This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/modifiers/intern/MOD_solidify.c

668 lines
19 KiB
C
Raw Normal View History

/*
2010-04-11 23:20:03 +00:00
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2005 by the Blender Foundation.
* All rights reserved.
*
* Contributor(s): Daniel Dunbar
* Ton Roosendaal,
* Ben Batt,
* Brecht Van Lommel,
* Campbell Barton
*
* ***** END GPL LICENSE BLOCK *****
*
*/
#include "DNA_meshdata_types.h"
#include "BLI_math.h"
#include "BLI_edgehash.h"
#include "BLI_utildefines.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_mesh.h"
#include "BKE_particle.h"
#include "BKE_deform.h"
#include "MOD_modifiertypes.h"
2010-04-12 01:09:59 +00:00
#include "MEM_guardedalloc.h"
typedef struct EdgeFaceRef {
int f1; /* init as -1 */
int f2;
} EdgeFaceRef;
static void dm_calc_normal(DerivedMesh *dm, float (*temp_nors)[3])
{
int i, numVerts, numEdges, numFaces;
MFace *mface, *mf;
MVert *mvert, *mv;
float (*face_nors)[3];
float *f_no;
int calc_face_nors= 0;
numVerts = dm->getNumVerts(dm);
numEdges = dm->getNumEdges(dm);
numFaces = dm->getNumFaces(dm);
mface = dm->getFaceArray(dm);
mvert = dm->getVertArray(dm);
/* we don't want to overwrite any referenced layers */
/*
Dosnt work here!
mv = CustomData_duplicate_referenced_layer(&dm->vertData, CD_MVERT);
cddm->mvert = mv;
*/
face_nors = CustomData_get_layer(&dm->faceData, CD_NORMAL);
if(!face_nors) {
calc_face_nors = 1;
face_nors = CustomData_add_layer(&dm->faceData, CD_NORMAL, CD_CALLOC, NULL, numFaces);
}
mv = mvert;
mf = mface;
{
EdgeHash *edge_hash = BLI_edgehash_new();
EdgeHashIterator *edge_iter;
int edge_ref_count = 0;
int ed_v1, ed_v2; /* use when getting the key */
EdgeFaceRef *edge_ref_array = MEM_callocN(numEdges * sizeof(EdgeFaceRef), "Edge Connectivity");
EdgeFaceRef *edge_ref;
float edge_normal[3];
/* This function adds an edge hash if its not there, and adds the face index */
#define NOCALC_EDGEWEIGHT_ADD_EDGEREF_FACE(EDV1, EDV2); \
edge_ref = (EdgeFaceRef *)BLI_edgehash_lookup(edge_hash, EDV1, EDV2); \
if (!edge_ref) { \
edge_ref = &edge_ref_array[edge_ref_count]; edge_ref_count++; \
edge_ref->f1=i; \
edge_ref->f2=-1; \
BLI_edgehash_insert(edge_hash, EDV1, EDV2, edge_ref); \
} else { \
edge_ref->f2=i; \
}
for(i = 0; i < numFaces; i++, mf++) {
f_no = face_nors[i];
if(mf->v4) {
if(calc_face_nors)
normal_quad_v3(f_no, mv[mf->v1].co, mv[mf->v2].co, mv[mf->v3].co, mv[mf->v4].co);
NOCALC_EDGEWEIGHT_ADD_EDGEREF_FACE(mf->v1, mf->v2);
NOCALC_EDGEWEIGHT_ADD_EDGEREF_FACE(mf->v2, mf->v3);
NOCALC_EDGEWEIGHT_ADD_EDGEREF_FACE(mf->v3, mf->v4);
NOCALC_EDGEWEIGHT_ADD_EDGEREF_FACE(mf->v4, mf->v1);
} else {
if(calc_face_nors)
normal_tri_v3(f_no, mv[mf->v1].co, mv[mf->v2].co, mv[mf->v3].co);
NOCALC_EDGEWEIGHT_ADD_EDGEREF_FACE(mf->v1, mf->v2);
NOCALC_EDGEWEIGHT_ADD_EDGEREF_FACE(mf->v2, mf->v3);
NOCALC_EDGEWEIGHT_ADD_EDGEREF_FACE(mf->v3, mf->v1);
}
}
for(edge_iter = BLI_edgehashIterator_new(edge_hash); !BLI_edgehashIterator_isDone(edge_iter); BLI_edgehashIterator_step(edge_iter)) {
/* Get the edge vert indicies, and edge value (the face indicies that use it)*/
BLI_edgehashIterator_getKey(edge_iter, (int*)&ed_v1, (int*)&ed_v2);
edge_ref = BLI_edgehashIterator_getValue(edge_iter);
if (edge_ref->f2 != -1) {
/* We have 2 faces using this edge, calculate the edges normal
* using the angle between the 2 faces as a weighting */
add_v3_v3v3(edge_normal, face_nors[edge_ref->f1], face_nors[edge_ref->f2]);
normalize_v3(edge_normal);
mul_v3_fl(edge_normal, angle_normalized_v3v3(face_nors[edge_ref->f1], face_nors[edge_ref->f2]));
} else {
/* only one face attached to that edge */
/* an edge without another attached- the weight on this is
* undefined, M_PI/2 is 90d in radians and that seems good enough */
mul_v3_v3fl(edge_normal, face_nors[edge_ref->f1], M_PI/2);
}
add_v3_v3(temp_nors[ed_v1], edge_normal);
add_v3_v3(temp_nors[ed_v2], edge_normal);
}
BLI_edgehashIterator_free(edge_iter);
BLI_edgehash_free(edge_hash, NULL);
MEM_freeN(edge_ref_array);
}
/* normalize vertex normals and assign */
for(i = 0; i < numVerts; i++, mv++) {
if(normalize_v3(temp_nors[i]) == 0.0f) {
normal_short_to_float_v3(temp_nors[i], mv->no);
}
}
}
static void initData(ModifierData *md)
{
SolidifyModifierData *smd = (SolidifyModifierData*) md;
smd->offset = 0.01f;
smd->offset_fac = -1.0f;
smd->flag = MOD_SOLIDIFY_RIM;
}
static void copyData(ModifierData *md, ModifierData *target)
{
SolidifyModifierData *smd = (SolidifyModifierData*) md;
SolidifyModifierData *tsmd = (SolidifyModifierData*) target;
tsmd->offset = smd->offset;
tsmd->offset_fac = smd->offset_fac;
tsmd->crease_inner = smd->crease_inner;
tsmd->crease_outer = smd->crease_outer;
tsmd->crease_rim = smd->crease_rim;
tsmd->flag = smd->flag;
strcpy(tsmd->defgrp_name, smd->defgrp_name);
}
static CustomDataMask requiredDataMask(Object *UNUSED(ob), ModifierData *md)
{
SolidifyModifierData *smd = (SolidifyModifierData*) md;
CustomDataMask dataMask = 0;
/* ask for vertexgroups if we need them */
if(smd->defgrp_name[0]) dataMask |= CD_MASK_MDEFORMVERT;
return dataMask;
}
static DerivedMesh *applyModifier(ModifierData *md, Object *ob,
DerivedMesh *dm,
int UNUSED(useRenderParams),
int UNUSED(isFinalCalc))
{
int i;
DerivedMesh *result;
const SolidifyModifierData *smd = (SolidifyModifierData*) md;
MFace *mf, *mface, *orig_mface;
MEdge *ed, *medge, *orig_medge;
MVert *mv, *mvert, *orig_mvert;
const int numVerts = dm->getNumVerts(dm);
const int numEdges = dm->getNumEdges(dm);
const int numFaces = dm->getNumFaces(dm);
/* use for edges */
int *new_vert_arr= NULL;
int newFaces = 0;
int *new_edge_arr= NULL;
int newEdges = 0;
int *edge_users= NULL;
char *edge_order= NULL;
float (*vert_nors)[3]= NULL;
float const ofs_orig= - (((-smd->offset_fac + 1.0f) * 0.5f) * smd->offset);
float const ofs_new= smd->offset - (((-smd->offset_fac + 1.0f) * 0.5f) * smd->offset);
/* weights */
MDeformVert *dvert= NULL, *dv= NULL;
const int defgrp_invert = ((smd->flag & MOD_SOLIDIFY_VGROUP_INV) != 0);
const int defgrp_index= defgroup_name_index(ob, smd->defgrp_name);
if (defgrp_index >= 0)
dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
orig_mface = dm->getFaceArray(dm);
orig_medge = dm->getEdgeArray(dm);
orig_mvert = dm->getVertArray(dm);
if(smd->flag & MOD_SOLIDIFY_RIM) {
EdgeHash *edgehash = BLI_edgehash_new();
EdgeHashIterator *ehi;
int v1, v2;
int eidx;
for(i=0, mv=orig_mvert; i<numVerts; i++, mv++) {
mv->flag &= ~ME_VERT_TMP_TAG;
}
for(i=0, ed=orig_medge; i<numEdges; i++, ed++) {
BLI_edgehash_insert(edgehash, ed->v1, ed->v2, SET_INT_IN_POINTER(i));
}
#define INVALID_UNUSED -1
#define INVALID_PAIR -2
#define ADD_EDGE_USER(_v1, _v2, edge_ord) \
eidx= GET_INT_FROM_POINTER(BLI_edgehash_lookup(edgehash, _v1, _v2)); \
if(edge_users[eidx] == INVALID_UNUSED) { \
ed= orig_medge + eidx; \
edge_users[eidx]= (_v1 < _v2) == (ed->v1 < ed->v2) ? i:(i+numFaces); \
edge_order[eidx]= edge_ord; \
} else { \
edge_users[eidx]= INVALID_PAIR; \
} \
edge_users= MEM_mallocN(sizeof(int) * numEdges, "solid_mod edges");
edge_order= MEM_mallocN(sizeof(char) * numEdges, "solid_mod eorder");
memset(edge_users, INVALID_UNUSED, sizeof(int) * numEdges);
for(i=0, mf=orig_mface; i<numFaces; i++, mf++) {
if(mf->v4) {
ADD_EDGE_USER(mf->v1, mf->v2, 0);
ADD_EDGE_USER(mf->v2, mf->v3, 1);
ADD_EDGE_USER(mf->v3, mf->v4, 2);
ADD_EDGE_USER(mf->v4, mf->v1, 3);
}
else {
ADD_EDGE_USER(mf->v1, mf->v2, 0);
ADD_EDGE_USER(mf->v2, mf->v3, 1);
ADD_EDGE_USER(mf->v3, mf->v1, 2);
}
}
#undef ADD_EDGE_USER
#undef INVALID_UNUSED
#undef INVALID_PAIR
new_edge_arr= MEM_callocN(sizeof(int) * numEdges, "solid_mod arr");
ehi= BLI_edgehashIterator_new(edgehash);
for(; !BLI_edgehashIterator_isDone(ehi); BLI_edgehashIterator_step(ehi)) {
int eidx= GET_INT_FROM_POINTER(BLI_edgehashIterator_getValue(ehi));
if(edge_users[eidx] >= 0) {
BLI_edgehashIterator_getKey(ehi, &v1, &v2);
orig_mvert[v1].flag |= ME_VERT_TMP_TAG;
orig_mvert[v2].flag |= ME_VERT_TMP_TAG;
new_edge_arr[newFaces]= eidx;
newFaces++;
}
}
BLI_edgehashIterator_free(ehi);
new_vert_arr= MEM_callocN(sizeof(int) * numVerts, "solid_mod new_varr");
for(i=0, mv=orig_mvert; i<numVerts; i++, mv++) {
if(mv->flag & ME_VERT_TMP_TAG) {
new_vert_arr[newEdges] = i;
newEdges++;
mv->flag &= ~ME_VERT_TMP_TAG;
}
}
BLI_edgehash_free(edgehash, NULL);
}
if(smd->flag & MOD_SOLIDIFY_NORMAL_CALC) {
vert_nors= MEM_callocN(sizeof(float) * numVerts * 3, "mod_solid_vno_hq");
dm_calc_normal(dm, vert_nors);
}
result = CDDM_from_template(dm, numVerts * 2, (numEdges * 2) + newEdges, (numFaces * 2) + newFaces);
mface = result->getFaceArray(result);
medge = result->getEdgeArray(result);
mvert = result->getVertArray(result);
DM_copy_face_data(dm, result, 0, 0, numFaces);
DM_copy_face_data(dm, result, 0, numFaces, numFaces);
DM_copy_edge_data(dm, result, 0, 0, numEdges);
DM_copy_edge_data(dm, result, 0, numEdges, numEdges);
DM_copy_vert_data(dm, result, 0, 0, numVerts);
DM_copy_vert_data(dm, result, 0, numVerts, numVerts);
{
static int corner_indices[4] = {2, 1, 0, 3};
int is_quad;
for(i=0, mf=mface+numFaces; i<numFaces; i++, mf++) {
mf->v1 += numVerts;
mf->v2 += numVerts;
mf->v3 += numVerts;
if(mf->v4)
mf->v4 += numVerts;
/* Flip face normal */
{
is_quad = mf->v4;
SWAP(int, mf->v1, mf->v3);
DM_swap_face_data(result, i+numFaces, corner_indices);
test_index_face(mf, &result->faceData, numFaces, is_quad ? 4:3);
}
}
}
for(i=0, ed=medge+numEdges; i<numEdges; i++, ed++) {
ed->v1 += numVerts;
ed->v2 += numVerts;
}
/* note, copied vertex layers dont have flipped normals yet. do this after applying offset */
if((smd->flag & MOD_SOLIDIFY_EVEN) == 0) {
/* no even thickness, very simple */
float scalar_short;
float scalar_short_vgroup;
if(ofs_new != 0.0f) {
scalar_short= scalar_short_vgroup= ofs_new / 32767.0f;
mv= mvert + ((ofs_new >= ofs_orig) ? 0 : numVerts);
dv= dvert;
for(i=0; i<numVerts; i++, mv++) {
if(dv) {
if(defgrp_invert) scalar_short_vgroup = scalar_short * (1.0f - defvert_find_weight(dv, defgrp_index));
else scalar_short_vgroup = scalar_short * defvert_find_weight(dv, defgrp_index);
dv++;
}
VECADDFAC(mv->co, mv->co, mv->no, scalar_short_vgroup);
}
}
if(ofs_orig != 0.0f) {
scalar_short= scalar_short_vgroup= ofs_orig / 32767.0f;
mv= mvert + ((ofs_new >= ofs_orig) ? numVerts : 0); /* same as above but swapped, intentional use of 'ofs_new' */
dv= dvert;
for(i=0; i<numVerts; i++, mv++) {
if(dv) {
if(defgrp_invert) scalar_short_vgroup = scalar_short * (1.0f - defvert_find_weight(dv, defgrp_index));
else scalar_short_vgroup = scalar_short * defvert_find_weight(dv, defgrp_index);
dv++;
}
VECADDFAC(mv->co, mv->co, mv->no, scalar_short_vgroup);
}
}
}
else {
/* make a face normal layer if not present */
float (*face_nors)[3];
int face_nors_calc= 0;
/* same as EM_solidify() in editmesh_lib.c */
float *vert_angles= MEM_callocN(sizeof(float) * numVerts * 2, "mod_solid_pair"); /* 2 in 1 */
float *vert_accum= vert_angles + numVerts;
float face_angles[4];
int i, j, vidx;
face_nors = CustomData_get_layer(&dm->faceData, CD_NORMAL);
if(!face_nors) {
face_nors = CustomData_add_layer(&dm->faceData, CD_NORMAL, CD_CALLOC, NULL, dm->numFaceData);
face_nors_calc= 1;
}
if(vert_nors==NULL) {
vert_nors= MEM_mallocN(sizeof(float) * numVerts * 3, "mod_solid_vno");
for(i=0, mv=mvert; i<numVerts; i++, mv++) {
normal_short_to_float_v3(vert_nors[i], mv->no);
}
}
for(i=0, mf=mface; i<numFaces; i++, mf++) {
/* just added, calc the normal */
if(face_nors_calc) {
if(mf->v4)
normal_quad_v3(face_nors[i], mvert[mf->v1].co, mvert[mf->v2].co, mvert[mf->v3].co, mvert[mf->v4].co);
else
normal_tri_v3(face_nors[i] , mvert[mf->v1].co, mvert[mf->v2].co, mvert[mf->v3].co);
}
if(mf->v4) {
angle_quad_v3(face_angles, mvert[mf->v1].co, mvert[mf->v2].co, mvert[mf->v3].co, mvert[mf->v4].co);
j= 3;
}
else {
angle_tri_v3(face_angles, mvert[mf->v1].co, mvert[mf->v2].co, mvert[mf->v3].co);
j= 2;
}
do {
vidx = *(&mf->v1 + j);
vert_accum[vidx] += face_angles[j];
vert_angles[vidx]+= shell_angle_to_dist(angle_normalized_v3v3(vert_nors[vidx], face_nors[i])) * face_angles[j];
} while(j--);
}
/* vertex group support */
if(dvert) {
dv= dvert;
if(defgrp_invert) {
for(i=0; i<numVerts; i++, dv++) {
vert_angles[i] *= (1.0f - defvert_find_weight(dv, defgrp_index));
}
}
else {
for(i=0; i<numVerts; i++, dv++) {
vert_angles[i] *= defvert_find_weight(dv, defgrp_index);
}
}
}
if(ofs_new) {
mv= mvert + ((ofs_new >= ofs_orig) ? 0 : numVerts);
for(i=0; i<numVerts; i++, mv++) {
if(vert_accum[i]) { /* zero if unselected */
madd_v3_v3fl(mv->co, vert_nors[i], ofs_new * (vert_angles[i] / vert_accum[i]));
}
}
}
if(ofs_orig) {
mv= mvert + ((ofs_new >= ofs_orig) ? numVerts : 0); /* same as above but swapped, intentional use of 'ofs_new' */
for(i=0; i<numVerts; i++, mv++) {
if(vert_accum[i]) { /* zero if unselected */
madd_v3_v3fl(mv->co, vert_nors[i], ofs_orig * (vert_angles[i] / vert_accum[i]));
}
}
}
MEM_freeN(vert_angles);
}
if(vert_nors)
MEM_freeN(vert_nors);
/* flip vertex normals for copied verts */
mv= mvert + numVerts;
for(i=0; i<numVerts; i++, mv++) {
mv->no[0]= -mv->no[0];
mv->no[1]= -mv->no[1];
mv->no[2]= -mv->no[2];
}
if(smd->flag & MOD_SOLIDIFY_RIM) {
/* bugger, need to re-calculate the normals for the new edge faces.
* This could be done in many ways, but probably the quickest way is to calculate the average normals for side faces only.
* Then blend them with the normals of the edge verts.
*
* at the moment its easiest to allocate an entire array for every vertex, even though we only need edge verts - campbell
*/
#define SOLIDIFY_SIDE_NORMALS
#ifdef SOLIDIFY_SIDE_NORMALS
/* annoying to allocate these since we only need the edge verts, */
float (*edge_vert_nos)[3]= MEM_callocN(sizeof(float) * numVerts * 3, "solidify_edge_nos");
float nor[3];
#endif
/* maximum value -1, so we have room to increase */
const short mat_nr_shift= (smd->flag & MOD_SOLIDIFY_RIM_MATERIAL) ? ob->totcol-1 : -1;
const unsigned char crease_rim= smd->crease_rim * 255.0f;
const unsigned char crease_outer= smd->crease_outer * 255.0f;
const unsigned char crease_inner= smd->crease_inner * 255.0f;
const int edge_indices[4][4] = {
{1, 0, 0, 1},
{2, 1, 1, 2},
{3, 2, 2, 3},
{0, 3, 3, 0}};
/* add faces & edges */
ed= medge + (numEdges * 2);
for(i=0; i<newEdges; i++, ed++) {
ed->v1= new_vert_arr[i];
ed->v2= new_vert_arr[i] + numVerts;
ed->flag |= ME_EDGEDRAW;
if(crease_rim)
ed->crease= crease_rim;
}
/* faces */
mf= mface + (numFaces * 2);
for(i=0; i<newFaces; i++, mf++) {
int eidx= new_edge_arr[i];
int fidx= edge_users[eidx];
int flip;
if(fidx >= numFaces) {
fidx -= numFaces;
flip= 1;
}
else {
flip= 0;
}
ed= medge + eidx;
/* copy most of the face settings */
DM_copy_face_data(dm, result, fidx, (numFaces * 2) + i, 1);
if(flip) {
DM_swap_face_data(result, (numFaces * 2) + i, edge_indices[edge_order[eidx]]);
mf->v1= ed->v1;
mf->v2= ed->v2;
mf->v3= ed->v2 + numVerts;
mf->v4= ed->v1 + numVerts;
}
else {
DM_swap_face_data(result, (numFaces * 2) + i, edge_indices[edge_order[eidx]]);
mf->v1= ed->v2;
mf->v2= ed->v1;
mf->v3= ed->v1 + numVerts;
mf->v4= ed->v2 + numVerts;
}
/* use the next material index if option enabled */
if(mf->mat_nr < mat_nr_shift)
mf->mat_nr++;
if(crease_outer)
ed->crease= crease_outer;
if(crease_inner) {
medge[numEdges + eidx].crease= crease_inner;
}
#ifdef SOLIDIFY_SIDE_NORMALS
normal_quad_v3(nor, mvert[mf->v1].co, mvert[mf->v2].co, mvert[mf->v3].co, mvert[mf->v4].co);
add_v3_v3(edge_vert_nos[ed->v1], nor);
add_v3_v3(edge_vert_nos[ed->v2], nor);
#endif
}
#ifdef SOLIDIFY_SIDE_NORMALS
ed= medge + (numEdges * 2);
for(i=0; i<newEdges; i++, ed++) {
float nor_cpy[3];
short *nor_short;
int j;
/* note, only the first vertex (lower half of the index) is calculated */
normalize_v3_v3(nor_cpy, edge_vert_nos[ed->v1]);
for(j=0; j<2; j++) { /* loop over both verts of the edge */
nor_short= mvert[*(&ed->v1 + j)].no;
normal_short_to_float_v3(nor, nor_short);
add_v3_v3(nor, nor_cpy);
normalize_v3(nor);
normal_float_to_short_v3(nor_short, nor);
}
}
MEM_freeN(edge_vert_nos);
#endif
MEM_freeN(new_vert_arr);
MEM_freeN(new_edge_arr);
MEM_freeN(edge_users);
MEM_freeN(edge_order);
}
return result;
}
#undef SOLIDIFY_SIDE_NORMALS
static DerivedMesh *applyModifierEM(ModifierData *md,
Object *ob,
struct EditMesh *UNUSED(editData),
DerivedMesh *derivedData)
{
return applyModifier(md, ob, derivedData, 0, 1);
}
ModifierTypeInfo modifierType_Solidify = {
/* name */ "Solidify",
/* structName */ "SolidifyModifierData",
/* structSize */ sizeof(SolidifyModifierData),
/* type */ eModifierTypeType_Constructive,
/* flags */ eModifierTypeFlag_AcceptsMesh
| eModifierTypeFlag_AcceptsCVs
| eModifierTypeFlag_SupportsMapping
| eModifierTypeFlag_SupportsEditmode
| eModifierTypeFlag_EnableInEditmode,
/* copyData */ copyData,
/* deformVerts */ 0,
/* deformVertsEM */ 0,
/* deformMatricesEM */ 0,
/* applyModifier */ applyModifier,
/* applyModifierEM */ applyModifierEM,
/* initData */ initData,
/* requiredDataMask */ requiredDataMask,
/* freeData */ 0,
/* isDisabled */ 0,
/* updateDepgraph */ 0,
/* dependsOnTime */ 0,
/* dependsOnNormals */ 0,
/* foreachObjectLink */ 0,
/* foreachIDLink */ 0,
};