This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/blender/blender_sync.h

163 lines
5.1 KiB
C++
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __BLENDER_SYNC_H__
#define __BLENDER_SYNC_H__
#include "MEM_guardedalloc.h"
#include "RNA_types.h"
#include "RNA_access.h"
#include "RNA_blender_cpp.h"
#include "blender_util.h"
#include "scene.h"
#include "session.h"
#include "util_map.h"
#include "util_set.h"
#include "util_transform.h"
#include "util_vector.h"
CCL_NAMESPACE_BEGIN
class Background;
class Camera;
class Film;
class Light;
class Mesh;
class Object;
class ParticleSystem;
class Scene;
class Shader;
class ShaderGraph;
class ShaderNode;
class BlenderSync {
public:
BlenderSync(BL::RenderEngine b_engine_, BL::BlendData b_data, BL::Scene b_scene, Scene *scene_, bool preview_, Progress &progress_, bool is_cpu_);
~BlenderSync();
/* sync */
bool sync_recalc();
void sync_data(BL::SpaceView3D b_v3d, BL::Object b_override, void **python_thread_state, const char *layer = 0);
void sync_render_layers(BL::SpaceView3D b_v3d, const char *layer);
void sync_integrator();
void sync_camera(BL::RenderSettings b_render, BL::Object b_override, int width, int height);
void sync_view(BL::SpaceView3D b_v3d, BL::RegionView3D b_rv3d, int width, int height);
Cycles: merging features from tomato branch. === BVH build time optimizations === * BVH building was multithreaded. Not all building is multithreaded, packing and the initial bounding/splitting is still single threaded, but recursive splitting is, which was the main bottleneck. * Object splitting now uses binning rather than sorting of all elements, using code from the Embree raytracer from Intel. http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/ * Other small changes to avoid allocations, pack memory more tightly, avoid some unnecessary operations, ... These optimizations do not work yet when Spatial Splits are enabled, for that more work is needed. There's also other optimizations still needed, in particular for the case of many low poly objects, the packing step and node memory allocation. BVH raytracing time should remain about the same, but BVH build time should be significantly reduced, test here show speedup of about 5x to 10x on a dual core and 5x to 25x on an 8-core machine, depending on the scene. === Threads === Centralized task scheduler for multithreading, which is basically the CPU device threading code wrapped into something reusable. Basic idea is that there is a single TaskScheduler that keeps a pool of threads, one for each core. Other places in the code can then create a TaskPool that they can drop Tasks in to be executed by the scheduler, and wait for them to complete or cancel them early. === Normal ==== Added a Normal output to the texture coordinate node. This currently gives the object space normal, which is the same under object animation. In the future this might become a "generated" normal so it's also stable for deforming objects, but for now it's already useful for non-deforming objects. === Render Layers === Per render layer Samples control, leaving it to 0 will use the common scene setting. Environment pass will now render environment even if film is set to transparent. Exclude Layers" added. Scene layers (all object that influence the render, directly or indirectly) are shared between all render layers. However sometimes it's useful to leave out some object influence for a particular render layer. That's what this option allows you to do. === Filter Glossy === When using a value higher than 0.0, this will blur glossy reflections after blurry bounces, to reduce noise at the cost of accuracy. 1.0 is a good starting value to tweak. Some light paths have a low probability of being found while contributing much light to the pixel. As a result these light paths will be found in some pixels and not in others, causing fireflies. An example of such a difficult path might be a small light that is causing a small specular highlight on a sharp glossy material, which we are seeing through a rough glossy material. With path tracing it is difficult to find the specular highlight, but if we increase the roughness on the material the highlight gets bigger and softer, and so easier to find. Often this blurring will be hardly noticeable, because we are seeing it through a blurry material anyway, but there are also cases where this will lead to a loss of detail in lighting.
2012-04-28 08:53:59 +00:00
int get_layer_samples() { return render_layer.samples; }
int get_layer_bound_samples() { return render_layer.bound_samples; }
/* get parameters */
static SceneParams get_scene_params(BL::Scene b_scene, bool background, bool is_cpu);
static SessionParams get_session_params(BL::RenderEngine b_engine,
BL::UserPreferences b_userpref,
BL::Scene b_scene,
bool background);
static bool get_session_pause(BL::Scene b_scene, bool background);
static BufferParams get_buffer_params(BL::RenderSettings b_render, BL::SpaceView3D b_v3d, BL::RegionView3D b_rv3d, Camera *cam, int width, int height);
private:
/* sync */
void sync_lamps(bool update_all);
void sync_materials(bool update_all);
void sync_objects(BL::SpaceView3D b_v3d, float motion_time = 0.0f);
void sync_motion(BL::SpaceView3D b_v3d, BL::Object b_override, void **python_thread_state);
void sync_film();
void sync_view();
void sync_world(bool update_all);
void sync_shaders();
void sync_curve_settings();
void sync_nodes(Shader *shader, BL::ShaderNodeTree b_ntree);
Mesh *sync_mesh(BL::Object b_ob, bool object_updated, bool hide_tris);
void sync_curves(Mesh *mesh, BL::Mesh b_mesh, BL::Object b_ob, bool motion, int time_index = 0);
Object *sync_object(BL::Object b_parent, int persistent_id[OBJECT_PERSISTENT_ID_SIZE], BL::DupliObject b_dupli_ob,
Transform& tfm, uint layer_flag, float motion_time, bool hide_tris, bool *use_portal);
void sync_light(BL::Object b_parent, int persistent_id[OBJECT_PERSISTENT_ID_SIZE], BL::Object b_ob, Transform& tfm, bool *use_portal);
void sync_background_light(bool use_portal);
void sync_mesh_motion(BL::Object b_ob, Object *object, float motion_time);
void sync_camera_motion(BL::Object b_ob, float motion_time);
/* particles */
bool sync_dupli_particle(BL::Object b_ob, BL::DupliObject b_dup, Object *object);
/* Images. */
void sync_images();
/* util */
void find_shader(BL::ID id, vector<uint>& used_shaders, int default_shader);
bool BKE_object_is_modified(BL::Object b_ob);
bool object_is_mesh(BL::Object b_ob);
bool object_is_light(BL::Object b_ob);
/* variables */
BL::RenderEngine b_engine;
BL::BlendData b_data;
BL::Scene b_scene;
id_map<void*, Shader> shader_map;
id_map<ObjectKey, Object> object_map;
id_map<void*, Mesh> mesh_map;
id_map<ObjectKey, Light> light_map;
id_map<ParticleSystemKey, ParticleSystem> particle_system_map;
set<Mesh*> mesh_synced;
set<Mesh*> mesh_motion_synced;
std::set<float> motion_times;
void *world_map;
bool world_recalc;
Scene *scene;
bool preview;
bool experimental;
bool is_cpu;
struct RenderLayerInfo {
RenderLayerInfo()
: scene_layer(0), layer(0),
holdout_layer(0), exclude_layer(0),
material_override(PointerRNA_NULL),
Cycles: merging features from tomato branch. === BVH build time optimizations === * BVH building was multithreaded. Not all building is multithreaded, packing and the initial bounding/splitting is still single threaded, but recursive splitting is, which was the main bottleneck. * Object splitting now uses binning rather than sorting of all elements, using code from the Embree raytracer from Intel. http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/ * Other small changes to avoid allocations, pack memory more tightly, avoid some unnecessary operations, ... These optimizations do not work yet when Spatial Splits are enabled, for that more work is needed. There's also other optimizations still needed, in particular for the case of many low poly objects, the packing step and node memory allocation. BVH raytracing time should remain about the same, but BVH build time should be significantly reduced, test here show speedup of about 5x to 10x on a dual core and 5x to 25x on an 8-core machine, depending on the scene. === Threads === Centralized task scheduler for multithreading, which is basically the CPU device threading code wrapped into something reusable. Basic idea is that there is a single TaskScheduler that keeps a pool of threads, one for each core. Other places in the code can then create a TaskPool that they can drop Tasks in to be executed by the scheduler, and wait for them to complete or cancel them early. === Normal ==== Added a Normal output to the texture coordinate node. This currently gives the object space normal, which is the same under object animation. In the future this might become a "generated" normal so it's also stable for deforming objects, but for now it's already useful for non-deforming objects. === Render Layers === Per render layer Samples control, leaving it to 0 will use the common scene setting. Environment pass will now render environment even if film is set to transparent. Exclude Layers" added. Scene layers (all object that influence the render, directly or indirectly) are shared between all render layers. However sometimes it's useful to leave out some object influence for a particular render layer. That's what this option allows you to do. === Filter Glossy === When using a value higher than 0.0, this will blur glossy reflections after blurry bounces, to reduce noise at the cost of accuracy. 1.0 is a good starting value to tweak. Some light paths have a low probability of being found while contributing much light to the pixel. As a result these light paths will be found in some pixels and not in others, causing fireflies. An example of such a difficult path might be a small light that is causing a small specular highlight on a sharp glossy material, which we are seeing through a rough glossy material. With path tracing it is difficult to find the specular highlight, but if we increase the roughness on the material the highlight gets bigger and softer, and so easier to find. Often this blurring will be hardly noticeable, because we are seeing it through a blurry material anyway, but there are also cases where this will lead to a loss of detail in lighting.
2012-04-28 08:53:59 +00:00
use_background(true),
use_surfaces(true),
use_hair(true),
use_viewport_visibility(false),
use_localview(false),
samples(0), bound_samples(false)
{}
string name;
uint scene_layer;
uint layer;
uint holdout_layer;
uint exclude_layer;
BL::Material material_override;
bool use_background;
bool use_surfaces;
bool use_hair;
bool use_viewport_visibility;
bool use_localview;
Cycles: merging features from tomato branch. === BVH build time optimizations === * BVH building was multithreaded. Not all building is multithreaded, packing and the initial bounding/splitting is still single threaded, but recursive splitting is, which was the main bottleneck. * Object splitting now uses binning rather than sorting of all elements, using code from the Embree raytracer from Intel. http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/ * Other small changes to avoid allocations, pack memory more tightly, avoid some unnecessary operations, ... These optimizations do not work yet when Spatial Splits are enabled, for that more work is needed. There's also other optimizations still needed, in particular for the case of many low poly objects, the packing step and node memory allocation. BVH raytracing time should remain about the same, but BVH build time should be significantly reduced, test here show speedup of about 5x to 10x on a dual core and 5x to 25x on an 8-core machine, depending on the scene. === Threads === Centralized task scheduler for multithreading, which is basically the CPU device threading code wrapped into something reusable. Basic idea is that there is a single TaskScheduler that keeps a pool of threads, one for each core. Other places in the code can then create a TaskPool that they can drop Tasks in to be executed by the scheduler, and wait for them to complete or cancel them early. === Normal ==== Added a Normal output to the texture coordinate node. This currently gives the object space normal, which is the same under object animation. In the future this might become a "generated" normal so it's also stable for deforming objects, but for now it's already useful for non-deforming objects. === Render Layers === Per render layer Samples control, leaving it to 0 will use the common scene setting. Environment pass will now render environment even if film is set to transparent. Exclude Layers" added. Scene layers (all object that influence the render, directly or indirectly) are shared between all render layers. However sometimes it's useful to leave out some object influence for a particular render layer. That's what this option allows you to do. === Filter Glossy === When using a value higher than 0.0, this will blur glossy reflections after blurry bounces, to reduce noise at the cost of accuracy. 1.0 is a good starting value to tweak. Some light paths have a low probability of being found while contributing much light to the pixel. As a result these light paths will be found in some pixels and not in others, causing fireflies. An example of such a difficult path might be a small light that is causing a small specular highlight on a sharp glossy material, which we are seeing through a rough glossy material. With path tracing it is difficult to find the specular highlight, but if we increase the roughness on the material the highlight gets bigger and softer, and so easier to find. Often this blurring will be hardly noticeable, because we are seeing it through a blurry material anyway, but there are also cases where this will lead to a loss of detail in lighting.
2012-04-28 08:53:59 +00:00
int samples;
bool bound_samples;
} render_layer;
Progress &progress;
};
CCL_NAMESPACE_END
#endif /* __BLENDER_SYNC_H__ */