ME_VERT_PBVH_UPDATE;
}
/* coordinates are new -- normals should also be updated */
mesh_calc_normals_tessface(pbvh->verts, pbvh->totvert, pbvh->faces, pbvh->totprim, NULL);
for (a= 0; a < pbvh->totnode; ++a)
BLI_pbvh_node_mark_update(&pbvh->nodes[a]);
BLI_pbvh_update(pbvh, PBVH_UpdateBB, NULL);
BLI_pbvh_update(pbvh, PBVH_UpdateOriginalBB, NULL);
}
}
int BLI_pbvh_isDeformed(PBVH *pbvh)
{
return pbvh->deformed;
}
/* Proxies */
PBVHProxyNode* BLI_pbvh_node_add_proxy(PBVH* bvh, PBVHNode* node)
{
int index, totverts;
#pragma omp critical
{
index = node->proxy_count;
node->proxy_count++;
if (node->proxies)
node->proxies= MEM_reallocN(node->proxies, node->proxy_count*sizeof(PBVHProxyNode));
else
node->proxies= MEM_mallocN(sizeof(PBVHProxyNode), "PBVHNodeProxy");
if (bvh->grids)
totverts = node->totprim*bvh->gridsize*bvh->gridsize;
else
totverts = node->uniq_verts;
node->proxies[index].co= MEM_callocN(sizeof(float[3])*totverts, "PBVHNodeProxy.co");
}
return node->proxies + index;
}
void BLI_pbvh_node_free_proxies(PBVHNode* node)
{
#pragma omp critical
{
int p;
for (p= 0; p < node->proxy_count; p++) {
MEM_freeN(node->proxies[p].co);
node->proxies[p].co= 0;
}
MEM_freeN(node->proxies);
node->proxies = 0;
node->proxy_count= 0;
}
}
void BLI_pbvh_gather_proxies(PBVH* pbvh, PBVHNode*** r_array, int* r_tot)
{
PBVHNode **array= NULL, **newarray, *node;
int tot= 0, space= 0;
int n;
for (n= 0; n < pbvh->totnode; n++) {
node = pbvh->nodes + n;
if(node->proxy_count > 0) {
if(tot == space) {
/* resize array if needed */
space= (tot == 0)? 32: space*2;
newarray= MEM_callocN(sizeof(PBVHNode)*space, "BLI_pbvh_gather_proxies");
if (array) {
memcpy(newarray, array, sizeof(PBVHNode)*tot);
MEM_freeN(array);
}
array= newarray;
}
array[tot]= node;
tot++;
}
}
if(tot == 0 && array) {
MEM_freeN(array);
array= NULL;
}
*r_array= array;
*r_tot= tot;
}
void pbvh_vertex_iter_init(PBVH *bvh, PBVHNode *node,
PBVHVertexIter *vi, int mode)
{
struct DMGridData **grids;
struct MVert *verts;
int *grid_indices, *vert_indices;
int totgrid, gridsize, uniq_verts, totvert;
vi->grid= 0;
vi->no= 0;
vi->fno= 0;
vi->mvert= 0;
BLI_pbvh_node_get_grids(bvh, node, &grid_indices, &totgrid, NULL, &gridsize, &grids, NULL);
BLI_pbvh_node_num_verts(bvh, node, &uniq_verts, &totvert);
BLI_pbvh_node_get_verts(bvh, node, &vert_indices, &verts);
vi->grids= grids;
vi->grid_indices= grid_indices;
vi->totgrid= (grids)? totgrid: 1;
vi->gridsize= gridsize;
if(mode == PBVH_ITER_ALL)
vi->totvert = totvert;
else
vi->totvert= uniq_verts;
vi->vert_indices= vert_indices;
vi->mverts= verts;
}