This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/editors/mesh/editbmesh_bvh.c

726 lines
17 KiB
C
Raw Normal View History

/* $Id:
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2010 by Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Joseph Eagar
*
* ***** END GPL LICENSE BLOCK *****
*/
#define IN_EDITMESHBVH
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>
#include <float.h>
#include "MEM_guardedalloc.h"
#include "PIL_time.h"
#include "BLO_sys_types.h" // for intptr_t support
#include "DNA_mesh_types.h"
#include "DNA_material_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_screen_types.h"
#include "DNA_view3d_types.h"
#include "DNA_key_types.h"
#include "DNA_windowmanager_types.h"
#include "RNA_types.h"
#include "RNA_define.h"
#include "RNA_access.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_editVert.h"
#include "BLI_rand.h"
#include "BLI_ghash.h"
#include "BLI_linklist.h"
#include "BLI_heap.h"
#include "BLI_array.h"
#include "BLI_kdopbvh.h"
#include "BKE_context.h"
#include "BKE_customdata.h"
#include "BKE_depsgraph.h"
#include "BKE_global.h"
#include "BKE_library.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_utildefines.h"
#include "BKE_bmesh.h"
#include "BKE_report.h"
#include "BKE_tessmesh.h"
#include "BIF_gl.h"
#include "BIF_glutil.h"
#include "WM_api.h"
#include "WM_types.h"
#include "ED_mesh.h"
#include "ED_view3d.h"
#include "ED_util.h"
#include "ED_screen.h"
#include "ED_transform.h"
#include "UI_interface.h"
#include "mesh_intern.h"
#include "bmesh.h"
#include "editbmesh_bvh.h"
typedef struct BMBVHTree {
BMEditMesh *em;
BMesh *bm;
BVHTree *tree;
float epsilon;
float maxdist; //for nearest point search
/*stuff for topological vert search*/
BMVert *v, *curv;
GHash *gh;
float curw, curd;
float co[3];
int curtag;
} BMBVHTree;
BMBVHTree *BMBVH_NewBVH(BMEditMesh *em)
{
BMBVHTree *tree = MEM_callocN(sizeof(*tree), "BMBVHTree");
float cos[3][3];
int i;
BMEdit_RecalcTesselation(em);
tree->em = em;
tree->bm = em->bm;
tree->epsilon = FLT_EPSILON*2.0f;
tree->tree = BLI_bvhtree_new(em->tottri, tree->epsilon, 8, 8);
for (i=0; i<em->tottri; i++) {
VECCOPY(cos[0], em->looptris[i][0]->v->co);
VECCOPY(cos[1], em->looptris[i][1]->v->co);
VECCOPY(cos[2], em->looptris[i][2]->v->co);
BLI_bvhtree_insert(tree->tree, i, (float*)cos, 3);
}
BLI_bvhtree_balance(tree->tree);
return tree;
}
void BMBVH_FreeBVH(BMBVHTree *tree)
{
BLI_bvhtree_free(tree->tree);
MEM_freeN(tree);
}
/*taken from bvhutils.c*/
2011-02-27 06:19:40 +00:00
static float ray_tri_intersection(const BVHTreeRay *ray, const float UNUSED(m_dist), float *v0,
float *v1, float *v2, float *uv, float UNUSED(e))
{
float dist;
#if 0
float vv1[3], vv2[3], vv3[3], cent[3];
/*expand triangle by an epsilon. this is probably a really stupid
way of doing it, but I'm too tired to do better work.*/
VECCOPY(vv1, v0);
VECCOPY(vv2, v1);
VECCOPY(vv3, v2);
add_v3_v3v3(cent, vv1, vv2);
add_v3_v3v3(cent, cent, vv3);
mul_v3_fl(cent, 1.0f/3.0f);
sub_v3_v3v3(vv1, vv1, cent);
sub_v3_v3v3(vv2, vv2, cent);
sub_v3_v3v3(vv3, vv3, cent);
mul_v3_fl(vv1, 1.0f + e);
mul_v3_fl(vv2, 1.0f + e);
mul_v3_fl(vv3, 1.0f + e);
add_v3_v3v3(vv1, vv1, cent);
add_v3_v3v3(vv2, vv2, cent);
add_v3_v3v3(vv3, vv3, cent);
if(isect_ray_tri_v3((float*)ray->origin, (float*)ray->direction, vv1, vv2, vv3, &dist, uv))
return dist;
#else
if(isect_ray_tri_v3((float*)ray->origin, (float*)ray->direction, v0, v1, v2, &dist, uv))
return dist;
#endif
return FLT_MAX;
}
static void raycallback(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
{
BMBVHTree *tree = userdata;
BMLoop **ls = tree->em->looptris[index];
float dist, uv[2];
2010-10-04 04:35:42 +00:00
if (!ls[0] || !ls[1] || !ls[2])
return;
dist = ray_tri_intersection(ray, hit->dist, ls[0]->v->co, ls[1]->v->co,
ls[2]->v->co, uv, tree->epsilon);
if (dist < hit->dist) {
hit->dist = dist;
hit->index = index;
VECCOPY(hit->no, ls[0]->v->no);
copy_v3_v3(hit->co, ray->direction);
normalize_v3(hit->co);
mul_v3_fl(hit->co, dist);
add_v3_v3(hit->co, ray->origin);
}
}
BMFace *BMBVH_RayCast(BMBVHTree *tree, float *co, float *dir, float *hitout)
{
BVHTreeRayHit hit;
hit.dist = FLT_MAX;
hit.index = -1;
BLI_bvhtree_ray_cast(tree->tree, co, dir, 0.0f, &hit, raycallback, tree);
if (hit.dist != FLT_MAX && hit.index != -1) {
if (hitout) {
VECCOPY(hitout, hit.co);
}
return tree->em->looptris[hit.index][0]->f;
}
return NULL;
}
BVHTree *BMBVH_BVHTree(BMBVHTree *tree)
{
return tree->tree;
}
2011-02-27 06:19:40 +00:00
static void vertsearchcallback(void *userdata, int index, const float *UNUSED(co), BVHTreeNearest *hit)
{
BMBVHTree *tree = userdata;
BMLoop **ls = tree->em->looptris[index];
float dist, maxdist, v[3];
int i;
maxdist = tree->maxdist;
for (i=0; i<3; i++) {
sub_v3_v3v3(v, hit->co, ls[i]->v->co);
dist = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
if (dist < hit->dist && dist < maxdist) {
VECCOPY(hit->co, ls[i]->v->co);
VECCOPY(hit->no, ls[i]->v->no);
hit->dist = dist;
}
}
}
BMVert *BMBVH_FindClosestVert(BMBVHTree *tree, float *co, float maxdist)
{
BVHTreeNearest hit;
VECCOPY(hit.co, co);
hit.dist = maxdist*5;
hit.index = -1;
tree->maxdist = maxdist;
BLI_bvhtree_find_nearest(tree->tree, co, &hit, vertsearchcallback, tree);
if (hit.dist != FLT_MAX && hit.index != -1) {
BMLoop **ls = tree->em->looptris[hit.index];
float dist, curdist = tree->maxdist, v[3];
int cur=0, i;
maxdist = tree->maxdist;
for (i=0; i<3; i++) {
sub_v3_v3v3(v, hit.co, ls[i]->v->co);
dist = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
if (dist < curdist) {
cur = i;
curdist = dist;
}
}
return ls[i]->v;
}
return NULL;
}
typedef struct walklist {
BMVert *v;
int valence;
int depth;
float w, r;
int totwalked;
/*state data*/
BMVert *lastv;
BMLoop *curl, *firstl;
BMEdge *cure;
} walklist;
static short winding(float *v1, float *v2, float *v3)
/* is v3 to the right of v1-v2 ? With exception: v3==v1 || v3==v2 */
{
double inp;
//inp= (v2[cox]-v1[cox])*(v1[coy]-v3[coy]) +(v1[coy]-v2[coy])*(v1[cox]-v3[cox]);
inp= (v2[0]-v1[0])*(v1[1]-v3[1]) +(v1[1]-v2[1])*(v1[0]-v3[0]);
if(inp<0.0) return 0;
else if(inp==0) {
if(v1[0]==v3[0] && v1[1]==v3[1]) return 0;
if(v2[0]==v3[0] && v2[1]==v3[1]) return 0;
}
return 1;
}
2011-02-27 06:19:40 +00:00
static float topo_compare(BMesh *bm, BMVert *v1, BMVert *v2)
{
BMIter iter1, iter2;
BMEdge *e1, *e2, *cure1 = NULL, *cure2 = NULL;
BMLoop *l1, *l2;
BMVert *lastv1, *lastv2;
GHash *gh;
walklist *stack1=NULL, *stack2=NULL;
BLI_array_declare(stack1);
BLI_array_declare(stack2);
float vec1[3], vec2[3], minangle=FLT_MAX, w;
int lvl=1;
static int maxlevel = 3;
/*ok. see how similar v is to v2, based on topological similaritys in the local
topological neighborhood*/
/*step 1: find two edges, one that contains v and one that contains v2, with the
smallest angle between the two edges*/
BM_ITER(e1, &iter1, bm, BM_EDGES_OF_VERT, v1) {
BM_ITER(e2, &iter2, bm, BM_EDGES_OF_VERT, v2) {
float angle;
if (e1->v1 == e2->v1 || e1->v2 == e2->v2 || e1->v1 == e2->v2 || e1->v2 == e2->v1)
continue;
sub_v3_v3v3(vec1, BM_OtherEdgeVert(e1, v1)->co, v1->co);
sub_v3_v3v3(vec2, BM_OtherEdgeVert(e2, v2)->co, v2->co);
angle = fabs(angle_v3v3(vec1, vec2));
if (angle < minangle) {
minangle = angle;
cure1 = e1;
cure2 = e2;
}
}
}
if (!cure1 || !cure1->l || !cure2->l) {
/*just return 1.0 in this case*/
return 1.0f;
}
/*assumtions
we assume a 2-manifold mesh here. if at any time this isn't the case,
e.g. a hole or an edge with more then 2 faces around it, we um ignore
that edge I guess, and try to make the algorithm go around as necassary.*/
l1 = cure1->l;
l2 = cure2->l;
lastv1 = l1->v == v1 ? ((BMLoop*)l1->next)->v : ((BMLoop*)l1->prev)->v;
lastv2 = l2->v == v2 ? ((BMLoop*)l2->next)->v : ((BMLoop*)l2->prev)->v;
/*we can only provide meaningful comparisons if v1 and v2 have the same valence*/
if (BM_Vert_EdgeCount(v1) != BM_Vert_EdgeCount(v2))
return 1.0f; /*full mismatch*/
gh = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp, "bmesh bvh");
#define SPUSH(s, d, vt, lv, e)\
if (BLI_array_count(s) <= lvl) BLI_array_growone(s);\
memset((s+lvl), 0, sizeof(*s));\
s[lvl].depth = d;\
s[lvl].v = vt;\
s[lvl].cure = e;\
s[lvl].lastv = lv;\
s[lvl].valence = BM_Vert_EdgeCount(vt);\
lvl = 0;
SPUSH(stack1, 0, v1, lastv1, cure1);
SPUSH(stack2, 0, v2, lastv2, cure2);
BLI_srand( BLI_rand() ); /* random seed */
lvl = 1;
while (lvl) {
int term = 0;
walklist *s1 = stack1 + lvl - 1, *s2 = stack2 + lvl - 1;
/*pop from the stack*/
lvl--;
if (s1->curl && s1->curl->e == s1->cure)
term = 1;
if (s2->curl && s2->curl->e == s2->cure)
term = 1;
/*find next case to do*/
if (!s1->curl)
s1->curl = s1->cure->l;
if (!s2->curl) {
float no1[3], no2[3], angle;
int wind1, wind2;
s2->curl = s2->cure->l;
/*find which of two possible faces to use*/
l1 = BM_OtherFaceLoop(s1->curl->e, s1->curl->f, s1->lastv);
l2 = BM_OtherFaceLoop(s2->curl->e, s2->curl->f, s2->lastv);
if (l1->v == s2->lastv) {
l1 = (BMLoop*) l1->next;
if (l1->v == s2->v)
l1 = (BMLoop*) l1->prev->prev;
} else if (l1->v == s2->v) {
l1 = (BMLoop*) l1->next;
if (l1->v == s2->lastv)
l1 = (BMLoop*) l1->prev->prev;
}
if (l2->v == s2->lastv) {
l2 = (BMLoop*) l2->next;
if (l2->v == s2->v)
l2 = (BMLoop*) l2->prev->prev;
} else if (l2->v == s2->v) {
l2 = (BMLoop*) l2->next;
if (l2->v == s2->lastv)
l2 = (BMLoop*) l2->prev->prev;
}
wind1 = winding(s1->v->co, s1->lastv->co, l1->v->co);
wind2 = winding(s2->v->co, s2->lastv->co, l2->v->co);
/*if angle between the two adjacent faces is greater then 90 degrees,
we need to flip wind2*/
l1 = l2;
l2 = s2->curl->radial_next;
l2 = BM_OtherFaceLoop(l2->e, l2->f, s2->lastv);
if (l2->v == s2->lastv) {
l2 = (BMLoop*) l2->next;
if (l2->v == s2->v)
l2 = (BMLoop*) l2->prev->prev;
} else if (l2->v == s2->v) {
l2 = (BMLoop*) l2->next;
if (l2->v == s2->lastv)
l2 = (BMLoop*) l2->prev->prev;
}
normal_tri_v3(no1, s2->v->co, s2->lastv->co, l1->v->co);
normal_tri_v3(no2, s2->v->co, s2->lastv->co, l2->v->co);
/*enforce identical winding as no1*/
mul_v3_fl(no2, -1.0);
angle = angle_v3v3(no1, no2);
if (angle > M_PI/2 - FLT_EPSILON*2)
wind2 = !wind2;
if (wind1 == wind2)
s2->curl = s2->curl->radial_next;
}
/*handle termination cases of having already looped through all child
nodes, or the valence mismatching between v1 and v2, or we hit max
recursion depth*/
term |= s1->valence != s2->valence || lvl+1 > maxlevel;
term |= s1->curl->radial_next == (BMLoop*)l1;
term |= s2->curl->radial_next == (BMLoop*)l2;
if (!term) {
lastv1 = s1->v;
lastv2 = s2->v;
v1 = BM_OtherEdgeVert(s1->curl->e, lastv1);
v2 = BM_OtherEdgeVert(s2->curl->e, lastv2);
e1 = s1->curl->e;
e2 = s2->curl->e;
if (!BLI_ghash_haskey(gh, v1) && !BLI_ghash_haskey(gh, v2)) {
/*repush the current stack item*/
lvl++;
//if (maxlevel % 2 == 0) {
BLI_ghash_insert(gh, v1, NULL);
BLI_ghash_insert(gh, v2, NULL);
//}
/*now push the child node*/
SPUSH(stack1, lvl, v1, lastv1, e1);
SPUSH(stack2, lvl, v2, lastv2, e2);
lvl++;
s1 = stack1 + lvl - 2;
s2 = stack2 + lvl - 2;
}
s1->curl = s1->curl->v == s1->v ? (BMLoop*) s1->curl->prev : (BMLoop*) s1->curl->next;
s2->curl = s2->curl->v == s2->v ? (BMLoop*) s2->curl->prev : (BMLoop*) s2->curl->next;
s1->curl = (BMLoop*) s1->curl->radial_next;
s2->curl = (BMLoop*) s2->curl->radial_next;
}
#define WADD(stack, s)\
if (lvl) {/*silly attempt to make this non-commutative: randomize\
how much this particular weight adds to the total*/\
stack[lvl-1].r += r;\
s->w *= r;\
stack[lvl-1].totwalked++;\
stack[lvl-1].w += s->w;\
}
/*if no next case to do, update parent weight*/
if (term) {
float r = 0.8f + BLI_frand()*0.2f - FLT_EPSILON;
if (s1->totwalked) {
s1->w /= s1->r;
} else
s1->w = s1->valence == s2->valence ? 1.0f : 0.0f;
WADD(stack1, s1);
if (s2->totwalked) {
s2->w /= s2->r;
} else
s2->w = s1->valence == s2->valence ? 1.0f : 0.0f;
WADD(stack2, s2);
/*apply additional penalty to weight mismatch*/
if (s2->w != s1->w)
s2->w *= 0.8f;
}
}
w = (stack1[0].w + stack2[0].w)*0.5f;
BLI_array_free(stack1);
BLI_array_free(stack2);
BLI_ghash_free(gh, NULL, NULL);
return 1.0f - w;
}
2011-02-27 06:19:40 +00:00
static void vertsearchcallback_topo(void *userdata, int index, const float *UNUSED(co), BVHTreeNearest *UNUSED(hit))
{
BMBVHTree *tree = userdata;
BMLoop **ls = tree->em->looptris[index];
int i;
2011-02-27 06:19:40 +00:00
float maxdist, vec[3], w;
maxdist = tree->maxdist;
for (i=0; i<3; i++) {
float dis;
if (BLI_ghash_haskey(tree->gh, ls[i]->v))
continue;
sub_v3_v3v3(vec, tree->co, ls[i]->v->co);
dis = dot_v3v3(vec, vec);
2011-02-27 06:19:40 +00:00
w = topo_compare(tree->em->bm, tree->v, ls[i]->v);
tree->curtag++;
if (w < tree->curw-FLT_EPSILON*4) {
tree->curw = w;
tree->curv = ls[i]->v;
sub_v3_v3v3(vec, tree->co, ls[i]->v->co);
tree->curd = dot_v3v3(vec, vec);
/*we deliberately check for equality using (smallest possible float)*4
comparison factor, to always prefer distance in cases of verts really
close to each other*/
} else if (fabs(tree->curw - w) < FLT_EPSILON*4) {
/*if w is equal to hitex->curw, sort by distance*/
sub_v3_v3v3(vec, tree->co, ls[i]->v->co);
dis = dot_v3v3(vec, vec);
if (dis < tree->curd) {
tree->curd = dis;
tree->curv = ls[i]->v;
}
}
BLI_ghash_insert(tree->gh, ls[i]->v, NULL);
}
}
BMVert *BMBVH_FindClosestVertTopo(BMBVHTree *tree, float *co, float maxdist, BMVert *sourcev)
{
BVHTreeNearest hit;
memset(&hit, 0, sizeof(hit));
VECCOPY(hit.co, co);
VECCOPY(tree->co, co);
hit.index = -1;
hit.dist = maxdist;
tree->curw = FLT_MAX;
tree->curd = FLT_MAX;
tree->curv = NULL;
tree->curtag = 1;
tree->gh = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp, "bmesh bvh");
tree->maxdist = maxdist;
tree->v = sourcev;
BLI_bvhtree_find_nearest(tree->tree, co, &hit, vertsearchcallback_topo, tree);
BLI_ghash_free(tree->gh, NULL, NULL);
tree->gh = NULL;
return tree->curv;
}
#if 0 //BMESH_TODO: not implemented yet
int BMBVH_VertVisible(BMBVHTree *tree, BMEdge *e, RegionView3D *r3d)
{
}
#endif
static BMFace *edge_ray_cast(BMBVHTree *tree, float *co, float *dir, float *hitout, BMEdge *e)
{
BMFace *f = BMBVH_RayCast(tree, co, dir, hitout);
if (f && BM_Edge_In_Face(f, e))
return NULL;
return f;
}
2011-02-15 01:16:32 +00:00
void scale_point(float *c1, float *p, float s)
{
sub_v3_v3(c1, p);
mul_v3_fl(c1, s);
add_v3_v3(c1, p);
}
2011-04-24 07:45:24 +00:00
int BMBVH_EdgeVisible(BMBVHTree *tree, BMEdge *e, ARegion *ar, View3D *v3d, Object *obedit)
{
BMFace *f;
float co1[3], co2[3], co3[3], dir1[4], dir2[4], dir3[4];
float origin[3], invmat[4][4];
float epsilon = 0.01f;
2011-04-24 07:45:24 +00:00
float m[2], end[3];
2011-04-24 07:45:24 +00:00
if (!ar) {
printf("error in BMBVH_EdgeVisible!\n");
return 0;
}
2011-04-24 07:45:24 +00:00
m[0] = ar->winx/2.0;
m[1] = ar->winy/2.0;
viewline(ar, v3d, m, origin, end);
invert_m4_m4(invmat, obedit->obmat);
mul_m4_v3(invmat, origin);
VECCOPY(co1, e->v1->co);
add_v3_v3v3(co2, e->v1->co, e->v2->co);
mul_v3_fl(co2, 0.5f);
VECCOPY(co3, e->v2->co);
2011-02-15 01:16:32 +00:00
scale_point(co1, co2, 0.99);
scale_point(co3, co2, 0.99);
/*ok, idea is to generate rays going from the camera origin to the
three points on the edge (v1, mid, v2)*/
sub_v3_v3v3(dir1, origin, co1);
sub_v3_v3v3(dir2, origin, co2);
sub_v3_v3v3(dir3, origin, co3);
normalize_v3(dir1);
normalize_v3(dir2);
normalize_v3(dir3);
mul_v3_fl(dir1, epsilon);
mul_v3_fl(dir2, epsilon);
mul_v3_fl(dir3, epsilon);
/*offset coordinates slightly along view vectors, to avoid
hitting the faces that own the edge.*/
add_v3_v3v3(co1, co1, dir1);
add_v3_v3v3(co2, co2, dir2);
add_v3_v3v3(co3, co3, dir3);
normalize_v3(dir1);
normalize_v3(dir2);
normalize_v3(dir3);
/*do three samplings: left, middle, right*/
f = edge_ray_cast(tree, co1, dir1, NULL, e);
if (f && !edge_ray_cast(tree, co2, dir2, NULL, e))
return 1;
else if (f && !edge_ray_cast(tree, co3, dir3, NULL, e))
return 1;
else if (!f)
return 1;
return 0;
}