This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/render/intern/source/multires_bake.c

1312 lines
38 KiB
C
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2012 by Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Morten Mikkelsen,
* Sergey Sharybin
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/render/intern/source/multires_bake.c
* \ingroup render
*/
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_object_types.h"
#include "DNA_mesh_types.h"
#include "BLI_math.h"
#include "BLI_listbase.h"
#include "BLI_threads.h"
#include "BKE_ccg.h"
#include "BKE_context.h"
#include "BKE_global.h"
#include "BKE_image.h"
#include "BKE_multires.h"
#include "BKE_modifier.h"
#include "BKE_subsurf.h"
#include "RE_multires_bake.h"
#include "RE_pipeline.h"
#include "RE_shader_ext.h"
#include "IMB_imbuf_types.h"
#include "IMB_imbuf.h"
#include "rayintersection.h"
#include "rayobject.h"
#include "rendercore.h"
typedef void (*MPassKnownData)(DerivedMesh *lores_dm, DerivedMesh *hires_dm, void *thread_data,
void *bake_data, ImBuf *ibuf, const int face_index, const int lvl,
const float st[2], float tangmat[3][3], const int x, const int y);
typedef void * (*MInitBakeData)(MultiresBakeRender *bkr, Image *ima);
typedef void (*MFreeBakeData)(void *bake_data);
typedef struct MultiresBakeResult {
float height_min, height_max;
} MultiresBakeResult;
typedef struct {
MVert *mvert;
MFace *mface;
MTFace *mtface;
float *pvtangent;
float *precomputed_normals;
int w, h;
int face_index;
int i0, i1, i2;
DerivedMesh *lores_dm, *hires_dm;
int lvl;
void *thread_data;
void *bake_data;
ImBuf *ibuf;
MPassKnownData pass_data;
} MResolvePixelData;
typedef void (*MFlushPixel)(const MResolvePixelData *data, const int x, const int y);
typedef struct {
int w, h;
char *texels;
const MResolvePixelData *data;
MFlushPixel flush_pixel;
short *do_update;
} MBakeRast;
typedef struct {
float *heights;
Image *ima;
DerivedMesh *ssdm;
const int *orig_index_mf_to_mpoly;
const int *orig_index_mp_to_orig;
} MHeightBakeData;
typedef struct {
const int *orig_index_mf_to_mpoly;
const int *orig_index_mp_to_orig;
} MNormalBakeData;
typedef struct {
int number_of_rays;
float bias;
unsigned short *permutation_table_1;
unsigned short *permutation_table_2;
RayObject *raytree;
RayFace *rayfaces;
const int *orig_index_mf_to_mpoly;
const int *orig_index_mp_to_orig;
} MAOBakeData;
static void multiresbake_get_normal(const MResolvePixelData *data, float norm[],const int face_num, const int vert_index)
{
unsigned int indices[] = {data->mface[face_num].v1, data->mface[face_num].v2,
data->mface[face_num].v3, data->mface[face_num].v4};
const int smoothnormal = (data->mface[face_num].flag & ME_SMOOTH);
if (!smoothnormal) { /* flat */
if (data->precomputed_normals) {
copy_v3_v3(norm, &data->precomputed_normals[3 * face_num]);
}
else {
float nor[3];
float *p0, *p1, *p2;
const int iGetNrVerts = data->mface[face_num].v4 != 0 ? 4 : 3;
p0 = data->mvert[indices[0]].co;
p1 = data->mvert[indices[1]].co;
p2 = data->mvert[indices[2]].co;
if (iGetNrVerts == 4) {
float *p3 = data->mvert[indices[3]].co;
normal_quad_v3(nor, p0, p1, p2, p3);
}
else {
normal_tri_v3(nor, p0, p1, p2);
}
copy_v3_v3(norm, nor);
}
}
else {
short *no = data->mvert[indices[vert_index]].no;
normal_short_to_float_v3(norm, no);
normalize_v3(norm);
}
}
static void init_bake_rast(MBakeRast *bake_rast, const ImBuf *ibuf, const MResolvePixelData *data,
MFlushPixel flush_pixel, short *do_update)
{
BakeImBufuserData *userdata = (BakeImBufuserData *) ibuf->userdata;
memset(bake_rast, 0, sizeof(MBakeRast));
bake_rast->texels = userdata->mask_buffer;
bake_rast->w = ibuf->x;
bake_rast->h = ibuf->y;
bake_rast->data = data;
bake_rast->flush_pixel = flush_pixel;
bake_rast->do_update = do_update;
}
static void flush_pixel(const MResolvePixelData *data, const int x, const int y)
{
float st[2] = {(x + 0.5f) / data->w, (y + 0.5f) / data->h};
float *st0, *st1, *st2;
float *tang0, *tang1, *tang2;
float no0[3], no1[3], no2[3];
float fUV[2], from_tang[3][3], to_tang[3][3];
float u, v, w, sign;
int r;
const int i0 = data->i0;
const int i1 = data->i1;
const int i2 = data->i2;
st0 = data->mtface[data->face_index].uv[i0];
st1 = data->mtface[data->face_index].uv[i1];
st2 = data->mtface[data->face_index].uv[i2];
multiresbake_get_normal(data, no0, data->face_index, i0); /* can optimize these 3 into one call */
multiresbake_get_normal(data, no1, data->face_index, i1);
multiresbake_get_normal(data, no2, data->face_index, i2);
resolve_tri_uv_v2(fUV, st, st0, st1, st2);
u = fUV[0];
v = fUV[1];
w = 1 - u - v;
if (data->pvtangent) {
tang0 = data->pvtangent + data->face_index * 16 + i0 * 4;
tang1 = data->pvtangent + data->face_index * 16 + i1 * 4;
tang2 = data->pvtangent + data->face_index * 16 + i2 * 4;
/* the sign is the same at all face vertices for any non degenerate face.
* Just in case we clamp the interpolated value though. */
sign = (tang0[3] * u + tang1[3] * v + tang2[3] * w) < 0 ? (-1.0f) : 1.0f;
/* this sequence of math is designed specifically as is with great care
* to be compatible with our shader. Please don't change without good reason. */
for (r = 0; r < 3; r++) {
from_tang[0][r] = tang0[r] * u + tang1[r] * v + tang2[r] * w;
from_tang[2][r] = no0[r] * u + no1[r] * v + no2[r] * w;
}
cross_v3_v3v3(from_tang[1], from_tang[2], from_tang[0]); /* B = sign * cross(N, T) */
mul_v3_fl(from_tang[1], sign);
invert_m3_m3(to_tang, from_tang);
}
else {
zero_m3(to_tang);
}
data->pass_data(data->lores_dm, data->hires_dm, data->thread_data, data->bake_data,
data->ibuf, data->face_index, data->lvl, st, to_tang, x, y);
}
static void set_rast_triangle(const MBakeRast *bake_rast, const int x, const int y)
{
const int w = bake_rast->w;
const int h = bake_rast->h;
if (x >= 0 && x < w && y >= 0 && y < h) {
if ((bake_rast->texels[y * w + x]) == 0) {
bake_rast->texels[y * w + x] = FILTER_MASK_USED;
flush_pixel(bake_rast->data, x, y);
if (bake_rast->do_update) {
*bake_rast->do_update = true;
}
}
}
}
static void rasterize_half(const MBakeRast *bake_rast,
const float s0_s, const float t0_s, const float s1_s, const float t1_s,
const float s0_l, const float t0_l, const float s1_l, const float t1_l,
const int y0_in, const int y1_in, const int is_mid_right)
{
const int s_stable = fabsf(t1_s - t0_s) > FLT_EPSILON ? 1 : 0;
const int l_stable = fabsf(t1_l - t0_l) > FLT_EPSILON ? 1 : 0;
const int w = bake_rast->w;
const int h = bake_rast->h;
int y, y0, y1;
if (y1_in <= 0 || y0_in >= h)
return;
y0 = y0_in < 0 ? 0 : y0_in;
y1 = y1_in >= h ? h : y1_in;
for (y = y0; y < y1; y++) {
/*-b(x-x0) + a(y-y0) = 0 */
int iXl, iXr, x;
float x_l = s_stable != 0 ? (s0_s + (((s1_s - s0_s) * (y - t0_s)) / (t1_s - t0_s))) : s0_s;
float x_r = l_stable != 0 ? (s0_l + (((s1_l - s0_l) * (y - t0_l)) / (t1_l - t0_l))) : s0_l;
if (is_mid_right != 0)
SWAP(float, x_l, x_r);
iXl = (int)ceilf(x_l);
iXr = (int)ceilf(x_r);
if (iXr > 0 && iXl < w) {
iXl = iXl < 0 ? 0 : iXl;
iXr = iXr >= w ? w : iXr;
for (x = iXl; x < iXr; x++)
set_rast_triangle(bake_rast, x, y);
}
}
}
static void bake_rasterize(const MBakeRast *bake_rast, const float st0_in[2], const float st1_in[2], const float st2_in[2])
{
const int w = bake_rast->w;
const int h = bake_rast->h;
float slo = st0_in[0] * w - 0.5f;
float tlo = st0_in[1] * h - 0.5f;
float smi = st1_in[0] * w - 0.5f;
float tmi = st1_in[1] * h - 0.5f;
float shi = st2_in[0] * w - 0.5f;
float thi = st2_in[1] * h - 0.5f;
int is_mid_right = 0, ylo, yhi, yhi_beg;
/* skip degenerates */
if ((slo == smi && tlo == tmi) || (slo == shi && tlo == thi) || (smi == shi && tmi == thi))
return;
/* sort by T */
if (tlo > tmi && tlo > thi) {
SWAP(float, shi, slo);
SWAP(float, thi, tlo);
}
else if (tmi > thi) {
SWAP(float, shi, smi);
SWAP(float, thi, tmi);
}
if (tlo > tmi) {
SWAP(float, slo, smi);
SWAP(float, tlo, tmi);
}
/* check if mid point is to the left or to the right of the lo-hi edge */
is_mid_right = (-(shi - slo) * (tmi - thi) + (thi - tlo) * (smi - shi)) > 0 ? 1 : 0;
ylo = (int) ceilf(tlo);
yhi_beg = (int) ceilf(tmi);
yhi = (int) ceilf(thi);
/*if (fTmi>ceilf(fTlo))*/
rasterize_half(bake_rast, slo, tlo, smi, tmi, slo, tlo, shi, thi, ylo, yhi_beg, is_mid_right);
rasterize_half(bake_rast, smi, tmi, shi, thi, slo, tlo, shi, thi, yhi_beg, yhi, is_mid_right);
}
static int multiresbake_test_break(MultiresBakeRender *bkr)
{
if (!bkr->stop) {
/* this means baker is executed outside from job system */
return 0;
}
return *bkr->stop || G.is_break;
}
/* **** Threading routines **** */
typedef struct MultiresBakeQueue {
int cur_face;
int tot_face;
SpinLock spin;
} MultiresBakeQueue;
typedef struct MultiresBakeThread {
/* this data is actually shared between all the threads */
MultiresBakeQueue *queue;
MultiresBakeRender *bkr;
Image *image;
void *bake_data;
/* thread-specific data */
MBakeRast bake_rast;
MResolvePixelData data;
/* displacement-specific data */
float height_min, height_max;
} MultiresBakeThread;
static int multires_bake_queue_next_face(MultiresBakeQueue *queue)
{
int face = -1;
/* TODO: it could worth making it so thread will handle neighbor faces
* for better memory cache utilization
*/
BLI_spin_lock(&queue->spin);
if (queue->cur_face < queue->tot_face) {
face = queue->cur_face;
queue->cur_face++;
}
BLI_spin_unlock(&queue->spin);
return face;
}
static void *do_multires_bake_thread(void *data_v)
{
MultiresBakeThread *handle = (MultiresBakeThread *) data_v;
MResolvePixelData *data = &handle->data;
MBakeRast *bake_rast = &handle->bake_rast;
MultiresBakeRender *bkr = handle->bkr;
int f;
while ((f = multires_bake_queue_next_face(handle->queue)) >= 0) {
MTFace *mtfate = &data->mtface[f];
int verts[3][2], nr_tris, t;
if (multiresbake_test_break(bkr))
break;
if (mtfate->tpage != handle->image)
continue;
data->face_index = f;
/* might support other forms of diagonal splits later on such as
* split by shortest diagonal.*/
verts[0][0] = 0;
verts[1][0] = 1;
verts[2][0] = 2;
verts[0][1] = 0;
verts[1][1] = 2;
verts[2][1] = 3;
nr_tris = data->mface[f].v4 != 0 ? 2 : 1;
for (t = 0; t < nr_tris; t++) {
data->i0 = verts[0][t];
data->i1 = verts[1][t];
data->i2 = verts[2][t];
bake_rasterize(bake_rast, mtfate->uv[data->i0], mtfate->uv[data->i1], mtfate->uv[data->i2]);
/* tag image buffer for refresh */
if (data->ibuf->rect_float)
data->ibuf->userflags |= IB_RECT_INVALID;
data->ibuf->userflags |= IB_DISPLAY_BUFFER_INVALID;
}
/* update progress */
BLI_spin_lock(&handle->queue->spin);
bkr->baked_faces++;
if (bkr->do_update)
*bkr->do_update = true;
if (bkr->progress)
*bkr->progress = ((float)bkr->baked_objects + (float)bkr->baked_faces / handle->queue->tot_face) / bkr->tot_obj;
BLI_spin_unlock(&handle->queue->spin);
}
return NULL;
}
/* some of arrays inside ccgdm are lazy-initialized, which will generally
* require lock around accessing such data
* this function will ensure all arrays are allocated before threading started
*/
static void init_ccgdm_arrays(DerivedMesh *dm)
{
CCGElem **grid_data;
CCGKey key;
int grid_size;
int *grid_offset;
grid_size = dm->getGridSize(dm);
grid_data = dm->getGridData(dm);
grid_offset = dm->getGridOffset(dm);
dm->getGridKey(dm, &key);
(void) grid_size;
(void) grid_data;
(void) grid_offset;
}
static void do_multires_bake(MultiresBakeRender *bkr, Image *ima, bool require_tangent, MPassKnownData passKnownData,
MInitBakeData initBakeData, MFreeBakeData freeBakeData, MultiresBakeResult *result)
{
DerivedMesh *dm = bkr->lores_dm;
const int lvl = bkr->lvl;
const int tot_face = dm->getNumTessFaces(dm);
if (tot_face > 0) {
MultiresBakeThread *handles;
MultiresBakeQueue queue;
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, NULL, NULL);
MVert *mvert = dm->getVertArray(dm);
MFace *mface = dm->getTessFaceArray(dm);
MTFace *mtface = dm->getTessFaceDataArray(dm, CD_MTFACE);
float *precomputed_normals = dm->getTessFaceDataArray(dm, CD_NORMAL);
float *pvtangent = NULL;
ListBase threads;
int i, tot_thread = bkr->threads > 0 ? bkr->threads : BLI_system_thread_count();
void *bake_data = NULL;
if (require_tangent) {
if (CustomData_get_layer_index(&dm->faceData, CD_TANGENT) == -1)
DM_add_tangent_layer(dm);
pvtangent = DM_get_tessface_data_layer(dm, CD_TANGENT);
}
/* all threads shares the same custom bake data */
if (initBakeData)
bake_data = initBakeData(bkr, ima);
if (tot_thread > 1)
BLI_init_threads(&threads, do_multires_bake_thread, tot_thread);
handles = MEM_callocN(tot_thread * sizeof(MultiresBakeThread), "do_multires_bake handles");
init_ccgdm_arrays(bkr->hires_dm);
/* faces queue */
queue.cur_face = 0;
queue.tot_face = tot_face;
BLI_spin_init(&queue.spin);
/* fill in threads handles */
for (i = 0; i < tot_thread; i++) {
MultiresBakeThread *handle = &handles[i];
handle->bkr = bkr;
handle->image = ima;
handle->queue = &queue;
handle->data.mface = mface;
handle->data.mvert = mvert;
handle->data.mtface = mtface;
handle->data.pvtangent = pvtangent;
handle->data.precomputed_normals = precomputed_normals; /* don't strictly need this */
handle->data.w = ibuf->x;
handle->data.h = ibuf->y;
handle->data.lores_dm = dm;
handle->data.hires_dm = bkr->hires_dm;
handle->data.lvl = lvl;
handle->data.pass_data = passKnownData;
handle->data.thread_data = handle;
handle->data.bake_data = bake_data;
handle->data.ibuf = ibuf;
handle->height_min = FLT_MAX;
handle->height_max = -FLT_MAX;
init_bake_rast(&handle->bake_rast, ibuf, &handle->data, flush_pixel, bkr->do_update);
if (tot_thread > 1)
BLI_insert_thread(&threads, handle);
}
/* run threads */
if (tot_thread > 1)
BLI_end_threads(&threads);
else
do_multires_bake_thread(&handles[0]);
/* construct bake result */
result->height_min = handles[0].height_min;
result->height_max = handles[0].height_max;
for (i = 1; i < tot_thread; i++) {
result->height_min = min_ff(result->height_min, handles[i].height_min);
result->height_max = max_ff(result->height_max, handles[i].height_max);
}
BLI_spin_end(&queue.spin);
/* finalize baking */
if (freeBakeData)
freeBakeData(bake_data);
MEM_freeN(handles);
BKE_image_release_ibuf(ima, ibuf, NULL);
}
}
/* mode = 0: interpolate normals,
* mode = 1: interpolate coord */
static void interp_bilinear_grid(CCGKey *key, CCGElem *grid, float crn_x, float crn_y, int mode, float res[3])
{
int x0, x1, y0, y1;
float u, v;
float data[4][3];
x0 = (int) crn_x;
x1 = x0 >= (key->grid_size - 1) ? (key->grid_size - 1) : (x0 + 1);
y0 = (int) crn_y;
y1 = y0 >= (key->grid_size - 1) ? (key->grid_size - 1) : (y0 + 1);
u = crn_x - x0;
v = crn_y - y0;
if (mode == 0) {
copy_v3_v3(data[0], CCG_grid_elem_no(key, grid, x0, y0));
copy_v3_v3(data[1], CCG_grid_elem_no(key, grid, x1, y0));
copy_v3_v3(data[2], CCG_grid_elem_no(key, grid, x1, y1));
copy_v3_v3(data[3], CCG_grid_elem_no(key, grid, x0, y1));
}
else {
copy_v3_v3(data[0], CCG_grid_elem_co(key, grid, x0, y0));
copy_v3_v3(data[1], CCG_grid_elem_co(key, grid, x1, y0));
copy_v3_v3(data[2], CCG_grid_elem_co(key, grid, x1, y1));
copy_v3_v3(data[3], CCG_grid_elem_co(key, grid, x0, y1));
}
interp_bilinear_quad_v3(data, u, v, res);
}
static void get_ccgdm_data(DerivedMesh *lodm, DerivedMesh *hidm,
const int *index_mf_to_mpoly, const int *index_mp_to_orig,
const int lvl, const int face_index, const float u, const float v, float co[3], float n[3])
{
MFace mface;
CCGElem **grid_data;
CCGKey key;
float crn_x, crn_y;
int grid_size, S, face_side;
int *grid_offset, g_index;
lodm->getTessFace(lodm, face_index, &mface);
grid_size = hidm->getGridSize(hidm);
grid_data = hidm->getGridData(hidm);
grid_offset = hidm->getGridOffset(hidm);
hidm->getGridKey(hidm, &key);
face_side = (grid_size << 1) - 1;
if (lvl == 0) {
g_index = grid_offset[face_index];
S = mdisp_rot_face_to_crn(mface.v4 ? 4 : 3, face_side, u * (face_side - 1), v * (face_side - 1), &crn_x, &crn_y);
}
else {
int side = (1 << (lvl - 1)) + 1;
int grid_index = DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, face_index);
int loc_offs = face_index % (1 << (2 * lvl));
int cell_index = loc_offs % ((side - 1) * (side - 1));
int cell_side = (grid_size - 1) / (side - 1);
int row = cell_index / (side - 1);
int col = cell_index % (side - 1);
S = face_index / (1 << (2 * (lvl - 1))) - grid_offset[grid_index];
g_index = grid_offset[grid_index];
crn_y = (row * cell_side) + u * cell_side;
crn_x = (col * cell_side) + v * cell_side;
}
CLAMP(crn_x, 0.0f, grid_size);
CLAMP(crn_y, 0.0f, grid_size);
if (n != NULL)
interp_bilinear_grid(&key, grid_data[g_index + S], crn_x, crn_y, 0, n);
if (co != NULL)
interp_bilinear_grid(&key, grid_data[g_index + S], crn_x, crn_y, 1, co);
}
/* mode = 0: interpolate normals,
* mode = 1: interpolate coord */
static void interp_bilinear_mface(DerivedMesh *dm, MFace *mface, const float u, const float v, const int mode, float res[3])
{
float data[4][3];
if (mode == 0) {
dm->getVertNo(dm, mface->v1, data[0]);
dm->getVertNo(dm, mface->v2, data[1]);
dm->getVertNo(dm, mface->v3, data[2]);
dm->getVertNo(dm, mface->v4, data[3]);
}
else {
dm->getVertCo(dm, mface->v1, data[0]);
dm->getVertCo(dm, mface->v2, data[1]);
dm->getVertCo(dm, mface->v3, data[2]);
dm->getVertCo(dm, mface->v4, data[3]);
}
interp_bilinear_quad_v3(data, u, v, res);
}
/* mode = 0: interpolate normals,
* mode = 1: interpolate coord */
static void interp_barycentric_mface(DerivedMesh *dm, MFace *mface, const float u, const float v, const int mode, float res[3])
{
float data[3][3];
if (mode == 0) {
dm->getVertNo(dm, mface->v1, data[0]);
dm->getVertNo(dm, mface->v2, data[1]);
dm->getVertNo(dm, mface->v3, data[2]);
}
else {
dm->getVertCo(dm, mface->v1, data[0]);
dm->getVertCo(dm, mface->v2, data[1]);
dm->getVertCo(dm, mface->v3, data[2]);
}
interp_barycentric_tri_v3(data, u, v, res);
}
/* **************** Displacement Baker **************** */
static void *init_heights_data(MultiresBakeRender *bkr, Image *ima)
{
MHeightBakeData *height_data;
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, NULL, NULL);
DerivedMesh *lodm = bkr->lores_dm;
BakeImBufuserData *userdata = ibuf->userdata;
if (userdata->displacement_buffer == NULL)
userdata->displacement_buffer = MEM_callocN(sizeof(float) * ibuf->x * ibuf->y, "MultiresBake heights");
height_data = MEM_callocN(sizeof(MHeightBakeData), "MultiresBake heightData");
height_data->ima = ima;
height_data->heights = userdata->displacement_buffer;
if (!bkr->use_lores_mesh) {
SubsurfModifierData smd = {{NULL}};
int ss_lvl = bkr->tot_lvl - bkr->lvl;
CLAMP(ss_lvl, 0, 6);
if (ss_lvl > 0) {
smd.levels = smd.renderLevels = ss_lvl;
smd.flags |= eSubsurfModifierFlag_SubsurfUv;
if (bkr->simple)
smd.subdivType = ME_SIMPLE_SUBSURF;
height_data->ssdm = subsurf_make_derived_from_derived(bkr->lores_dm, &smd, NULL, 0);
init_ccgdm_arrays(height_data->ssdm);
}
}
height_data->orig_index_mf_to_mpoly = lodm->getTessFaceDataArray(lodm, CD_ORIGINDEX);
height_data->orig_index_mp_to_orig = lodm->getPolyDataArray(lodm, CD_ORIGINDEX);
BKE_image_release_ibuf(ima, ibuf, NULL);
return (void *)height_data;
}
static void free_heights_data(void *bake_data)
{
MHeightBakeData *height_data = (MHeightBakeData *)bake_data;
if (height_data->ssdm)
height_data->ssdm->release(height_data->ssdm);
MEM_freeN(height_data);
}
/* MultiresBake callback for heights baking
* general idea:
* - find coord of point with specified UV in hi-res mesh (let's call it p1)
* - find coord of point and normal with specified UV in lo-res mesh (or subdivided lo-res
* mesh to make texture smoother) let's call this point p0 and n.
* - height wound be dot(n, p1-p0) */
static void apply_heights_callback(DerivedMesh *lores_dm, DerivedMesh *hires_dm, void *thread_data_v, void *bake_data,
ImBuf *ibuf, const int face_index, const int lvl, const float st[2],
float UNUSED(tangmat[3][3]), const int x, const int y)
{
MTFace *mtface = CustomData_get_layer(&lores_dm->faceData, CD_MTFACE);
MFace mface;
MHeightBakeData *height_data = (MHeightBakeData *)bake_data;
MultiresBakeThread *thread_data = (MultiresBakeThread *) thread_data_v;
float uv[2], *st0, *st1, *st2, *st3;
int pixel = ibuf->x * y + x;
float vec[3], p0[3], p1[3], n[3], len;
lores_dm->getTessFace(lores_dm, face_index, &mface);
st0 = mtface[face_index].uv[0];
st1 = mtface[face_index].uv[1];
st2 = mtface[face_index].uv[2];
if (mface.v4) {
st3 = mtface[face_index].uv[3];
resolve_quad_uv_v2(uv, st, st0, st1, st2, st3);
}
else
resolve_tri_uv_v2(uv, st, st0, st1, st2);
CLAMP(uv[0], 0.0f, 1.0f);
CLAMP(uv[1], 0.0f, 1.0f);
get_ccgdm_data(lores_dm, hires_dm,
height_data->orig_index_mf_to_mpoly, height_data->orig_index_mp_to_orig,
lvl, face_index, uv[0], uv[1], p1, NULL);
if (height_data->ssdm) {
get_ccgdm_data(lores_dm, height_data->ssdm,
height_data->orig_index_mf_to_mpoly, height_data->orig_index_mp_to_orig,
0, face_index, uv[0], uv[1], p0, n);
}
else {
lores_dm->getTessFace(lores_dm, face_index, &mface);
if (mface.v4) {
interp_bilinear_mface(lores_dm, &mface, uv[0], uv[1], 1, p0);
interp_bilinear_mface(lores_dm, &mface, uv[0], uv[1], 0, n);
}
else {
interp_barycentric_mface(lores_dm, &mface, uv[0], uv[1], 1, p0);
interp_barycentric_mface(lores_dm, &mface, uv[0], uv[1], 0, n);
}
}
sub_v3_v3v3(vec, p1, p0);
len = dot_v3v3(n, vec);
height_data->heights[pixel] = len;
thread_data->height_min = min_ff(thread_data->height_min, len);
thread_data->height_max = max_ff(thread_data->height_max, len);
if (ibuf->rect_float) {
float *rrgbf = ibuf->rect_float + pixel * 4;
rrgbf[0] = rrgbf[1] = rrgbf[2] = len;
rrgbf[3] = 1.0f;
}
else {
char *rrgb = (char *)ibuf->rect + pixel * 4;
rrgb[0] = rrgb[1] = rrgb[2] = FTOCHAR(len);
rrgb[3] = 255;
}
}
/* **************** Normal Maps Baker **************** */
static void *init_normal_data(MultiresBakeRender *bkr, Image *UNUSED(ima))
{
MNormalBakeData *normal_data;
DerivedMesh *lodm = bkr->lores_dm;
normal_data = MEM_callocN(sizeof(MNormalBakeData), "MultiresBake normalData");
normal_data->orig_index_mf_to_mpoly = lodm->getTessFaceDataArray(lodm, CD_ORIGINDEX);
normal_data->orig_index_mp_to_orig = lodm->getPolyDataArray(lodm, CD_ORIGINDEX);
return (void *)normal_data;
}
static void free_normal_data(void *bake_data)
{
MNormalBakeData *normal_data = (MNormalBakeData *)bake_data;
MEM_freeN(normal_data);
}
/* MultiresBake callback for normals' baking
* general idea:
* - find coord and normal of point with specified UV in hi-res mesh
* - multiply it by tangmat
* - vector in color space would be norm(vec) /2 + (0.5, 0.5, 0.5) */
static void apply_tangmat_callback(DerivedMesh *lores_dm, DerivedMesh *hires_dm, void *UNUSED(thread_data),
void *bake_data, ImBuf *ibuf, const int face_index, const int lvl,
const float st[2], float tangmat[3][3], const int x, const int y)
{
MTFace *mtface = CustomData_get_layer(&lores_dm->faceData, CD_MTFACE);
MFace mface;
MNormalBakeData *normal_data = (MNormalBakeData *)bake_data;
float uv[2], *st0, *st1, *st2, *st3;
int pixel = ibuf->x * y + x;
float n[3], vec[3], tmp[3] = {0.5, 0.5, 0.5};
lores_dm->getTessFace(lores_dm, face_index, &mface);
st0 = mtface[face_index].uv[0];
st1 = mtface[face_index].uv[1];
st2 = mtface[face_index].uv[2];
if (mface.v4) {
st3 = mtface[face_index].uv[3];
resolve_quad_uv_v2(uv, st, st0, st1, st2, st3);
}
else
resolve_tri_uv_v2(uv, st, st0, st1, st2);
CLAMP(uv[0], 0.0f, 1.0f);
CLAMP(uv[1], 0.0f, 1.0f);
get_ccgdm_data(lores_dm, hires_dm,
normal_data->orig_index_mf_to_mpoly, normal_data->orig_index_mp_to_orig,
lvl, face_index, uv[0], uv[1], NULL, n);
mul_v3_m3v3(vec, tangmat, n);
normalize_v3(vec);
mul_v3_fl(vec, 0.5);
add_v3_v3(vec, tmp);
if (ibuf->rect_float) {
float *rrgbf = ibuf->rect_float + pixel * 4;
rrgbf[0] = vec[0];
rrgbf[1] = vec[1];
rrgbf[2] = vec[2];
rrgbf[3] = 1.0f;
}
else {
unsigned char *rrgb = (unsigned char *)ibuf->rect + pixel * 4;
rgb_float_to_uchar(rrgb, vec);
rrgb[3] = 255;
}
}
/* **************** Ambient Occlusion Baker **************** */
2012-12-20 05:07:14 +00:00
// must be a power of two
#define MAX_NUMBER_OF_AO_RAYS 1024
static unsigned short ao_random_table_1[MAX_NUMBER_OF_AO_RAYS];
static unsigned short ao_random_table_2[MAX_NUMBER_OF_AO_RAYS];
static void init_ao_random(void)
{
int i;
for (i = 0; i < MAX_NUMBER_OF_AO_RAYS; i++) {
ao_random_table_1[i] = rand() & 0xffff;
ao_random_table_2[i] = rand() & 0xffff;
}
}
static unsigned short get_ao_random1(const int i)
{
return ao_random_table_1[i & (MAX_NUMBER_OF_AO_RAYS - 1)];
}
static unsigned short get_ao_random2(const int i)
{
return ao_random_table_2[i & (MAX_NUMBER_OF_AO_RAYS - 1)];
}
static void build_permutation_table(unsigned short permutation[], unsigned short temp_permutation[],
const int number_of_rays, const int is_first_perm_table)
{
int i, k;
for (i = 0; i < number_of_rays; i++)
temp_permutation[i] = i;
for (i = 0; i < number_of_rays; i++) {
const unsigned int nr_entries_left = number_of_rays - i;
unsigned short rnd = is_first_perm_table != false ? get_ao_random1(i) : get_ao_random2(i);
const unsigned short entry = rnd % nr_entries_left;
/* pull entry */
permutation[i] = temp_permutation[entry];
/* delete entry */
2013-02-11 00:49:00 +00:00
for (k = entry; k < nr_entries_left - 1; k++) {
temp_permutation[k] = temp_permutation[k + 1];
2013-02-11 00:49:00 +00:00
}
}
/* verify permutation table
* every entry must appear exactly once
*/
#if 0
2013-02-11 00:49:00 +00:00
for (i = 0; i < number_of_rays; i++) temp_permutation[i] = 0;
for (i = 0; i < number_of_rays; i++) ++temp_permutation[permutation[i]];
for (i = 0; i < number_of_rays; i++) BLI_assert(temp_permutation[i] == 1);
#endif
}
static void create_ao_raytree(MultiresBakeRender *bkr, MAOBakeData *ao_data)
{
DerivedMesh *hidm = bkr->hires_dm;
RayObject *raytree;
RayFace *face;
CCGElem **grid_data;
CCGKey key;
int num_grids, grid_size /*, face_side */, num_faces;
int i;
num_grids = hidm->getNumGrids(hidm);
grid_size = hidm->getGridSize(hidm);
grid_data = hidm->getGridData(hidm);
hidm->getGridKey(hidm, &key);
/* face_side = (grid_size << 1) - 1; */ /* UNUSED */
num_faces = num_grids * (grid_size - 1) * (grid_size - 1);
raytree = ao_data->raytree = RE_rayobject_create(bkr->raytrace_structure, num_faces, bkr->octree_resolution);
face = ao_data->rayfaces = (RayFace *) MEM_callocN(num_faces * sizeof(RayFace), "ObjectRen faces");
for (i = 0; i < num_grids; i++) {
int x, y;
for (x = 0; x < grid_size - 1; x++) {
for (y = 0; y < grid_size - 1; y++) {
float co[4][3];
copy_v3_v3(co[0], CCG_grid_elem_co(&key, grid_data[i], x, y));
copy_v3_v3(co[1], CCG_grid_elem_co(&key, grid_data[i], x, y + 1));
copy_v3_v3(co[2], CCG_grid_elem_co(&key, grid_data[i], x + 1, y + 1));
copy_v3_v3(co[3], CCG_grid_elem_co(&key, grid_data[i], x + 1, y));
RE_rayface_from_coords(face, ao_data, face, co[0], co[1], co[2], co[3]);
RE_rayobject_add(raytree, RE_rayobject_unalignRayFace(face));
face++;
}
}
}
RE_rayobject_done(raytree);
}
static void *init_ao_data(MultiresBakeRender *bkr, Image *UNUSED(ima))
{
MAOBakeData *ao_data;
DerivedMesh *lodm = bkr->lores_dm;
unsigned short *temp_permutation_table;
size_t permutation_size;
init_ao_random();
ao_data = MEM_callocN(sizeof(MAOBakeData), "MultiresBake aoData");
ao_data->number_of_rays = bkr->number_of_rays;
ao_data->bias = bkr->bias;
ao_data->orig_index_mf_to_mpoly = lodm->getTessFaceDataArray(lodm, CD_ORIGINDEX);
ao_data->orig_index_mp_to_orig = lodm->getPolyDataArray(lodm, CD_ORIGINDEX);
create_ao_raytree(bkr, ao_data);
/* initialize permutation tables */
permutation_size = sizeof(unsigned short) * bkr->number_of_rays;
ao_data->permutation_table_1 = MEM_callocN(permutation_size, "multires AO baker perm1");
ao_data->permutation_table_2 = MEM_callocN(permutation_size, "multires AO baker perm2");
temp_permutation_table = MEM_callocN(permutation_size, "multires AO baker temp perm");
build_permutation_table(ao_data->permutation_table_1, temp_permutation_table, bkr->number_of_rays, 1);
build_permutation_table(ao_data->permutation_table_2, temp_permutation_table, bkr->number_of_rays, 0);
MEM_freeN(temp_permutation_table);
return (void *)ao_data;
}
static void free_ao_data(void *bake_data)
{
MAOBakeData *ao_data = (MAOBakeData *) bake_data;
RE_rayobject_free(ao_data->raytree);
MEM_freeN(ao_data->rayfaces);
MEM_freeN(ao_data->permutation_table_1);
MEM_freeN(ao_data->permutation_table_2);
MEM_freeN(ao_data);
}
/* builds an X and a Y axis from the given Z axis */
static void build_coordinate_frame(float axisX[3], float axisY[3], const float axisZ[3])
{
const float faX = fabsf(axisZ[0]);
const float faY = fabsf(axisZ[1]);
const float faZ = fabsf(axisZ[2]);
if (faX <= faY && faX <= faZ) {
const float len = sqrtf(axisZ[1] * axisZ[1] + axisZ[2] * axisZ[2]);
axisY[0] = 0; axisY[1] = axisZ[2] / len; axisY[2] = -axisZ[1] / len;
cross_v3_v3v3(axisX, axisY, axisZ);
}
else if (faY <= faZ) {
const float len = sqrtf(axisZ[0] * axisZ[0] + axisZ[2] * axisZ[2]);
axisX[0] = axisZ[2] / len; axisX[1] = 0; axisX[2] = -axisZ[0] / len;
cross_v3_v3v3(axisY, axisZ, axisX);
}
else {
const float len = sqrtf(axisZ[0] * axisZ[0] + axisZ[1] * axisZ[1]);
axisX[0] = axisZ[1] / len; axisX[1] = -axisZ[0] / len; axisX[2] = 0;
cross_v3_v3v3(axisY, axisZ, axisX);
}
}
/* return false if nothing was hit and true otherwise */
static int trace_ao_ray(MAOBakeData *ao_data, float ray_start[3], float ray_direction[3])
{
Isect isect = {{0}};
isect.dist = RE_RAYTRACE_MAXDIST;
copy_v3_v3(isect.start, ray_start);
copy_v3_v3(isect.dir, ray_direction);
isect.lay = -1;
normalize_v3(isect.dir);
return RE_rayobject_raycast(ao_data->raytree, &isect);
}
static void apply_ao_callback(DerivedMesh *lores_dm, DerivedMesh *hires_dm, void *UNUSED(thread_data),
void *bake_data, ImBuf *ibuf, const int face_index, const int lvl,
const float st[2], float UNUSED(tangmat[3][3]), const int x, const int y)
{
MAOBakeData *ao_data = (MAOBakeData *) bake_data;
MTFace *mtface = CustomData_get_layer(&lores_dm->faceData, CD_MTFACE);
MFace mface;
int i, k, perm_offs;
float pos[3], nrm[3];
float cen[3];
float axisX[3], axisY[3], axisZ[3];
float shadow = 0;
float value;
int pixel = ibuf->x * y + x;
float uv[2], *st0, *st1, *st2, *st3;
lores_dm->getTessFace(lores_dm, face_index, &mface);
st0 = mtface[face_index].uv[0];
st1 = mtface[face_index].uv[1];
st2 = mtface[face_index].uv[2];
if (mface.v4) {
st3 = mtface[face_index].uv[3];
resolve_quad_uv_v2(uv, st, st0, st1, st2, st3);
}
else
resolve_tri_uv_v2(uv, st, st0, st1, st2);
CLAMP(uv[0], 0.0f, 1.0f);
CLAMP(uv[1], 0.0f, 1.0f);
get_ccgdm_data(lores_dm, hires_dm,
ao_data->orig_index_mf_to_mpoly, ao_data->orig_index_mp_to_orig,
lvl, face_index, uv[0], uv[1], pos, nrm);
/* offset ray origin by user bias along normal */
for (i = 0; i < 3; i++)
cen[i] = pos[i] + ao_data->bias * nrm[i];
/* build tangent frame */
for (i = 0; i < 3; i++)
axisZ[i] = nrm[i];
build_coordinate_frame(axisX, axisY, axisZ);
/* static noise */
perm_offs = (get_ao_random2(get_ao_random1(x) + y)) & (MAX_NUMBER_OF_AO_RAYS - 1);
/* importance sample shadow rays (cosine weighted) */
for (i = 0; i < ao_data->number_of_rays; i++) {
int hit_something;
/* use N-Rooks to distribute our N ray samples across
* a multi-dimensional domain (2D)
*/
2012-12-20 05:03:00 +00:00
const unsigned short I = ao_data->permutation_table_1[(i + perm_offs) % ao_data->number_of_rays];
const unsigned short J = ao_data->permutation_table_2[i];
const float JitPh = (get_ao_random2(I + perm_offs) & (MAX_NUMBER_OF_AO_RAYS-1))/((float) MAX_NUMBER_OF_AO_RAYS);
const float JitTh = (get_ao_random1(J + perm_offs) & (MAX_NUMBER_OF_AO_RAYS-1))/((float) MAX_NUMBER_OF_AO_RAYS);
const float SiSqPhi = (I + JitPh) / ao_data->number_of_rays;
2012-12-19 01:48:54 +00:00
const float Theta = (float)(2 * M_PI) * ((J + JitTh) / ao_data->number_of_rays);
/* this gives results identical to the so-called cosine
* weighted distribution relative to the north pole.
*/
float SiPhi = sqrt(SiSqPhi);
2012-12-20 05:03:00 +00:00
float CoPhi = SiSqPhi < 1.0f ? sqrtf(1.0f - SiSqPhi) : 0;
float CoThe = cos(Theta);
float SiThe = sin(Theta);
const float dx = CoThe * CoPhi;
const float dy = SiThe * CoPhi;
const float dz = SiPhi;
/* transform ray direction out of tangent frame */
float dv[3];
for (k = 0; k < 3; k++)
dv[k] = axisX[k] * dx + axisY[k] * dy + axisZ[k] * dz;
hit_something = trace_ao_ray(ao_data, cen, dv);
if (hit_something != 0)
shadow += 1;
}
value = 1.0f - (shadow / ao_data->number_of_rays);
if (ibuf->rect_float) {
float *rrgbf = ibuf->rect_float + pixel * 4;
rrgbf[0] = rrgbf[1] = rrgbf[2] = value;
rrgbf[3] = 1.0f;
}
else {
unsigned char *rrgb = (unsigned char *) ibuf->rect + pixel * 4;
rrgb[0] = rrgb[1] = rrgb[2] = FTOCHAR(value);
rrgb[3] = 255;
}
}
/* **************** Common functions public API relates on **************** */
static void count_images(MultiresBakeRender *bkr)
{
int a, totface;
DerivedMesh *dm = bkr->lores_dm;
MTFace *mtface = CustomData_get_layer(&dm->faceData, CD_MTFACE);
BLI_listbase_clear(&bkr->image);
bkr->tot_image = 0;
totface = dm->getNumTessFaces(dm);
for (a = 0; a < totface; a++)
mtface[a].tpage->id.flag &= ~LIB_DOIT;
for (a = 0; a < totface; a++) {
Image *ima = mtface[a].tpage;
if ((ima->id.flag & LIB_DOIT) == 0) {
LinkData *data = BLI_genericNodeN(ima);
BLI_addtail(&bkr->image, data);
bkr->tot_image++;
ima->id.flag |= LIB_DOIT;
}
}
for (a = 0; a < totface; a++)
mtface[a].tpage->id.flag &= ~LIB_DOIT;
}
static void bake_images(MultiresBakeRender *bkr, MultiresBakeResult *result)
{
LinkData *link;
for (link = bkr->image.first; link; link = link->next) {
Image *ima = (Image *)link->data;
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, NULL, NULL);
if (ibuf->x > 0 && ibuf->y > 0) {
BakeImBufuserData *userdata = MEM_callocN(sizeof(BakeImBufuserData), "MultiresBake userdata");
userdata->mask_buffer = MEM_callocN(ibuf->y * ibuf->x, "MultiresBake imbuf mask");
ibuf->userdata = userdata;
switch (bkr->mode) {
case RE_BAKE_NORMALS:
do_multires_bake(bkr, ima, true, apply_tangmat_callback, init_normal_data, free_normal_data, result);
break;
case RE_BAKE_DISPLACEMENT:
case RE_BAKE_DERIVATIVE:
do_multires_bake(bkr, ima, false, apply_heights_callback, init_heights_data, free_heights_data, result);
break;
case RE_BAKE_AO:
do_multires_bake(bkr, ima, false, apply_ao_callback, init_ao_data, free_ao_data, result);
break;
}
}
BKE_image_release_ibuf(ima, ibuf, NULL);
ima->id.flag |= LIB_DOIT;
}
}
static void finish_images(MultiresBakeRender *bkr, MultiresBakeResult *result)
{
LinkData *link;
bool use_displacement_buffer = ELEM(bkr->mode, RE_BAKE_DISPLACEMENT, RE_BAKE_DERIVATIVE);
for (link = bkr->image.first; link; link = link->next) {
Image *ima = (Image *)link->data;
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, NULL, NULL);
BakeImBufuserData *userdata = (BakeImBufuserData *) ibuf->userdata;
if (ibuf->x <= 0 || ibuf->y <= 0)
continue;
if (use_displacement_buffer) {
if (bkr->mode == RE_BAKE_DERIVATIVE) {
RE_bake_make_derivative(ibuf, userdata->displacement_buffer, userdata->mask_buffer,
result->height_min, result->height_max, bkr->user_scale);
}
else {
RE_bake_ibuf_normalize_displacement(ibuf, userdata->displacement_buffer, userdata->mask_buffer,
result->height_min, result->height_max);
}
}
RE_bake_ibuf_filter(ibuf, userdata->mask_buffer, bkr->bake_filter);
ibuf->userflags |= IB_BITMAPDIRTY | IB_DISPLAY_BUFFER_INVALID;
if (ibuf->rect_float)
ibuf->userflags |= IB_RECT_INVALID;
if (ibuf->mipmap[0]) {
ibuf->userflags |= IB_MIPMAP_INVALID;
imb_freemipmapImBuf(ibuf);
}
if (ibuf->userdata) {
if (userdata->displacement_buffer)
MEM_freeN(userdata->displacement_buffer);
MEM_freeN(userdata->mask_buffer);
MEM_freeN(userdata);
ibuf->userdata = NULL;
}
BKE_image_release_ibuf(ima, ibuf, NULL);
}
}
void RE_multires_bake_images(MultiresBakeRender *bkr)
{
MultiresBakeResult result;
count_images(bkr);
bake_images(bkr, &result);
finish_images(bkr, &result);
}