1030 lines
30 KiB
C++
1030 lines
30 KiB
C++
|
/*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* as published by the Free Software Foundation; either version 2
|
||
|
* of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software Foundation,
|
||
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||
|
*/
|
||
|
|
||
|
/** \file
|
||
|
* \ingroup bli
|
||
|
*
|
||
|
* A generic task system which can be used for any task based subsystem.
|
||
|
*/
|
||
|
|
||
|
#include <stdlib.h>
|
||
|
|
||
|
#include "MEM_guardedalloc.h"
|
||
|
|
||
|
#include "DNA_listBase.h"
|
||
|
|
||
|
#include "BLI_listbase.h"
|
||
|
#include "BLI_math.h"
|
||
|
#include "BLI_mempool.h"
|
||
|
#include "BLI_task.h"
|
||
|
#include "BLI_threads.h"
|
||
|
|
||
|
#include "atomic_ops.h"
|
||
|
|
||
|
/* Define this to enable some detailed statistic print. */
|
||
|
#undef DEBUG_STATS
|
||
|
|
||
|
/* Types */
|
||
|
|
||
|
/* Number of per-thread pre-allocated tasks.
|
||
|
*
|
||
|
* For more details see description of TaskMemPool.
|
||
|
*/
|
||
|
#define MEMPOOL_SIZE 256
|
||
|
|
||
|
/* Number of tasks which are pushed directly to local thread queue.
|
||
|
*
|
||
|
* This allows thread to fetch next task without locking the whole queue.
|
||
|
*/
|
||
|
#define LOCAL_QUEUE_SIZE 1
|
||
|
|
||
|
/* Number of tasks which are allowed to be scheduled in a delayed manner.
|
||
|
*
|
||
|
* This allows to use less locks per graph node children schedule. More details
|
||
|
* could be found at TaskThreadLocalStorage::do_delayed_push.
|
||
|
*/
|
||
|
#define DELAYED_QUEUE_SIZE 4096
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
# define ASSERT_THREAD_ID(scheduler, thread_id) \
|
||
|
do { \
|
||
|
if (!BLI_thread_is_main()) { \
|
||
|
TaskThread *thread = (TaskThread *)pthread_getspecific(scheduler->tls_id_key); \
|
||
|
if (thread == NULL) { \
|
||
|
BLI_assert(thread_id == 0); \
|
||
|
} \
|
||
|
else { \
|
||
|
BLI_assert(thread_id == thread->id); \
|
||
|
} \
|
||
|
} \
|
||
|
else { \
|
||
|
BLI_assert(thread_id == 0); \
|
||
|
} \
|
||
|
} while (false)
|
||
|
#else
|
||
|
# define ASSERT_THREAD_ID(scheduler, thread_id)
|
||
|
#endif
|
||
|
|
||
|
typedef struct Task {
|
||
|
struct Task *next, *prev;
|
||
|
|
||
|
TaskRunFunction run;
|
||
|
void *taskdata;
|
||
|
bool free_taskdata;
|
||
|
TaskFreeFunction freedata;
|
||
|
TaskPool *pool;
|
||
|
} Task;
|
||
|
|
||
|
/* This is a per-thread storage of pre-allocated tasks.
|
||
|
*
|
||
|
* The idea behind this is simple: reduce amount of malloc() calls when pushing
|
||
|
* new task to the pool. This is done by keeping memory from the tasks which
|
||
|
* were finished already, so instead of freeing that memory we put it to the
|
||
|
* pool for the later re-use.
|
||
|
*
|
||
|
* The tricky part here is to avoid any inter-thread synchronization, hence no
|
||
|
* lock must exist around this pool. The pool will become an owner of the pointer
|
||
|
* from freed task, and only corresponding thread will be able to use this pool
|
||
|
* (no memory stealing and such).
|
||
|
*
|
||
|
* This leads to the following use of the pool:
|
||
|
*
|
||
|
* - task_push() should provide proper thread ID from which the task is being
|
||
|
* pushed from.
|
||
|
*
|
||
|
* - Task allocation function which check corresponding memory pool and if there
|
||
|
* is any memory in there it'll mark memory as re-used, remove it from the pool
|
||
|
* and use that memory for the new task.
|
||
|
*
|
||
|
* At this moment task queue owns the memory.
|
||
|
*
|
||
|
* - When task is done and task_free() is called the memory will be put to the
|
||
|
* pool which corresponds to a thread which handled the task.
|
||
|
*/
|
||
|
typedef struct TaskMemPool {
|
||
|
/* Number of pre-allocated tasks in the pool. */
|
||
|
int num_tasks;
|
||
|
/* Pre-allocated task memory pointers. */
|
||
|
Task *tasks[MEMPOOL_SIZE];
|
||
|
} TaskMemPool;
|
||
|
|
||
|
#ifdef DEBUG_STATS
|
||
|
typedef struct TaskMemPoolStats {
|
||
|
/* Number of allocations. */
|
||
|
int num_alloc;
|
||
|
/* Number of avoided allocations (pointer was re-used from the pool). */
|
||
|
int num_reuse;
|
||
|
/* Number of discarded memory due to pool saturation, */
|
||
|
int num_discard;
|
||
|
} TaskMemPoolStats;
|
||
|
#endif
|
||
|
|
||
|
typedef struct TaskThreadLocalStorage {
|
||
|
/* Memory pool for faster task allocation.
|
||
|
* The idea is to re-use memory of finished/discarded tasks by this thread.
|
||
|
*/
|
||
|
TaskMemPool task_mempool;
|
||
|
|
||
|
/* Local queue keeps thread alive by keeping small amount of tasks ready
|
||
|
* to be picked up without causing global thread locks for synchronization.
|
||
|
*/
|
||
|
int num_local_queue;
|
||
|
Task *local_queue[LOCAL_QUEUE_SIZE];
|
||
|
|
||
|
/* Thread can be marked for delayed tasks push. This is helpful when it's
|
||
|
* know that lots of subsequent task pushed will happen from the same thread
|
||
|
* without "interrupting" for task execution.
|
||
|
*
|
||
|
* We try to accumulate as much tasks as possible in a local queue without
|
||
|
* any locks first, and then we push all of them into a scheduler's queue
|
||
|
* from within a single mutex lock.
|
||
|
*/
|
||
|
bool do_delayed_push;
|
||
|
int num_delayed_queue;
|
||
|
Task *delayed_queue[DELAYED_QUEUE_SIZE];
|
||
|
} TaskThreadLocalStorage;
|
||
|
|
||
|
struct TaskPool {
|
||
|
TaskScheduler *scheduler;
|
||
|
|
||
|
volatile size_t num;
|
||
|
ThreadMutex num_mutex;
|
||
|
ThreadCondition num_cond;
|
||
|
|
||
|
void *userdata;
|
||
|
ThreadMutex user_mutex;
|
||
|
|
||
|
volatile bool do_cancel;
|
||
|
volatile bool do_work;
|
||
|
|
||
|
volatile bool is_suspended;
|
||
|
bool start_suspended;
|
||
|
ListBase suspended_queue;
|
||
|
size_t num_suspended;
|
||
|
|
||
|
TaskPriority priority;
|
||
|
|
||
|
/* If set, this pool may never be work_and_wait'ed, which means TaskScheduler
|
||
|
* has to use its special background fallback thread in case we are in
|
||
|
* single-threaded situation.
|
||
|
*/
|
||
|
bool run_in_background;
|
||
|
|
||
|
/* This is a task scheduler's ID of a thread at which pool was constructed.
|
||
|
* It will be used to access task TLS.
|
||
|
*/
|
||
|
int thread_id;
|
||
|
|
||
|
/* For the pools which are created from non-main thread which is not a
|
||
|
* scheduler worker thread we can't re-use any of scheduler's threads TLS
|
||
|
* and have to use our own one.
|
||
|
*/
|
||
|
bool use_local_tls;
|
||
|
TaskThreadLocalStorage local_tls;
|
||
|
#ifndef NDEBUG
|
||
|
pthread_t creator_thread_id;
|
||
|
#endif
|
||
|
|
||
|
#ifdef DEBUG_STATS
|
||
|
TaskMemPoolStats *mempool_stats;
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
struct TaskScheduler {
|
||
|
pthread_t *threads;
|
||
|
struct TaskThread *task_threads;
|
||
|
int num_threads;
|
||
|
bool background_thread_only;
|
||
|
|
||
|
ListBase queue;
|
||
|
ThreadMutex queue_mutex;
|
||
|
ThreadCondition queue_cond;
|
||
|
|
||
|
ThreadMutex startup_mutex;
|
||
|
ThreadCondition startup_cond;
|
||
|
volatile int num_thread_started;
|
||
|
|
||
|
volatile bool do_exit;
|
||
|
|
||
|
/* NOTE: In pthread's TLS we store the whole TaskThread structure. */
|
||
|
pthread_key_t tls_id_key;
|
||
|
};
|
||
|
|
||
|
typedef struct TaskThread {
|
||
|
TaskScheduler *scheduler;
|
||
|
int id;
|
||
|
TaskThreadLocalStorage tls;
|
||
|
} TaskThread;
|
||
|
|
||
|
/* Helper */
|
||
|
BLI_INLINE void task_data_free(Task *task, const int thread_id)
|
||
|
{
|
||
|
if (task->free_taskdata) {
|
||
|
if (task->freedata) {
|
||
|
task->freedata(task->pool, task->taskdata, thread_id);
|
||
|
}
|
||
|
else {
|
||
|
MEM_freeN(task->taskdata);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
BLI_INLINE void initialize_task_tls(TaskThreadLocalStorage *tls)
|
||
|
{
|
||
|
memset(tls, 0, sizeof(TaskThreadLocalStorage));
|
||
|
}
|
||
|
|
||
|
BLI_INLINE TaskThreadLocalStorage *get_task_tls(TaskPool *pool, const int thread_id)
|
||
|
{
|
||
|
TaskScheduler *scheduler = pool->scheduler;
|
||
|
BLI_assert(thread_id >= 0);
|
||
|
BLI_assert(thread_id <= scheduler->num_threads);
|
||
|
if (pool->use_local_tls && thread_id == 0) {
|
||
|
BLI_assert(pool->thread_id == 0);
|
||
|
BLI_assert(!BLI_thread_is_main());
|
||
|
BLI_assert(pthread_equal(pthread_self(), pool->creator_thread_id));
|
||
|
return &pool->local_tls;
|
||
|
}
|
||
|
if (thread_id == 0) {
|
||
|
BLI_assert(BLI_thread_is_main());
|
||
|
return &scheduler->task_threads[pool->thread_id].tls;
|
||
|
}
|
||
|
return &scheduler->task_threads[thread_id].tls;
|
||
|
}
|
||
|
|
||
|
BLI_INLINE void free_task_tls(TaskThreadLocalStorage *tls)
|
||
|
{
|
||
|
TaskMemPool *task_mempool = &tls->task_mempool;
|
||
|
for (int i = 0; i < task_mempool->num_tasks; i++) {
|
||
|
MEM_freeN(task_mempool->tasks[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static Task *task_alloc(TaskPool *pool, const int thread_id)
|
||
|
{
|
||
|
BLI_assert(thread_id <= pool->scheduler->num_threads);
|
||
|
if (thread_id != -1) {
|
||
|
BLI_assert(thread_id >= 0);
|
||
|
BLI_assert(thread_id <= pool->scheduler->num_threads);
|
||
|
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
||
|
TaskMemPool *task_mempool = &tls->task_mempool;
|
||
|
/* Try to re-use task memory from a thread local storage. */
|
||
|
if (task_mempool->num_tasks > 0) {
|
||
|
--task_mempool->num_tasks;
|
||
|
/* Success! We've just avoided task allocation. */
|
||
|
#ifdef DEBUG_STATS
|
||
|
pool->mempool_stats[thread_id].num_reuse++;
|
||
|
#endif
|
||
|
return task_mempool->tasks[task_mempool->num_tasks];
|
||
|
}
|
||
|
/* We are doomed to allocate new task data. */
|
||
|
#ifdef DEBUG_STATS
|
||
|
pool->mempool_stats[thread_id].num_alloc++;
|
||
|
#endif
|
||
|
}
|
||
|
return (Task *)MEM_mallocN(sizeof(Task), "New task");
|
||
|
}
|
||
|
|
||
|
static void task_free(TaskPool *pool, Task *task, const int thread_id)
|
||
|
{
|
||
|
task_data_free(task, thread_id);
|
||
|
BLI_assert(thread_id >= 0);
|
||
|
BLI_assert(thread_id <= pool->scheduler->num_threads);
|
||
|
if (thread_id == 0) {
|
||
|
BLI_assert(pool->use_local_tls || BLI_thread_is_main());
|
||
|
}
|
||
|
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
||
|
TaskMemPool *task_mempool = &tls->task_mempool;
|
||
|
if (task_mempool->num_tasks < MEMPOOL_SIZE - 1) {
|
||
|
/* Successfully allowed the task to be re-used later. */
|
||
|
task_mempool->tasks[task_mempool->num_tasks] = task;
|
||
|
++task_mempool->num_tasks;
|
||
|
}
|
||
|
else {
|
||
|
/* Local storage saturated, no other way than just discard
|
||
|
* the memory.
|
||
|
*
|
||
|
* TODO(sergey): We can perhaps store such pointer in a global
|
||
|
* scheduler pool, maybe it'll be faster than discarding and
|
||
|
* allocating again.
|
||
|
*/
|
||
|
MEM_freeN(task);
|
||
|
#ifdef DEBUG_STATS
|
||
|
pool->mempool_stats[thread_id].num_discard++;
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Task Scheduler */
|
||
|
|
||
|
static void task_pool_num_decrease(TaskPool *pool, size_t done)
|
||
|
{
|
||
|
BLI_mutex_lock(&pool->num_mutex);
|
||
|
|
||
|
BLI_assert(pool->num >= done);
|
||
|
|
||
|
pool->num -= done;
|
||
|
|
||
|
if (pool->num == 0) {
|
||
|
BLI_condition_notify_all(&pool->num_cond);
|
||
|
}
|
||
|
|
||
|
BLI_mutex_unlock(&pool->num_mutex);
|
||
|
}
|
||
|
|
||
|
static void task_pool_num_increase(TaskPool *pool, size_t new_num)
|
||
|
{
|
||
|
BLI_mutex_lock(&pool->num_mutex);
|
||
|
|
||
|
pool->num += new_num;
|
||
|
BLI_condition_notify_all(&pool->num_cond);
|
||
|
|
||
|
BLI_mutex_unlock(&pool->num_mutex);
|
||
|
}
|
||
|
|
||
|
static bool task_scheduler_thread_wait_pop(TaskScheduler *scheduler, Task **task)
|
||
|
{
|
||
|
bool found_task = false;
|
||
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
||
|
|
||
|
while (!scheduler->queue.first && !scheduler->do_exit) {
|
||
|
BLI_condition_wait(&scheduler->queue_cond, &scheduler->queue_mutex);
|
||
|
}
|
||
|
|
||
|
do {
|
||
|
Task *current_task;
|
||
|
|
||
|
/* Assuming we can only have a void queue in 'exit' case here seems logical
|
||
|
* (we should only be here after our worker thread has been woken up from a
|
||
|
* condition_wait(), which only happens after a new task was added to the queue),
|
||
|
* but it is wrong.
|
||
|
* Waiting on condition may wake up the thread even if condition is not signaled
|
||
|
* (spurious wake-ups), and some race condition may also empty the queue **after**
|
||
|
* condition has been signaled, but **before** awoken thread reaches this point...
|
||
|
* See http://stackoverflow.com/questions/8594591
|
||
|
*
|
||
|
* So we only abort here if do_exit is set.
|
||
|
*/
|
||
|
if (scheduler->do_exit) {
|
||
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
for (current_task = (Task *)scheduler->queue.first; current_task != NULL;
|
||
|
current_task = current_task->next) {
|
||
|
TaskPool *pool = current_task->pool;
|
||
|
|
||
|
if (scheduler->background_thread_only && !pool->run_in_background) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
*task = current_task;
|
||
|
found_task = true;
|
||
|
BLI_remlink(&scheduler->queue, *task);
|
||
|
break;
|
||
|
}
|
||
|
if (!found_task) {
|
||
|
BLI_condition_wait(&scheduler->queue_cond, &scheduler->queue_mutex);
|
||
|
}
|
||
|
} while (!found_task);
|
||
|
|
||
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
BLI_INLINE void handle_local_queue(TaskThreadLocalStorage *tls, const int thread_id)
|
||
|
{
|
||
|
BLI_assert(!tls->do_delayed_push);
|
||
|
while (tls->num_local_queue > 0) {
|
||
|
/* We pop task from queue before handling it so handler of the task can
|
||
|
* push next job to the local queue.
|
||
|
*/
|
||
|
tls->num_local_queue--;
|
||
|
Task *local_task = tls->local_queue[tls->num_local_queue];
|
||
|
/* TODO(sergey): Double-check work_and_wait() doesn't handle other's
|
||
|
* pool tasks.
|
||
|
*/
|
||
|
TaskPool *local_pool = local_task->pool;
|
||
|
local_task->run(local_pool, local_task->taskdata, thread_id);
|
||
|
task_free(local_pool, local_task, thread_id);
|
||
|
}
|
||
|
BLI_assert(!tls->do_delayed_push);
|
||
|
}
|
||
|
|
||
|
static void *task_scheduler_thread_run(void *thread_p)
|
||
|
{
|
||
|
TaskThread *thread = (TaskThread *)thread_p;
|
||
|
TaskThreadLocalStorage *tls = &thread->tls;
|
||
|
TaskScheduler *scheduler = thread->scheduler;
|
||
|
int thread_id = thread->id;
|
||
|
Task *task;
|
||
|
|
||
|
pthread_setspecific(scheduler->tls_id_key, thread);
|
||
|
|
||
|
/* signal the main thread when all threads have started */
|
||
|
BLI_mutex_lock(&scheduler->startup_mutex);
|
||
|
scheduler->num_thread_started++;
|
||
|
if (scheduler->num_thread_started == scheduler->num_threads) {
|
||
|
BLI_condition_notify_one(&scheduler->startup_cond);
|
||
|
}
|
||
|
BLI_mutex_unlock(&scheduler->startup_mutex);
|
||
|
|
||
|
/* keep popping off tasks */
|
||
|
while (task_scheduler_thread_wait_pop(scheduler, &task)) {
|
||
|
TaskPool *pool = task->pool;
|
||
|
|
||
|
/* run task */
|
||
|
BLI_assert(!tls->do_delayed_push);
|
||
|
task->run(pool, task->taskdata, thread_id);
|
||
|
BLI_assert(!tls->do_delayed_push);
|
||
|
|
||
|
/* delete task */
|
||
|
task_free(pool, task, thread_id);
|
||
|
|
||
|
/* Handle all tasks from local queue. */
|
||
|
handle_local_queue(tls, thread_id);
|
||
|
|
||
|
/* notify pool task was done */
|
||
|
task_pool_num_decrease(pool, 1);
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
TaskScheduler *BLI_task_scheduler_create(int num_threads)
|
||
|
{
|
||
|
TaskScheduler *scheduler = (TaskScheduler *)MEM_callocN(sizeof(TaskScheduler), "TaskScheduler");
|
||
|
|
||
|
/* multiple places can use this task scheduler, sharing the same
|
||
|
* threads, so we keep track of the number of users. */
|
||
|
scheduler->do_exit = false;
|
||
|
|
||
|
BLI_listbase_clear(&scheduler->queue);
|
||
|
BLI_mutex_init(&scheduler->queue_mutex);
|
||
|
BLI_condition_init(&scheduler->queue_cond);
|
||
|
|
||
|
BLI_mutex_init(&scheduler->startup_mutex);
|
||
|
BLI_condition_init(&scheduler->startup_cond);
|
||
|
scheduler->num_thread_started = 0;
|
||
|
|
||
|
if (num_threads == 0) {
|
||
|
/* automatic number of threads will be main thread + num cores */
|
||
|
num_threads = BLI_system_thread_count();
|
||
|
}
|
||
|
|
||
|
/* main thread will also work, so we count it too */
|
||
|
num_threads -= 1;
|
||
|
|
||
|
/* Add background-only thread if needed. */
|
||
|
if (num_threads == 0) {
|
||
|
scheduler->background_thread_only = true;
|
||
|
num_threads = 1;
|
||
|
}
|
||
|
|
||
|
scheduler->task_threads = (TaskThread *)MEM_mallocN(sizeof(TaskThread) * (num_threads + 1),
|
||
|
"TaskScheduler task threads");
|
||
|
|
||
|
/* Initialize TLS for main thread. */
|
||
|
initialize_task_tls(&scheduler->task_threads[0].tls);
|
||
|
|
||
|
pthread_key_create(&scheduler->tls_id_key, NULL);
|
||
|
|
||
|
/* launch threads that will be waiting for work */
|
||
|
if (num_threads > 0) {
|
||
|
int i;
|
||
|
|
||
|
scheduler->num_threads = num_threads;
|
||
|
scheduler->threads = (pthread_t *)MEM_callocN(sizeof(pthread_t) * num_threads,
|
||
|
"TaskScheduler threads");
|
||
|
|
||
|
for (i = 0; i < num_threads; i++) {
|
||
|
TaskThread *thread = &scheduler->task_threads[i + 1];
|
||
|
thread->scheduler = scheduler;
|
||
|
thread->id = i + 1;
|
||
|
initialize_task_tls(&thread->tls);
|
||
|
|
||
|
if (pthread_create(&scheduler->threads[i], NULL, task_scheduler_thread_run, thread) != 0) {
|
||
|
fprintf(stderr, "TaskScheduler failed to launch thread %d/%d\n", i, num_threads);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Wait for all worker threads to start before returning to caller to prevent the case where
|
||
|
* threads are still starting and pthread_join is called, which causes a deadlock on pthreads4w.
|
||
|
*/
|
||
|
BLI_mutex_lock(&scheduler->startup_mutex);
|
||
|
/* NOTE: Use loop here to avoid false-positive everything-is-ready caused by spontaneous thread
|
||
|
* wake up. */
|
||
|
while (scheduler->num_thread_started != num_threads) {
|
||
|
BLI_condition_wait(&scheduler->startup_cond, &scheduler->startup_mutex);
|
||
|
}
|
||
|
BLI_mutex_unlock(&scheduler->startup_mutex);
|
||
|
|
||
|
return scheduler;
|
||
|
}
|
||
|
|
||
|
void BLI_task_scheduler_free(TaskScheduler *scheduler)
|
||
|
{
|
||
|
Task *task;
|
||
|
|
||
|
/* stop all waiting threads */
|
||
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
||
|
scheduler->do_exit = true;
|
||
|
BLI_condition_notify_all(&scheduler->queue_cond);
|
||
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||
|
|
||
|
pthread_key_delete(scheduler->tls_id_key);
|
||
|
|
||
|
/* delete threads */
|
||
|
if (scheduler->threads) {
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < scheduler->num_threads; i++) {
|
||
|
if (pthread_join(scheduler->threads[i], NULL) != 0) {
|
||
|
fprintf(stderr, "TaskScheduler failed to join thread %d/%d\n", i, scheduler->num_threads);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
MEM_freeN(scheduler->threads);
|
||
|
}
|
||
|
|
||
|
/* Delete task thread data */
|
||
|
if (scheduler->task_threads) {
|
||
|
for (int i = 0; i < scheduler->num_threads + 1; i++) {
|
||
|
TaskThreadLocalStorage *tls = &scheduler->task_threads[i].tls;
|
||
|
free_task_tls(tls);
|
||
|
}
|
||
|
|
||
|
MEM_freeN(scheduler->task_threads);
|
||
|
}
|
||
|
|
||
|
/* delete leftover tasks */
|
||
|
for (task = (Task *)scheduler->queue.first; task; task = task->next) {
|
||
|
task_data_free(task, 0);
|
||
|
}
|
||
|
BLI_freelistN(&scheduler->queue);
|
||
|
|
||
|
/* delete mutex/condition */
|
||
|
BLI_mutex_end(&scheduler->queue_mutex);
|
||
|
BLI_condition_end(&scheduler->queue_cond);
|
||
|
BLI_mutex_end(&scheduler->startup_mutex);
|
||
|
BLI_condition_end(&scheduler->startup_cond);
|
||
|
|
||
|
MEM_freeN(scheduler);
|
||
|
}
|
||
|
|
||
|
int BLI_task_scheduler_num_threads(TaskScheduler *scheduler)
|
||
|
{
|
||
|
return scheduler->num_threads + 1;
|
||
|
}
|
||
|
|
||
|
static void task_scheduler_push(TaskScheduler *scheduler, Task *task, TaskPriority priority)
|
||
|
{
|
||
|
task_pool_num_increase(task->pool, 1);
|
||
|
|
||
|
/* add task to queue */
|
||
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
||
|
|
||
|
if (priority == TASK_PRIORITY_HIGH) {
|
||
|
BLI_addhead(&scheduler->queue, task);
|
||
|
}
|
||
|
else {
|
||
|
BLI_addtail(&scheduler->queue, task);
|
||
|
}
|
||
|
|
||
|
BLI_condition_notify_one(&scheduler->queue_cond);
|
||
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||
|
}
|
||
|
|
||
|
static void task_scheduler_push_all(TaskScheduler *scheduler,
|
||
|
TaskPool *pool,
|
||
|
Task **tasks,
|
||
|
int num_tasks)
|
||
|
{
|
||
|
if (num_tasks == 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
task_pool_num_increase(pool, num_tasks);
|
||
|
|
||
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
||
|
|
||
|
for (int i = 0; i < num_tasks; i++) {
|
||
|
BLI_addhead(&scheduler->queue, tasks[i]);
|
||
|
}
|
||
|
|
||
|
BLI_condition_notify_all(&scheduler->queue_cond);
|
||
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||
|
}
|
||
|
|
||
|
static void task_scheduler_clear(TaskScheduler *scheduler, TaskPool *pool)
|
||
|
{
|
||
|
Task *task, *nexttask;
|
||
|
size_t done = 0;
|
||
|
|
||
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
||
|
|
||
|
/* free all tasks from this pool from the queue */
|
||
|
for (task = (Task *)scheduler->queue.first; task; task = nexttask) {
|
||
|
nexttask = task->next;
|
||
|
|
||
|
if (task->pool == pool) {
|
||
|
task_data_free(task, pool->thread_id);
|
||
|
BLI_freelinkN(&scheduler->queue, task);
|
||
|
|
||
|
done++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||
|
|
||
|
/* notify done */
|
||
|
task_pool_num_decrease(pool, done);
|
||
|
}
|
||
|
|
||
|
/* Task Pool */
|
||
|
|
||
|
static TaskPool *task_pool_create_ex(TaskScheduler *scheduler,
|
||
|
void *userdata,
|
||
|
const bool is_background,
|
||
|
const bool is_suspended,
|
||
|
TaskPriority priority)
|
||
|
{
|
||
|
TaskPool *pool = (TaskPool *)MEM_mallocN(sizeof(TaskPool), "TaskPool");
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
/* Assert we do not try to create a background pool from some parent task -
|
||
|
* those only work OK from main thread. */
|
||
|
if (is_background) {
|
||
|
const pthread_t thread_id = pthread_self();
|
||
|
int i = scheduler->num_threads;
|
||
|
|
||
|
while (i--) {
|
||
|
BLI_assert(!pthread_equal(scheduler->threads[i], thread_id));
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
pool->scheduler = scheduler;
|
||
|
pool->num = 0;
|
||
|
pool->do_cancel = false;
|
||
|
pool->do_work = false;
|
||
|
pool->is_suspended = is_suspended;
|
||
|
pool->start_suspended = is_suspended;
|
||
|
pool->num_suspended = 0;
|
||
|
pool->suspended_queue.first = pool->suspended_queue.last = NULL;
|
||
|
pool->priority = priority;
|
||
|
pool->run_in_background = is_background;
|
||
|
pool->use_local_tls = false;
|
||
|
|
||
|
BLI_mutex_init(&pool->num_mutex);
|
||
|
BLI_condition_init(&pool->num_cond);
|
||
|
|
||
|
pool->userdata = userdata;
|
||
|
BLI_mutex_init(&pool->user_mutex);
|
||
|
|
||
|
if (BLI_thread_is_main()) {
|
||
|
pool->thread_id = 0;
|
||
|
}
|
||
|
else {
|
||
|
TaskThread *thread = (TaskThread *)pthread_getspecific(scheduler->tls_id_key);
|
||
|
if (thread == NULL) {
|
||
|
/* NOTE: Task pool is created from non-main thread which is not
|
||
|
* managed by the task scheduler. We identify ourselves as thread ID
|
||
|
* 0 but we do not use scheduler's TLS storage and use our own
|
||
|
* instead to avoid any possible threading conflicts.
|
||
|
*/
|
||
|
pool->thread_id = 0;
|
||
|
pool->use_local_tls = true;
|
||
|
#ifndef NDEBUG
|
||
|
pool->creator_thread_id = pthread_self();
|
||
|
#endif
|
||
|
initialize_task_tls(&pool->local_tls);
|
||
|
}
|
||
|
else {
|
||
|
pool->thread_id = thread->id;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef DEBUG_STATS
|
||
|
pool->mempool_stats = (TaskMemPoolStats *)MEM_callocN(
|
||
|
sizeof(*pool->mempool_stats) * (scheduler->num_threads + 1), "per-taskpool mempool stats");
|
||
|
#endif
|
||
|
|
||
|
/* Ensure malloc will go fine from threads,
|
||
|
*
|
||
|
* This is needed because we could be in main thread here
|
||
|
* and malloc could be non-thread safe at this point because
|
||
|
* no other jobs are running.
|
||
|
*/
|
||
|
BLI_threaded_malloc_begin();
|
||
|
|
||
|
return pool;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Create a normal task pool. Tasks will be executed as soon as they are added.
|
||
|
*/
|
||
|
TaskPool *BLI_task_pool_create(TaskScheduler *scheduler, void *userdata, TaskPriority priority)
|
||
|
{
|
||
|
return task_pool_create_ex(scheduler, userdata, false, false, priority);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Create a background task pool.
|
||
|
* In multi-threaded context, there is no differences with #BLI_task_pool_create(),
|
||
|
* but in single-threaded case it is ensured to have at least one worker thread to run on
|
||
|
* (i.e. you don't have to call #BLI_task_pool_work_and_wait
|
||
|
* on it to be sure it will be processed).
|
||
|
*
|
||
|
* \note Background pools are non-recursive
|
||
|
* (that is, you should not create other background pools in tasks assigned to a background pool,
|
||
|
* they could end never being executed, since the 'fallback' background thread is already
|
||
|
* busy with parent task in single-threaded context).
|
||
|
*/
|
||
|
TaskPool *BLI_task_pool_create_background(TaskScheduler *scheduler,
|
||
|
void *userdata,
|
||
|
TaskPriority priority)
|
||
|
{
|
||
|
return task_pool_create_ex(scheduler, userdata, true, false, priority);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Similar to BLI_task_pool_create() but does not schedule any tasks for execution
|
||
|
* for until BLI_task_pool_work_and_wait() is called. This helps reducing threading
|
||
|
* overhead when pushing huge amount of small initial tasks from the main thread.
|
||
|
*/
|
||
|
TaskPool *BLI_task_pool_create_suspended(TaskScheduler *scheduler,
|
||
|
void *userdata,
|
||
|
TaskPriority priority)
|
||
|
{
|
||
|
return task_pool_create_ex(scheduler, userdata, false, true, priority);
|
||
|
}
|
||
|
|
||
|
void BLI_task_pool_free(TaskPool *pool)
|
||
|
{
|
||
|
BLI_task_pool_cancel(pool);
|
||
|
|
||
|
BLI_mutex_end(&pool->num_mutex);
|
||
|
BLI_condition_end(&pool->num_cond);
|
||
|
|
||
|
BLI_mutex_end(&pool->user_mutex);
|
||
|
|
||
|
#ifdef DEBUG_STATS
|
||
|
printf("Thread ID Allocated Reused Discarded\n");
|
||
|
for (int i = 0; i < pool->scheduler->num_threads + 1; i++) {
|
||
|
printf("%02d %05d %05d %05d\n",
|
||
|
i,
|
||
|
pool->mempool_stats[i].num_alloc,
|
||
|
pool->mempool_stats[i].num_reuse,
|
||
|
pool->mempool_stats[i].num_discard);
|
||
|
}
|
||
|
MEM_freeN(pool->mempool_stats);
|
||
|
#endif
|
||
|
|
||
|
if (pool->use_local_tls) {
|
||
|
free_task_tls(&pool->local_tls);
|
||
|
}
|
||
|
|
||
|
MEM_freeN(pool);
|
||
|
|
||
|
BLI_threaded_malloc_end();
|
||
|
}
|
||
|
|
||
|
BLI_INLINE bool task_can_use_local_queues(TaskPool *pool, int thread_id)
|
||
|
{
|
||
|
return (thread_id != -1 && (thread_id != pool->thread_id || pool->do_work));
|
||
|
}
|
||
|
|
||
|
static void task_pool_push(TaskPool *pool,
|
||
|
TaskRunFunction run,
|
||
|
void *taskdata,
|
||
|
bool free_taskdata,
|
||
|
TaskFreeFunction freedata,
|
||
|
int thread_id)
|
||
|
{
|
||
|
/* Allocate task and fill it's properties. */
|
||
|
Task *task = task_alloc(pool, thread_id);
|
||
|
task->run = run;
|
||
|
task->taskdata = taskdata;
|
||
|
task->free_taskdata = free_taskdata;
|
||
|
task->freedata = freedata;
|
||
|
task->pool = pool;
|
||
|
/* For suspended pools we put everything yo a global queue first
|
||
|
* and exit as soon as possible.
|
||
|
*
|
||
|
* This tasks will be moved to actual execution when pool is
|
||
|
* activated by work_and_wait().
|
||
|
*/
|
||
|
if (pool->is_suspended) {
|
||
|
BLI_addhead(&pool->suspended_queue, task);
|
||
|
atomic_fetch_and_add_z(&pool->num_suspended, 1);
|
||
|
return;
|
||
|
}
|
||
|
/* Populate to any local queue first, this is cheapest push ever. */
|
||
|
if (task_can_use_local_queues(pool, thread_id)) {
|
||
|
ASSERT_THREAD_ID(pool->scheduler, thread_id);
|
||
|
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
||
|
/* Try to push to a local execution queue.
|
||
|
* These tasks will be picked up next.
|
||
|
*/
|
||
|
if (tls->num_local_queue < LOCAL_QUEUE_SIZE) {
|
||
|
tls->local_queue[tls->num_local_queue] = task;
|
||
|
tls->num_local_queue++;
|
||
|
return;
|
||
|
}
|
||
|
/* If we are in the delayed tasks push mode, we push tasks to a
|
||
|
* temporary local queue first without any locks, and then move them
|
||
|
* to global execution queue with a single lock.
|
||
|
*/
|
||
|
if (tls->do_delayed_push && tls->num_delayed_queue < DELAYED_QUEUE_SIZE) {
|
||
|
tls->delayed_queue[tls->num_delayed_queue] = task;
|
||
|
tls->num_delayed_queue++;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
/* Do push to a global execution pool, slowest possible method,
|
||
|
* causes quite reasonable amount of threading overhead.
|
||
|
*/
|
||
|
task_scheduler_push(pool->scheduler, task, pool->priority);
|
||
|
}
|
||
|
|
||
|
void BLI_task_pool_push(TaskPool *pool,
|
||
|
TaskRunFunction run,
|
||
|
void *taskdata,
|
||
|
bool free_taskdata,
|
||
|
TaskFreeFunction freedata)
|
||
|
{
|
||
|
task_pool_push(pool, run, taskdata, free_taskdata, freedata, -1);
|
||
|
}
|
||
|
|
||
|
void BLI_task_pool_push_from_thread(TaskPool *pool,
|
||
|
TaskRunFunction run,
|
||
|
void *taskdata,
|
||
|
bool free_taskdata,
|
||
|
TaskFreeFunction freedata,
|
||
|
int thread_id)
|
||
|
{
|
||
|
task_pool_push(pool, run, taskdata, free_taskdata, freedata, thread_id);
|
||
|
}
|
||
|
|
||
|
void BLI_task_pool_work_and_wait(TaskPool *pool)
|
||
|
{
|
||
|
TaskThreadLocalStorage *tls = get_task_tls(pool, pool->thread_id);
|
||
|
TaskScheduler *scheduler = pool->scheduler;
|
||
|
|
||
|
if (atomic_fetch_and_and_uint8((uint8_t *)&pool->is_suspended, 0)) {
|
||
|
if (pool->num_suspended) {
|
||
|
task_pool_num_increase(pool, pool->num_suspended);
|
||
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
||
|
|
||
|
BLI_movelisttolist(&scheduler->queue, &pool->suspended_queue);
|
||
|
|
||
|
BLI_condition_notify_all(&scheduler->queue_cond);
|
||
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||
|
|
||
|
pool->num_suspended = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pool->do_work = true;
|
||
|
|
||
|
ASSERT_THREAD_ID(pool->scheduler, pool->thread_id);
|
||
|
|
||
|
handle_local_queue(tls, pool->thread_id);
|
||
|
|
||
|
BLI_mutex_lock(&pool->num_mutex);
|
||
|
|
||
|
while (pool->num != 0) {
|
||
|
Task *task, *work_task = NULL;
|
||
|
bool found_task = false;
|
||
|
|
||
|
BLI_mutex_unlock(&pool->num_mutex);
|
||
|
|
||
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
||
|
|
||
|
/* find task from this pool. if we get a task from another pool,
|
||
|
* we can get into deadlock */
|
||
|
|
||
|
for (task = (Task *)scheduler->queue.first; task; task = task->next) {
|
||
|
if (task->pool == pool) {
|
||
|
work_task = task;
|
||
|
found_task = true;
|
||
|
BLI_remlink(&scheduler->queue, task);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||
|
|
||
|
/* if found task, do it, otherwise wait until other tasks are done */
|
||
|
if (found_task) {
|
||
|
/* run task */
|
||
|
BLI_assert(!tls->do_delayed_push);
|
||
|
work_task->run(pool, work_task->taskdata, pool->thread_id);
|
||
|
BLI_assert(!tls->do_delayed_push);
|
||
|
|
||
|
/* delete task */
|
||
|
task_free(pool, task, pool->thread_id);
|
||
|
|
||
|
/* Handle all tasks from local queue. */
|
||
|
handle_local_queue(tls, pool->thread_id);
|
||
|
|
||
|
/* notify pool task was done */
|
||
|
task_pool_num_decrease(pool, 1);
|
||
|
}
|
||
|
|
||
|
BLI_mutex_lock(&pool->num_mutex);
|
||
|
if (pool->num == 0) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (!found_task) {
|
||
|
BLI_condition_wait(&pool->num_cond, &pool->num_mutex);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
BLI_mutex_unlock(&pool->num_mutex);
|
||
|
|
||
|
BLI_assert(tls->num_local_queue == 0);
|
||
|
}
|
||
|
|
||
|
void BLI_task_pool_work_wait_and_reset(TaskPool *pool)
|
||
|
{
|
||
|
BLI_task_pool_work_and_wait(pool);
|
||
|
|
||
|
pool->do_work = false;
|
||
|
pool->is_suspended = pool->start_suspended;
|
||
|
}
|
||
|
|
||
|
void BLI_task_pool_cancel(TaskPool *pool)
|
||
|
{
|
||
|
pool->do_cancel = true;
|
||
|
|
||
|
task_scheduler_clear(pool->scheduler, pool);
|
||
|
|
||
|
/* wait until all entries are cleared */
|
||
|
BLI_mutex_lock(&pool->num_mutex);
|
||
|
while (pool->num) {
|
||
|
BLI_condition_wait(&pool->num_cond, &pool->num_mutex);
|
||
|
}
|
||
|
BLI_mutex_unlock(&pool->num_mutex);
|
||
|
|
||
|
pool->do_cancel = false;
|
||
|
}
|
||
|
|
||
|
bool BLI_task_pool_canceled(TaskPool *pool)
|
||
|
{
|
||
|
return pool->do_cancel;
|
||
|
}
|
||
|
|
||
|
void *BLI_task_pool_userdata(TaskPool *pool)
|
||
|
{
|
||
|
return pool->userdata;
|
||
|
}
|
||
|
|
||
|
ThreadMutex *BLI_task_pool_user_mutex(TaskPool *pool)
|
||
|
{
|
||
|
return &pool->user_mutex;
|
||
|
}
|
||
|
|
||
|
int BLI_task_pool_creator_thread_id(TaskPool *pool)
|
||
|
{
|
||
|
return pool->thread_id;
|
||
|
}
|
||
|
|
||
|
void BLI_task_pool_delayed_push_begin(TaskPool *pool, int thread_id)
|
||
|
{
|
||
|
if (task_can_use_local_queues(pool, thread_id)) {
|
||
|
ASSERT_THREAD_ID(pool->scheduler, thread_id);
|
||
|
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
||
|
tls->do_delayed_push = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void BLI_task_pool_delayed_push_end(TaskPool *pool, int thread_id)
|
||
|
{
|
||
|
if (task_can_use_local_queues(pool, thread_id)) {
|
||
|
ASSERT_THREAD_ID(pool->scheduler, thread_id);
|
||
|
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
||
|
BLI_assert(tls->do_delayed_push);
|
||
|
task_scheduler_push_all(pool->scheduler, pool, tls->delayed_queue, tls->num_delayed_queue);
|
||
|
tls->do_delayed_push = false;
|
||
|
tls->num_delayed_queue = 0;
|
||
|
}
|
||
|
}
|