This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/draw/engines/eevee/eevee_depth_of_field.c

265 lines
9.7 KiB
C
Raw Normal View History

/*
* Copyright 2016, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Blender Institute
*
*/
/** \file eevee_depth_of_field.c
* \ingroup draw_engine
*
* Depth of field post process effect.
*/
#include "DRW_render.h"
#include "BLI_dynstr.h"
#include "BLI_rand.h"
#include "DNA_anim_types.h"
#include "DNA_camera_types.h"
2018-02-07 11:18:50 +11:00
#include "DNA_object_force_types.h"
#include "DNA_screen_types.h"
#include "DNA_view3d_types.h"
#include "DNA_world_types.h"
#include "BKE_global.h" /* for G.debug_value */
#include "BKE_camera.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_animsys.h"
#include "BKE_screen.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_query.h"
#include "eevee_private.h"
#include "GPU_extensions.h"
#include "GPU_framebuffer.h"
#include "GPU_texture.h"
#include "ED_screen.h"
static struct {
/* Depth Of Field */
struct GPUShader *dof_downsample_sh;
struct GPUShader *dof_scatter_sh;
struct GPUShader *dof_resolve_sh;
} e_data = {NULL}; /* Engine data */
extern char datatoc_effect_dof_vert_glsl[];
extern char datatoc_effect_dof_frag_glsl[];
static void eevee_create_shader_depth_of_field(void)
{
e_data.dof_downsample_sh = DRW_shader_create_fullscreen(
datatoc_effect_dof_frag_glsl, "#define STEP_DOWNSAMPLE\n");
e_data.dof_scatter_sh = DRW_shader_create(
datatoc_effect_dof_vert_glsl, NULL,
datatoc_effect_dof_frag_glsl, "#define STEP_SCATTER\n");
e_data.dof_resolve_sh = DRW_shader_create_fullscreen(
datatoc_effect_dof_frag_glsl, "#define STEP_RESOLVE\n");
}
int EEVEE_depth_of_field_init(EEVEE_ViewLayerData *UNUSED(sldata), EEVEE_Data *vedata, Object *camera)
{
EEVEE_StorageList *stl = vedata->stl;
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_EffectsInfo *effects = stl->effects;
const DRWContextState *draw_ctx = DRW_context_state_get();
const Scene *scene_eval = DEG_get_evaluated_scene(draw_ctx->depsgraph);
if (scene_eval->eevee.flag & SCE_EEVEE_DOF_ENABLED) {
RegionView3D *rv3d = draw_ctx->rv3d;
if (!e_data.dof_downsample_sh) {
eevee_create_shader_depth_of_field();
}
if (camera) {
const float *viewport_size = DRW_viewport_size_get();
Camera *cam = (Camera *)camera->data;
/* Retreive Near and Far distance */
effects->dof_near_far[0] = -cam->clipsta;
effects->dof_near_far[1] = -cam->clipend;
int buffer_size[2] = {(int)viewport_size[0] / 2, (int)viewport_size[1] / 2};
effects->dof_down_near = DRW_texture_pool_query_2D(buffer_size[0], buffer_size[1], GPU_R11F_G11F_B10F,
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
&draw_engine_eevee_type);
effects->dof_down_far = DRW_texture_pool_query_2D(buffer_size[0], buffer_size[1], GPU_R11F_G11F_B10F,
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
&draw_engine_eevee_type);
effects->dof_coc = DRW_texture_pool_query_2D(buffer_size[0], buffer_size[1], GPU_RG16F,
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
&draw_engine_eevee_type);
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
GPU_framebuffer_ensure_config(&fbl->dof_down_fb, {
GPU_ATTACHMENT_NONE,
GPU_ATTACHMENT_TEXTURE(effects->dof_down_near),
GPU_ATTACHMENT_TEXTURE(effects->dof_down_far),
GPU_ATTACHMENT_TEXTURE(effects->dof_coc)
});
/* Go full 32bits for rendering and reduce the color artifacts. */
GPUTextureFormat fb_format = DRW_state_is_image_render() ? GPU_RGBA32F : GPU_RGBA16F;
effects->dof_blur = DRW_texture_pool_query_2D(buffer_size[0] * 2, buffer_size[1], fb_format,
&draw_engine_eevee_type);
GPU_framebuffer_ensure_config(&fbl->dof_scatter_fb, {
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
GPU_ATTACHMENT_NONE,
GPU_ATTACHMENT_TEXTURE(effects->dof_blur),
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
});
/* Parameters */
/* TODO UI Options */
float fstop = cam->gpu_dof.fstop;
float blades = cam->gpu_dof.num_blades;
float rotation = cam->gpu_dof.rotation;
float ratio = 1.0f / cam->gpu_dof.ratio;
float sensor = BKE_camera_sensor_size(cam->sensor_fit, cam->sensor_x, cam->sensor_y);
float focus_dist = BKE_camera_object_dof_distance(camera);
float focal_len = cam->lens;
/* this is factor that converts to the scene scale. focal length and sensor are expressed in mm
* unit.scale_length is how many meters per blender unit we have. We want to convert to blender units though
* because the shader reads coordinates in world space, which is in blender units.
* Note however that focus_distance is already in blender units and shall not be scaled here (see T48157). */
float scale = (scene_eval->unit.system) ? scene_eval->unit.scale_length : 1.0f;
float scale_camera = 0.001f / scale;
/* we want radius here for the aperture number */
float aperture = 0.5f * scale_camera * focal_len / fstop;
float focal_len_scaled = scale_camera * focal_len;
float sensor_scaled = scale_camera * sensor;
if (rv3d != NULL) {
sensor_scaled *= rv3d->viewcamtexcofac[0];
}
effects->dof_params[0] = aperture * fabsf(focal_len_scaled / (focus_dist - focal_len_scaled));
effects->dof_params[1] = -focus_dist;
effects->dof_params[2] = viewport_size[0] / sensor_scaled;
effects->dof_bokeh[0] = rotation;
effects->dof_bokeh[1] = ratio;
effects->dof_bokeh[2] = scene_eval->eevee.bokeh_max_size;
/* Precompute values to save instructions in fragment shader. */
effects->dof_bokeh_sides[0] = blades;
effects->dof_bokeh_sides[1] = 2.0f * M_PI / blades;
effects->dof_bokeh_sides[2] = blades / (2.0f * M_PI);
effects->dof_bokeh_sides[3] = cosf(M_PI / blades);
return EFFECT_DOF | EFFECT_POST_BUFFER;
}
}
/* Cleanup to release memory */
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
GPU_FRAMEBUFFER_FREE_SAFE(fbl->dof_down_fb);
GPU_FRAMEBUFFER_FREE_SAFE(fbl->dof_scatter_fb);
return 0;
}
void EEVEE_depth_of_field_cache_init(EEVEE_ViewLayerData *UNUSED(sldata), EEVEE_Data *vedata)
{
EEVEE_PassList *psl = vedata->psl;
EEVEE_StorageList *stl = vedata->stl;
EEVEE_EffectsInfo *effects = stl->effects;
DefaultTextureList *dtxl = DRW_viewport_texture_list_get();
if ((effects->enabled_effects & EFFECT_DOF) != 0) {
/** Depth of Field algorithm
*
* Overview :
* - Downsample the color buffer into 2 buffers weighted with
* CoC values. Also output CoC into a texture.
* - Shoot quads for every pixel and expand it depending on the CoC.
* Do one pass for near Dof and one pass for far Dof.
* - Finally composite the 2 blurred buffers with the original render.
**/
DRWShadingGroup *grp;
struct Gwn_Batch *quad = DRW_cache_fullscreen_quad_get();
psl->dof_down = DRW_pass_create("DoF Downsample", DRW_STATE_WRITE_COLOR);
grp = DRW_shgroup_create(e_data.dof_downsample_sh, psl->dof_down);
DRW_shgroup_uniform_texture_ref(grp, "colorBuffer", &effects->source_buffer);
DRW_shgroup_uniform_texture_ref(grp, "depthBuffer", &dtxl->depth);
DRW_shgroup_uniform_vec2(grp, "nearFar", effects->dof_near_far, 1);
DRW_shgroup_uniform_vec3(grp, "dofParams", effects->dof_params, 1);
DRW_shgroup_call_add(grp, quad, NULL);
psl->dof_scatter = DRW_pass_create("DoF Scatter", DRW_STATE_WRITE_COLOR | DRW_STATE_ADDITIVE_FULL);
/* This create an empty batch of N triangles to be positioned
* by the vertex shader 0.4ms against 6ms with instancing */
const float *viewport_size = DRW_viewport_size_get();
const int sprite_len = ((int)viewport_size[0] / 2) * ((int)viewport_size[1] / 2); /* brackets matters */
grp = DRW_shgroup_empty_tri_batch_create(e_data.dof_scatter_sh, psl->dof_scatter, sprite_len);
DRW_shgroup_uniform_texture_ref(grp, "nearBuffer", &effects->dof_down_near);
DRW_shgroup_uniform_texture_ref(grp, "farBuffer", &effects->dof_down_far);
DRW_shgroup_uniform_texture_ref(grp, "cocBuffer", &effects->dof_coc);
DRW_shgroup_uniform_vec4(grp, "bokehParams", effects->dof_bokeh, 2);
psl->dof_resolve = DRW_pass_create("DoF Resolve", DRW_STATE_WRITE_COLOR);
grp = DRW_shgroup_create(e_data.dof_resolve_sh, psl->dof_resolve);
DRW_shgroup_uniform_texture_ref(grp, "scatterBuffer", &effects->dof_blur);
DRW_shgroup_uniform_texture_ref(grp, "colorBuffer", &effects->source_buffer);
DRW_shgroup_uniform_texture_ref(grp, "depthBuffer", &dtxl->depth);
DRW_shgroup_uniform_vec2(grp, "nearFar", effects->dof_near_far, 1);
DRW_shgroup_uniform_vec3(grp, "dofParams", effects->dof_params, 1);
DRW_shgroup_call_add(grp, quad, NULL);
}
}
void EEVEE_depth_of_field_draw(EEVEE_Data *vedata)
{
EEVEE_PassList *psl = vedata->psl;
EEVEE_TextureList *txl = vedata->txl;
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_StorageList *stl = vedata->stl;
EEVEE_EffectsInfo *effects = stl->effects;
/* Depth Of Field */
if ((effects->enabled_effects & EFFECT_DOF) != 0) {
float clear_col[4] = {0.0f, 0.0f, 0.0f, 0.0f};
/* Downsample */
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
GPU_framebuffer_bind(fbl->dof_down_fb);
DRW_draw_pass(psl->dof_down);
/* Scatter */
GPU_framebuffer_bind(fbl->dof_scatter_fb);
GPU_framebuffer_clear_color(fbl->dof_scatter_fb, clear_col);
DRW_draw_pass(psl->dof_scatter);
/* Resolve */
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
GPU_framebuffer_bind(effects->target_buffer);
DRW_draw_pass(psl->dof_resolve);
SWAP_BUFFERS();
}
}
void EEVEE_depth_of_field_free(void)
{
DRW_SHADER_FREE_SAFE(e_data.dof_downsample_sh);
DRW_SHADER_FREE_SAFE(e_data.dof_scatter_sh);
DRW_SHADER_FREE_SAFE(e_data.dof_resolve_sh);
}