2015-07-13 17:48:13 +02:00
|
|
|
/*
|
|
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version 2
|
|
|
|
* of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
|
|
*
|
|
|
|
* The Original Code is Copyright (C) 2015 by Blender Foundation.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* The Original Code is: all of this file.
|
|
|
|
*
|
|
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
|
|
* */
|
|
|
|
|
|
|
|
/** \file blender/blenlib/intern/math_solvers.c
|
|
|
|
* \ingroup bli
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
|
|
|
|
#include "BLI_math.h"
|
|
|
|
#include "BLI_utildefines.h"
|
|
|
|
|
|
|
|
#include "BLI_strict_flags.h"
|
|
|
|
|
|
|
|
#include "eigen3_capi.h"
|
|
|
|
|
|
|
|
/********************************** Eigen Solvers *********************************/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* \brief Compute the eigen values and/or vectors of given 3D symmetric (aka adjoint) matrix.
|
|
|
|
*
|
|
|
|
* \param m3 the 3D symmetric matrix.
|
|
|
|
* \return r_eigen_values the computed eigen values (NULL if not needed).
|
|
|
|
* \return r_eigen_vectors the computed eigen vectors (NULL if not needed).
|
|
|
|
*/
|
|
|
|
bool BLI_eigen_solve_selfadjoint_m3(const float m3[3][3], float r_eigen_values[3], float r_eigen_vectors[3][3])
|
|
|
|
{
|
|
|
|
#ifndef NDEBUG
|
|
|
|
/* We must assert given matrix is self-adjoint (i.e. symmetric) */
|
|
|
|
if ((m3[0][1] != m3[1][0]) ||
|
|
|
|
(m3[0][2] != m3[2][0]) ||
|
|
|
|
(m3[1][2] != m3[2][1]))
|
|
|
|
{
|
|
|
|
BLI_assert(0);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return EG3_self_adjoint_eigen_solve(3, (const float *)m3, r_eigen_values, (float *)r_eigen_vectors);
|
|
|
|
}
|
2015-10-09 20:55:15 +02:00
|
|
|
|
|
|
|
/**
|
|
|
|
* \brief Compute the SVD (Singular Values Decomposition) of given 3D matrix (m3 = USV*).
|
|
|
|
*
|
|
|
|
* \param m3 the matrix to decompose.
|
|
|
|
* \return r_U the computed left singular vector of \a m3 (NULL if not needed).
|
|
|
|
* \return r_S the computed singular values of \a m3 (NULL if not needed).
|
|
|
|
* \return r_V the computed right singular vector of \a m3 (NULL if not needed).
|
|
|
|
*/
|
|
|
|
void BLI_svd_m3(const float m3[3][3], float r_U[3][3], float r_S[3], float r_V[3][3])
|
|
|
|
{
|
|
|
|
EG3_svd_square_matrix(3, (const float *)m3, (float *)r_U, (float *)r_S, (float *)r_V);
|
|
|
|
}
|