This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/BLI_vector.hh

669 lines
15 KiB
C++
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef __BLI_VECTOR_HH__
#define __BLI_VECTOR_HH__
2019-09-13 21:12:26 +10:00
/** \file
* \ingroup bli
*
* This vector wraps a dynamically sized array of a specific type. It supports small object
* optimization. That means, when the vector only contains a few elements, no memory allocation is
* performed. Instead, those elements are stored directly in the vector.
*/
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <memory>
#include "BLI_allocator.hh"
#include "BLI_array_ref.hh"
#include "BLI_index_range.hh"
#include "BLI_listbase_wrapper.hh"
#include "BLI_math_base.h"
#include "BLI_memory_utils.hh"
#include "BLI_utildefines.h"
#include "MEM_guardedalloc.h"
namespace BLI {
template<typename T, uint N = 4, typename Allocator = GuardedAllocator> class Vector {
private:
T *m_begin;
T *m_end;
T *m_capacity_end;
Allocator m_allocator;
AlignedBuffer<sizeof(T) * N, alignof(T)> m_small_buffer;
#ifndef NDEBUG
/* Storing size in debug builds, because it makes debugging much easier sometimes. */
uint m_debug_size;
# define UPDATE_VECTOR_SIZE(ptr) (ptr)->m_debug_size = (uint)((ptr)->m_end - (ptr)->m_begin)
#else
# define UPDATE_VECTOR_SIZE(ptr) ((void)0)
#endif
template<typename OtherT, uint OtherN, typename OtherAllocator> friend class Vector;
public:
/**
* Create an empty vector.
* This does not do any memory allocation.
*/
Vector()
{
m_begin = this->small_buffer();
m_end = m_begin;
m_capacity_end = m_begin + N;
UPDATE_VECTOR_SIZE(this);
}
/**
* Create a vector with a specific size.
* The elements will be default initialized.
*/
explicit Vector(uint size) : Vector()
{
this->reserve(size);
this->increase_size_unchecked(size);
for (T *current = m_begin; current != m_end; current++) {
new (current) T();
}
}
/**
* Create a vector filled with a specific value.
*/
Vector(uint size, const T &value) : Vector()
{
this->reserve(size);
this->increase_size_unchecked(size);
BLI::uninitialized_fill_n(m_begin, size, value);
}
/**
* Create a vector from an initializer list.
*/
Vector(std::initializer_list<T> values) : Vector(ArrayRef<T>(values))
{
}
/**
* Create a vector from an array ref.
*/
Vector(ArrayRef<T> values) : Vector()
{
this->reserve(values.size());
this->increase_size_unchecked(values.size());
BLI::uninitialized_copy_n(values.begin(), values.size(), this->begin());
}
/**
* Create a vector from any container. It must be possible to use the container in a range-for
* loop.
*/
template<typename ContainerT> static Vector FromContainer(const ContainerT &container)
{
Vector vector;
for (const auto &value : container) {
vector.append(value);
}
return vector;
}
/**
* Create a vector from a ListBase.
*/
Vector(ListBase &values, bool intrusive_next_and_prev_pointers) : Vector()
{
BLI_assert(intrusive_next_and_prev_pointers);
if (intrusive_next_and_prev_pointers) {
for (T value : IntrusiveListBaseWrapper<typename std::remove_pointer<T>::type>(values)) {
this->append(value);
}
}
}
/**
* Create a copy of another vector.
* The other vector will not be changed.
* If the other vector has less than N elements, no allocation will be made.
*/
Vector(const Vector &other) : m_allocator(other.m_allocator)
{
this->init_copy_from_other_vector(other);
}
template<uint OtherN>
Vector(const Vector<T, OtherN, Allocator> &other) : m_allocator(other.m_allocator)
{
this->init_copy_from_other_vector(other);
}
/**
* Steal the elements from another vector.
* This does not do an allocation.
* The other vector will have zero elements afterwards.
*/
template<uint OtherN>
Vector(Vector<T, OtherN, Allocator> &&other) noexcept : m_allocator(other.m_allocator)
{
uint size = other.size();
if (other.is_small()) {
if (size <= N) {
/* Copy between inline buffers. */
m_begin = this->small_buffer();
m_end = m_begin + size;
m_capacity_end = m_begin + N;
uninitialized_relocate_n(other.m_begin, size, m_begin);
}
else {
/* Copy from inline buffer to newly allocated buffer. */
uint capacity = size;
m_begin = (T *)m_allocator.allocate_aligned(
sizeof(T) * capacity, std::alignment_of<T>::value, __func__);
m_end = m_begin + size;
m_capacity_end = m_begin + capacity;
uninitialized_relocate_n(other.m_begin, size, m_begin);
}
}
else {
/* Steal the pointer. */
m_begin = other.m_begin;
m_end = other.m_end;
m_capacity_end = other.m_capacity_end;
}
other.m_begin = other.small_buffer();
other.m_end = other.m_begin;
other.m_capacity_end = other.m_begin + OtherN;
UPDATE_VECTOR_SIZE(this);
UPDATE_VECTOR_SIZE(&other);
}
~Vector()
{
destruct_n(m_begin, this->size());
if (!this->is_small()) {
m_allocator.deallocate(m_begin);
}
}
operator ArrayRef<T>() const
{
return ArrayRef<T>(m_begin, this->size());
}
operator MutableArrayRef<T>()
{
return MutableArrayRef<T>(m_begin, this->size());
}
ArrayRef<T> as_ref() const
{
return *this;
}
MutableArrayRef<T> as_mutable_ref()
{
return *this;
}
Vector &operator=(const Vector &other)
{
if (this == &other) {
return *this;
}
this->~Vector();
new (this) Vector(other);
return *this;
}
Vector &operator=(Vector &&other)
{
if (this == &other) {
return *this;
}
/* This can fail, when the vector is used to build a recursive data structure.
See https://youtu.be/7Qgd9B1KuMQ?t=840. */
this->~Vector();
new (this) Vector(std::move(other));
return *this;
}
/**
* Make sure that enough memory is allocated to hold size elements.
* This won't necessarily make an allocation when size is small.
* The actual size of the vector does not change.
*/
void reserve(uint size)
{
this->grow(size);
}
/**
* Afterwards the vector has 0 elements, but will still have
* memory to be refilled again.
*/
void clear()
{
destruct_n(m_begin, this->size());
m_end = m_begin;
UPDATE_VECTOR_SIZE(this);
}
/**
* Afterwards the vector has 0 elements and any allocated memory
* will be freed.
*/
void clear_and_make_small()
{
destruct_n(m_begin, this->size());
if (!this->is_small()) {
m_allocator.deallocate(m_begin);
}
m_begin = this->small_buffer();
m_end = m_begin;
m_capacity_end = m_begin + N;
UPDATE_VECTOR_SIZE(this);
}
/**
* Insert a new element at the end of the vector.
* This might cause a reallocation with the capacity is exceeded.
*/
void append(const T &value)
{
this->ensure_space_for_one();
this->append_unchecked(value);
}
void append(T &&value)
{
this->ensure_space_for_one();
this->append_unchecked(std::move(value));
}
uint append_and_get_index(const T &value)
{
uint index = this->size();
this->append(value);
return index;
}
void append_non_duplicates(const T &value)
{
if (!this->contains(value)) {
this->append(value);
}
}
void append_unchecked(const T &value)
{
BLI_assert(m_end < m_capacity_end);
new (m_end) T(value);
m_end++;
UPDATE_VECTOR_SIZE(this);
}
void append_unchecked(T &&value)
{
BLI_assert(m_end < m_capacity_end);
new (m_end) T(std::move(value));
m_end++;
UPDATE_VECTOR_SIZE(this);
}
/**
* Insert the same element n times at the end of the vector.
* This might result in a reallocation internally.
*/
void append_n_times(const T &value, uint n)
{
this->reserve(this->size() + n);
BLI::uninitialized_fill_n(m_end, n, value);
this->increase_size_unchecked(n);
}
void increase_size_unchecked(uint n)
{
BLI_assert(m_end + n <= m_capacity_end);
m_end += n;
UPDATE_VECTOR_SIZE(this);
}
/**
* Copy the elements of another array to the end of this vector.
*/
void extend(ArrayRef<T> array)
{
this->extend(array.begin(), array.size());
}
void extend(const T *start, uint amount)
{
this->reserve(this->size() + amount);
this->extend_unchecked(start, amount);
}
void extend_non_duplicates(ArrayRef<T> array)
{
for (const T &value : array) {
this->append_non_duplicates(value);
}
}
void extend_unchecked(ArrayRef<T> array)
{
this->extend_unchecked(array.begin(), array.size());
}
void extend_unchecked(const T *start, uint amount)
{
BLI_assert(m_begin + amount <= m_capacity_end);
BLI::uninitialized_copy_n(start, amount, m_end);
m_end += amount;
UPDATE_VECTOR_SIZE(this);
}
/**
* Return a reference to the last element in the vector.
* This will assert when the vector is empty.
*/
const T &last() const
{
BLI_assert(this->size() > 0);
return *(m_end - 1);
}
T &last()
{
BLI_assert(this->size() > 0);
return *(m_end - 1);
}
/**
* Replace every element with a new value.
*/
void fill(const T &value)
{
std::fill(m_begin, m_end, value);
}
void fill_indices(ArrayRef<uint> indices, const T &value)
{
MutableArrayRef<T>(*this).fill_indices(indices, value);
}
/**
* Return how many values are currently stored in the vector.
*/
uint size() const
{
BLI_assert(m_debug_size == (uint)(m_end - m_begin));
return (uint)(m_end - m_begin);
}
/**
* Returns true when the vector contains no elements, otherwise false.
*/
bool empty() const
{
return m_begin == m_end;
}
/**
* Deconstructs the last element and decreases the size by one.
* This will assert when the vector is empty.
*/
void remove_last()
{
BLI_assert(!this->empty());
m_end--;
destruct(m_end);
UPDATE_VECTOR_SIZE(this);
}
/**
* Remove the last element from the vector and return it.
*/
T pop_last()
{
BLI_assert(!this->empty());
m_end--;
T value = std::move(*m_end);
destruct(m_end);
UPDATE_VECTOR_SIZE(this);
return value;
}
/**
* Delete any element in the vector.
* The empty space will be filled by the previously last element.
*/
void remove_and_reorder(uint index)
{
BLI_assert(index < this->size());
T *element_to_remove = m_begin + index;
m_end--;
if (element_to_remove < m_end) {
*element_to_remove = std::move(*m_end);
}
destruct(m_end);
UPDATE_VECTOR_SIZE(this);
}
void remove_first_occurrence_and_reorder(const T &value)
{
uint index = this->index(value);
this->remove_and_reorder((uint)index);
}
/**
* Do a linear search to find the value in the vector.
* When found, return the first index, otherwise return -1.
*/
int index_try(const T &value) const
{
for (T *current = m_begin; current != m_end; current++) {
if (*current == value) {
return current - m_begin;
}
}
return -1;
}
/**
* Do a linear search to find the value in the vector.
* When found, return the first index, otherwise fail.
*/
uint index(const T &value) const
{
int index = this->index_try(value);
BLI_assert(index >= 0);
return (uint)index;
}
/**
* Do a linear search to see of the value is in the vector.
* Return true when it exists, otherwise false.
*/
bool contains(const T &value) const
{
return this->index_try(value) != -1;
}
/**
* Compare vectors element-wise.
* Return true when they have the same length and all elements
* compare equal, otherwise false.
*/
static bool all_equal(const Vector &a, const Vector &b)
{
if (a.size() != b.size()) {
return false;
}
for (uint i = 0; i < a.size(); i++) {
if (a[i] != b[i]) {
return false;
}
}
return true;
}
const T &operator[](uint index) const
{
BLI_assert(index < this->size());
return m_begin[index];
}
T &operator[](uint index)
{
BLI_assert(index < this->size());
return m_begin[index];
}
T *begin()
{
return m_begin;
}
T *end()
{
return m_end;
}
const T *begin() const
{
return m_begin;
}
const T *end() const
{
return m_end;
}
/**
* Get the current capacity of the vector.
*/
uint capacity() const
{
return (uint)(m_capacity_end - m_begin);
}
IndexRange index_range() const
{
return IndexRange(this->size());
}
void print_stats() const
{
std::cout << "Small Vector at " << (void *)this << ":" << std::endl;
std::cout << " Elements: " << this->size() << std::endl;
std::cout << " Capacity: " << (m_capacity_end - m_begin) << std::endl;
std::cout << " Small Elements: " << N << " Size on Stack: " << sizeof(*this) << std::endl;
}
private:
T *small_buffer() const
{
return (T *)m_small_buffer.ptr();
}
bool is_small() const
{
return m_begin == this->small_buffer();
}
void ensure_space_for_one()
{
if (UNLIKELY(m_end >= m_capacity_end)) {
this->grow(std::max(this->size() * 2, (uint)1));
}
}
BLI_NOINLINE void grow(uint min_capacity)
{
if (this->capacity() >= min_capacity) {
return;
}
/* Round up to the next power of two. Otherwise consecutive calls to grow can cause a
* reallocation every time even though the min_capacity only increments. */
min_capacity = power_of_2_max_u(min_capacity);
uint size = this->size();
T *new_array = (T *)m_allocator.allocate_aligned(
min_capacity * (uint)sizeof(T), std::alignment_of<T>::value, "grow BLI::Vector");
uninitialized_relocate_n(m_begin, size, new_array);
if (!this->is_small()) {
m_allocator.deallocate(m_begin);
}
m_begin = new_array;
m_end = m_begin + size;
m_capacity_end = m_begin + min_capacity;
}
/**
* Initialize all properties, except for m_allocator, which has to be initialized beforehand.
*/
template<uint OtherN> void init_copy_from_other_vector(const Vector<T, OtherN, Allocator> &other)
{
m_allocator = other.m_allocator;
uint size = other.size();
uint capacity = size;
if (size <= N) {
m_begin = this->small_buffer();
capacity = N;
}
else {
m_begin = (T *)m_allocator.allocate_aligned(
sizeof(T) * size, std::alignment_of<T>::value, __func__);
capacity = size;
}
m_end = m_begin + size;
m_capacity_end = m_begin + capacity;
uninitialized_copy(other.begin(), other.end(), m_begin);
UPDATE_VECTOR_SIZE(this);
}
};
#undef UPDATE_VECTOR_SIZE
/**
* Use when the vector is used in the local scope of a function. It has a larger inline storage by
* default to make allocations less likely.
*/
template<typename T, uint N = 20> using ScopedVector = Vector<T, N, GuardedAllocator>;
} /* namespace BLI */
2019-09-13 21:12:26 +10:00
#endif /* __BLI_VECTOR_HH__ */