This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/physics/intern/implicit_eigen.cpp

1624 lines
48 KiB
C++
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Lukas Toenne
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/implicit_eigen.cpp
* \ingroup bph
*/
#include "implicit.h"
#ifdef IMPLICIT_SOLVER_EIGEN
//#define USE_EIGEN_CORE
#define USE_EIGEN_CONSTRAINED_CG
#ifndef IMPLICIT_ENABLE_EIGEN_DEBUG
#ifdef NDEBUG
#define IMPLICIT_NDEBUG
#endif
#define NDEBUG
#endif
#include <Eigen/Sparse>
#include <Eigen/src/Core/util/DisableStupidWarnings.h>
#ifdef USE_EIGEN_CONSTRAINED_CG
#include <intern/ConstrainedConjugateGradient.h>
#endif
#ifndef IMPLICIT_ENABLE_EIGEN_DEBUG
#ifndef IMPLICIT_NDEBUG
#undef NDEBUG
#else
#undef IMPLICIT_NDEBUG
#endif
#endif
#include "MEM_guardedalloc.h"
extern "C" {
#include "DNA_scene_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
#include "DNA_meshdata_types.h"
#include "DNA_texture_types.h"
#include "BLI_math.h"
#include "BLI_linklist.h"
#include "BLI_utildefines.h"
#include "BKE_cloth.h"
#include "BKE_collision.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BPH_mass_spring.h"
}
typedef float Scalar;
typedef Eigen::SparseMatrix<Scalar> lMatrix;
typedef Eigen::VectorXf lVector;
typedef Eigen::Triplet<Scalar> Triplet;
typedef std::vector<Triplet> TripletList;
#ifdef USE_EIGEN_CORE
typedef Eigen::ConjugateGradient<lMatrix, Eigen::Lower, Eigen::DiagonalPreconditioner<Scalar> > ConjugateGradient;
#endif
#ifdef USE_EIGEN_CONSTRAINED_CG
typedef Eigen::ConstrainedConjugateGradient<lMatrix, Eigen::Lower, lMatrix,
Eigen::DiagonalPreconditioner<Scalar> >
ConstraintConjGrad;
#endif
using Eigen::ComputationInfo;
static void print_lvector(const lVector &v)
{
for (int i = 0; i < v.rows(); ++i) {
if (i > 0 && i % 3 == 0)
printf("\n");
printf("%f,\n", v[i]);
}
}
static void print_lmatrix(const lMatrix &m)
{
for (int j = 0; j < m.rows(); ++j) {
if (j > 0 && j % 3 == 0)
printf("\n");
for (int i = 0; i < m.cols(); ++i) {
if (i > 0 && i % 3 == 0)
printf(" ");
implicit_print_matrix_elem(m.coeff(j, i));
}
printf("\n");
}
}
static float I[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
static float ZERO[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
BLI_INLINE void lMatrix_reserve_elems(lMatrix &m, int num)
{
m.reserve(Eigen::VectorXi::Constant(m.cols(), num));
}
BLI_INLINE float *lVector_v3(lVector &v, int vertex)
{
return v.data() + 3 * vertex;
}
BLI_INLINE const float *lVector_v3(const lVector &v, int vertex)
{
return v.data() + 3 * vertex;
}
BLI_INLINE void triplets_m3(TripletList &tlist, float m[3][3], int i, int j)
{
i *= 3;
j *= 3;
for (int l = 0; l < 3; ++l) {
for (int k = 0; k < 3; ++k) {
tlist.push_back(Triplet(i + k, j + l, m[k][l]));
}
}
}
BLI_INLINE void triplets_m3fl(TripletList &tlist, float m[3][3], int i, int j, float factor)
{
i *= 3;
j *= 3;
for (int l = 0; l < 3; ++l) {
for (int k = 0; k < 3; ++k) {
tlist.push_back(Triplet(i + k, j + l, m[k][l] * factor));
}
}
}
BLI_INLINE void lMatrix_add_triplets(lMatrix &r, const TripletList &tlist)
{
lMatrix t(r.rows(), r.cols());
t.setFromTriplets(tlist.begin(), tlist.end());
r += t;
}
BLI_INLINE void lMatrix_madd_triplets(lMatrix &r, const TripletList &tlist, float f)
{
lMatrix t(r.rows(), r.cols());
t.setFromTriplets(tlist.begin(), tlist.end());
r += f * t;
}
BLI_INLINE void lMatrix_sub_triplets(lMatrix &r, const TripletList &tlist)
{
lMatrix t(r.rows(), r.cols());
t.setFromTriplets(tlist.begin(), tlist.end());
r -= t;
}
#if 0
BLI_INLINE void lMatrix_copy_m3(lMatrix &r, float m[3][3], int i, int j)
{
i *= 3;
j *= 3;
for (int l = 0; l < 3; ++l) {
for (int k = 0; k < 3; ++k) {
r.coeffRef(i + k, j + l) = m[k][l];
}
}
}
BLI_INLINE void lMatrix_add_m3(lMatrix &r, float m[3][3], int i, int j)
{
lMatrix tmp(r.cols(), r.cols());
lMatrix_copy_m3(tmp, m, i, j);
r += tmp;
}
BLI_INLINE void lMatrix_sub_m3(lMatrix &r, float m[3][3], int i, int j)
{
lMatrix tmp(r.cols(), r.cols());
lMatrix_copy_m3(tmp, m, i, j);
r -= tmp;
}
BLI_INLINE void lMatrix_madd_m3(lMatrix &r, float m[3][3], float s, int i, int j)
{
lMatrix tmp(r.cols(), r.cols());
lMatrix_copy_m3(tmp, m, i, j);
r += s * tmp;
}
#endif
BLI_INLINE void outerproduct(float r[3][3], const float a[3], const float b[3])
{
mul_v3_v3fl(r[0], a, b[0]);
mul_v3_v3fl(r[1], a, b[1]);
mul_v3_v3fl(r[2], a, b[2]);
}
struct RootTransform {
float loc[3];
float rot[3][3];
float vel[3];
float omega[3];
float acc[3];
float domega_dt[3];
};
struct Implicit_Data {
typedef std::vector<RootTransform> RootTransforms;
Implicit_Data(int numverts)
{
resize(numverts);
}
void resize(int numverts)
{
this->numverts = numverts;
int tot = 3 * numverts;
M.resize(tot, tot);
dFdV.resize(tot, tot);
dFdX.resize(tot, tot);
root.resize(numverts);
X.resize(tot);
Xnew.resize(tot);
V.resize(tot);
Vnew.resize(tot);
F.resize(tot);
B.resize(tot);
A.resize(tot, tot);
dV.resize(tot);
z.resize(tot);
S.resize(tot, tot);
}
int numverts;
/* inputs */
lMatrix M; /* masses */
2014-09-11 14:15:00 +02:00
lVector F; /* forces */
lMatrix dFdV, dFdX; /* force jacobians */
RootTransforms root; /* root transforms */
/* motion state data */
lVector X, Xnew; /* positions */
lVector V, Vnew; /* velocities */
/* internal solver data */
lVector B; /* B for A*dV = B */
lMatrix A; /* A for A*dV = B */
lVector dV; /* velocity change (solution of A*dV = B) */
lVector z; /* target velocity in constrained directions */
lMatrix S; /* filtering matrix for constraints */
};
/* ==== Transformation of Moving Reference Frame ====
* x_world, v_world, f_world, a_world, dfdx_world, dfdv_world : state variables in world space
* x_root, v_root, f_root, a_root, dfdx_root, dfdv_root : state variables in root space
*
* x0 : translation of the root frame (hair root location)
* v0 : linear velocity of the root frame
* a0 : acceleration of the root frame
* R : rotation matrix of the root frame
* w : angular velocity of the root frame
* dwdt : angular acceleration of the root frame
*/
/* x_root = R^T * x_world */
BLI_INLINE void loc_world_to_root(float r[3], const float v[3], const RootTransform &root)
{
sub_v3_v3v3(r, v, root.loc);
mul_transposed_m3_v3((float (*)[3])root.rot, r);
}
/* x_world = R * x_root */
BLI_INLINE void loc_root_to_world(float r[3], const float v[3], const RootTransform &root)
{
copy_v3_v3(r, v);
mul_m3_v3((float (*)[3])root.rot, r);
add_v3_v3(r, root.loc);
}
/* v_root = cross(w, x_root) + R^T*(v_world - v0) */
BLI_INLINE void vel_world_to_root(float r[3], const float x_root[3], const float v[3], const RootTransform &root)
{
float angvel[3];
cross_v3_v3v3(angvel, root.omega, x_root);
sub_v3_v3v3(r, v, root.vel);
mul_transposed_m3_v3((float (*)[3])root.rot, r);
add_v3_v3(r, angvel);
}
/* v_world = R*(v_root - cross(w, x_root)) + v0 */
BLI_INLINE void vel_root_to_world(float r[3], const float x_root[3], const float v[3], const RootTransform &root)
{
float angvel[3];
cross_v3_v3v3(angvel, root.omega, x_root);
sub_v3_v3v3(r, v, angvel);
mul_m3_v3((float (*)[3])root.rot, r);
add_v3_v3(r, root.vel);
}
/* a_root = -cross(dwdt, x_root) - 2*cross(w, v_root) - cross(w, cross(w, x_root)) + R^T*(a_world - a0) */
BLI_INLINE void force_world_to_root(float r[3], const float x_root[3], const float v_root[3], const float force[3], float mass, const RootTransform &root)
{
float euler[3], coriolis[3], centrifugal[3], rotvel[3];
cross_v3_v3v3(euler, root.domega_dt, x_root);
cross_v3_v3v3(coriolis, root.omega, v_root);
mul_v3_fl(coriolis, 2.0f);
cross_v3_v3v3(rotvel, root.omega, x_root);
cross_v3_v3v3(centrifugal, root.omega, rotvel);
madd_v3_v3v3fl(r, force, root.acc, mass);
mul_transposed_m3_v3((float (*)[3])root.rot, r);
madd_v3_v3fl(r, euler, mass);
madd_v3_v3fl(r, coriolis, mass);
madd_v3_v3fl(r, centrifugal, mass);
}
/* a_world = R*[ a_root + cross(dwdt, x_root) + 2*cross(w, v_root) + cross(w, cross(w, x_root)) ] + a0 */
BLI_INLINE void force_root_to_world(float r[3], const float x_root[3], const float v_root[3], const float force[3], float mass, const RootTransform &root)
{
float euler[3], coriolis[3], centrifugal[3], rotvel[3];
cross_v3_v3v3(euler, root.domega_dt, x_root);
cross_v3_v3v3(coriolis, root.omega, v_root);
mul_v3_fl(coriolis, 2.0f);
cross_v3_v3v3(rotvel, root.omega, x_root);
cross_v3_v3v3(centrifugal, root.omega, rotvel);
madd_v3_v3v3fl(r, force, euler, mass);
madd_v3_v3fl(r, coriolis, mass);
madd_v3_v3fl(r, centrifugal, mass);
mul_m3_v3((float (*)[3])root.rot, r);
madd_v3_v3fl(r, root.acc, mass);
}
BLI_INLINE void acc_world_to_root(float r[3], const float x_root[3], const float v_root[3], const float acc[3], const RootTransform &root)
{
force_world_to_root(r, x_root, v_root, acc, 1.0f, root);
}
BLI_INLINE void acc_root_to_world(float r[3], const float x_root[3], const float v_root[3], const float acc[3], const RootTransform &root)
{
force_root_to_world(r, x_root, v_root, acc, 1.0f, root);
}
BLI_INLINE void cross_m3_v3m3(float r[3][3], const float v[3], float m[3][3])
{
cross_v3_v3v3(r[0], v, m[0]);
cross_v3_v3v3(r[1], v, m[1]);
cross_v3_v3v3(r[2], v, m[2]);
}
BLI_INLINE void cross_v3_identity(float r[3][3], const float v[3])
{
r[0][0] = 0.0f; r[1][0] = v[2]; r[2][0] = -v[1];
r[0][1] = -v[2]; r[1][1] = 0.0f; r[2][1] = v[0];
r[0][2] = v[1]; r[1][2] = -v[0]; r[2][2] = 0.0f;
}
/* dfdx_root = m*[ -cross(dwdt, I) - cross(w, cross(w, I)) ] + R^T*(dfdx_world) */
BLI_INLINE void dfdx_world_to_root(float m[3][3], float dfdx[3][3], float mass, const RootTransform &root)
{
float t[3][3], u[3][3];
copy_m3_m3(t, (float (*)[3])root.rot);
transpose_m3(t);
mul_m3_m3m3(m, t, dfdx);
cross_v3_identity(t, root.domega_dt);
mul_m3_fl(t, mass);
sub_m3_m3m3(m, m, t);
cross_v3_identity(u, root.omega);
cross_m3_v3m3(t, root.omega, u);
mul_m3_fl(t, mass);
sub_m3_m3m3(m, m, t);
}
/* dfdx_world = R*(dfdx_root + m*[ cross(dwdt, I) + cross(w, cross(w, I)) ]) */
BLI_INLINE void dfdx_root_to_world(float m[3][3], float dfdx[3][3], float mass, const RootTransform &root)
{
float t[3][3];
cross_v3_identity(t, root.domega_dt);
mul_m3_fl(t, mass);
add_m3_m3m3(m, dfdx, t);
cross_v3_identity(u, root.omega);
cross_m3_v3m3(t, root.omega, u);
mul_m3_fl(t, mass);
add_m3_m3m3(m, m, t);
mul_m3_m3m3(m, (float (*)[3])root.rot, m);
}
/* dfdv_root = -2*m*cross(w, I) + R^T*(dfdv_world) */
BLI_INLINE void dfdv_world_to_root(float m[3][3], float dfdv[3][3], float mass, const RootTransform &root)
{
float t[3][3];
copy_m3_m3(t, (float (*)[3])root.rot);
transpose_m3(t);
mul_m3_m3m3(m, t, dfdv);
cross_v3_identity(t, root.omega);
mul_m3_fl(t, 2.0f*mass);
sub_m3_m3m3(m, m, t);
}
/* dfdv_world = R*(dfdv_root + 2*m*cross(w, I)) */
BLI_INLINE void dfdv_root_to_world(float m[3][3], float dfdv[3][3], float mass, const RootTransform &root)
{
float t[3][3];
cross_v3_identity(t, root.omega);
mul_m3_fl(t, 2.0f*mass);
add_m3_m3m3(m, dfdv, t);
mul_m3_m3m3(m, (float (*)[3])root.rot, m);
}
/* ================================ */
static bool simulate_implicit_euler(Implicit_Data *id, float dt)
{
#ifdef USE_EIGEN_CORE
ConjugateGradient cg;
cg.setMaxIterations(100);
cg.setTolerance(0.01f);
id->A = id->M - dt * id->dFdV - dt*dt * id->dFdX;
cg.compute(id->A);
id->B = dt * id->F + dt*dt * id->dFdX * id->V;
id->dV = cg.solve(id->B);
id->Vnew = id->V + id->dV;
return cg.info() != Eigen::Success;
#endif
#ifdef USE_EIGEN_CONSTRAINED_CG
ConstraintConjGrad cg;
cg.setMaxIterations(100);
cg.setTolerance(0.01f);
id->A = id->M - dt * id->dFdV - dt*dt * id->dFdX;
cg.compute(id->A);
cg.filter() = id->S;
id->B = dt * id->F + dt*dt * id->dFdX * id->V;
#ifdef IMPLICIT_PRINT_SOLVER_INPUT_OUTPUT
printf("==== A ====\n");
print_lmatrix(id->A);
printf("==== z ====\n");
print_lvector(id->z);
printf("==== B ====\n");
print_lvector(id->B);
printf("==== S ====\n");
print_lmatrix(id->S);
#endif
id->dV = cg.solveWithGuess(id->B, id->z);
#ifdef IMPLICIT_PRINT_SOLVER_INPUT_OUTPUT
printf("==== dV ====\n");
print_lvector(id->dV);
printf("========\n");
#endif
id->Vnew = id->V + id->dV;
return cg.info() != Eigen::Success;
#endif
}
BLI_INLINE void dfdx_spring(float to[3][3], const float dir[3], float length, float L, float k)
{
// dir is unit length direction, rest is spring's restlength, k is spring constant.
//return ( (I-outerprod(dir, dir))*Min(1.0f, rest/length) - I) * -k;
outerproduct(to, dir, dir);
sub_m3_m3m3(to, I, to);
mul_m3_fl(to, (L/length));
sub_m3_m3m3(to, to, I);
mul_m3_fl(to, k);
}
/* unused */
#if 0
BLI_INLINE void dfdx_damp(float to[3][3], const float dir[3], float length, const float vel[3], float rest, float damping)
{
// inner spring damping vel is the relative velocity of the endpoints.
// return (I-outerprod(dir, dir)) * (-damping * -(dot(dir, vel)/Max(length, rest)));
mul_fvectorT_fvector(to, dir, dir);
sub_fmatrix_fmatrix(to, I, to);
mul_fmatrix_S(to, (-damping * -(dot_v3v3(dir, vel)/MAX2(length, rest))));
}
#endif
BLI_INLINE void dfdv_damp(float to[3][3], const float dir[3], float damping)
{
// derivative of force wrt velocity
outerproduct(to, dir, dir);
mul_m3_fl(to, -damping);
}
BLI_INLINE float fb(float length, float L)
{
float x = length / L;
return (-11.541f * powf(x, 4) + 34.193f * powf(x, 3) - 39.083f * powf(x, 2) + 23.116f * x - 9.713f);
}
BLI_INLINE float fbderiv(float length, float L)
{
float x = length/L;
return (-46.164f * powf(x, 3) + 102.579f * powf(x, 2) - 78.166f * x + 23.116f);
}
BLI_INLINE float fbstar(float length, float L, float kb, float cb)
{
float tempfb_fl = kb * fb(length, L);
float fbstar_fl = cb * (length - L);
if (tempfb_fl < fbstar_fl)
return fbstar_fl;
else
return tempfb_fl;
}
// function to calculae bending spring force (taken from Choi & Co)
BLI_INLINE float fbstar_jacobi(float length, float L, float kb, float cb)
{
float tempfb_fl = kb * fb(length, L);
float fbstar_fl = cb * (length - L);
if (tempfb_fl < fbstar_fl) {
return cb;
}
else {
return kb * fbderiv(length, L);
}
}
static void cloth_calc_spring_force(ClothModifierData *clmd, ClothSpring *s, const lVector &X, const lVector &V, float time)
{
Cloth *cloth = clmd->clothObject;
ClothVertex *verts = cloth->verts;
ClothVertex *v1 = &verts[s->ij]/*, *v2 = &verts[s->kl]*/;
float extent[3];
float length = 0, dot = 0;
float dir[3] = {0, 0, 0};
float vel[3];
float k = 0.0f;
float L = s->restlen;
float cb; /* = clmd->sim_parms->structural; */ /*UNUSED*/
float scaling = 0.0;
int no_compress = clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_NO_SPRING_COMPRESS;
zero_v3(s->f);
zero_m3(s->dfdx);
zero_m3(s->dfdv);
s->flags &= ~CLOTH_SPRING_FLAG_NEEDED;
// calculate elonglation
sub_v3_v3v3(extent, lVector_v3(X, s->kl), lVector_v3(X, s->ij));
sub_v3_v3v3(vel, lVector_v3(V, s->kl), lVector_v3(V, s->ij));
dot = dot_v3v3(extent, extent);
length = sqrtf(dot);
if (length > ALMOST_ZERO) {
/*
if (length>L) {
if ((clmd->sim_parms->flags & CSIMSETT_FLAG_TEARING_ENABLED) &&
( ((length-L)*100.0f/L) > clmd->sim_parms->maxspringlen )) {
// cut spring!
s->flags |= CSPRING_FLAG_DEACTIVATE;
return;
}
}
*/
mul_v3_v3fl(dir, extent, 1.0f/length);
}
else {
zero_v3(dir);
}
// calculate force of structural + shear springs
if (ELEM(s->type, CLOTH_SPRING_TYPE_STRUCTURAL, CLOTH_SPRING_TYPE_SHEAR, CLOTH_SPRING_TYPE_SEWING)) {
#ifdef CLOTH_FORCE_SPRING_STRUCTURAL
if (length > L || no_compress) {
float stretch_force[3] = {0, 0, 0};
s->flags |= CLOTH_SPRING_FLAG_NEEDED;
k = clmd->sim_parms->structural;
scaling = k + s->stiffness * fabsf(clmd->sim_parms->max_struct - k);
k = scaling / (clmd->sim_parms->avg_spring_len + FLT_EPSILON);
// TODO: verify, half verified (couldn't see error)
if (s->type & CLOTH_SPRING_TYPE_SEWING) {
// sewing springs usually have a large distance at first so clamp the force so we don't get tunnelling through colission objects
float force = k*(length-L);
if (force > clmd->sim_parms->max_sewing) {
force = clmd->sim_parms->max_sewing;
}
mul_v3_v3fl(stretch_force, dir, force);
}
else {
mul_v3_v3fl(stretch_force, dir, k * (length - L));
}
add_v3_v3(s->f, stretch_force);
// Ascher & Boxman, p.21: Damping only during elonglation
// something wrong with it...
madd_v3_v3fl(s->f, dir, clmd->sim_parms->Cdis * dot_v3v3(vel, dir));
/* VERIFIED */
dfdx_spring(s->dfdx, dir, length, L, k);
/* VERIFIED */
dfdv_damp(s->dfdv, dir, clmd->sim_parms->Cdis);
}
#endif
}
else if (s->type & CLOTH_SPRING_TYPE_GOAL) {
#ifdef CLOTH_FORCE_SPRING_GOAL
float target[3];
s->flags |= CLOTH_SPRING_FLAG_NEEDED;
// current_position = xold + t * (xnew - xold)
interp_v3_v3v3(target, v1->xold, v1->xconst, time);
sub_v3_v3v3(extent, lVector_v3(X, s->ij), target);
BKE_sim_debug_data_add_line(clmd->debug_data, v1->xconst, v1->xold, 1,0,0, "springs", hash_vertex(7825, s->ij));
// SEE MSG BELOW (these are UNUSED)
// dot = dot_v3v3(extent, extent);
// length = sqrtf(dot);
k = clmd->sim_parms->goalspring;
scaling = k + s->stiffness * fabsf(clmd->sim_parms->max_struct - k);
k = v1->goal * scaling / (clmd->sim_parms->avg_spring_len + FLT_EPSILON);
madd_v3_v3fl(s->f, extent, -k);
/* XXX this has no effect: dir is always null at this point! - lukas_t
madd_v3_v3fl(s->f, dir, clmd->sim_parms->goalfrict * 0.01f * dot_v3v3(vel, dir));
*/
// HERE IS THE PROBLEM!!!!
// dfdx_spring(s->dfdx, dir, length, 0.0, k);
// dfdv_damp(s->dfdv, dir, MIN2(1.0, (clmd->sim_parms->goalfrict/100.0)));
#endif
}
else { /* calculate force of bending springs */
#ifdef CLOTH_FORCE_SPRING_BEND
if (length < L) {
s->flags |= CLOTH_SPRING_FLAG_NEEDED;
k = clmd->sim_parms->bending;
scaling = k + s->stiffness * fabsf(clmd->sim_parms->max_bend - k);
cb = k = scaling / (20.0f * (clmd->sim_parms->avg_spring_len + FLT_EPSILON));
madd_v3_v3fl(s->f, dir, fbstar(length, L, k, cb));
outerproduct(s->dfdx, dir, dir);
mul_m3_fl(s->dfdx, fbstar_jacobi(length, L, k, cb));
}
#endif
}
}
static void cloth_apply_spring_force(ClothModifierData *clmd, ClothSpring *s, lVector &F, TripletList &tlist_dFdX, TripletList &tlist_dFdV)
{
/* XXX reserve elements in tmp? */
/* ignore disabled springs */
if (!(s->flags & CLOTH_SPRING_FLAG_NEEDED))
return;
if (!(s->type & CLOTH_SPRING_TYPE_BENDING)) {
triplets_m3fl(tlist_dFdV, s->dfdv, s->ij, s->ij, 1.0f);
triplets_m3fl(tlist_dFdV, s->dfdv, s->kl, s->kl, 1.0f);
triplets_m3fl(tlist_dFdV, s->dfdv, s->ij, s->kl, -1.0f);
triplets_m3fl(tlist_dFdV, s->dfdv, s->kl, s->ij, -1.0f);
}
add_v3_v3(lVector_v3(F, s->ij), s->f);
if (!(s->type & CLOTH_SPRING_TYPE_GOAL)) {
sub_v3_v3(lVector_v3(F, s->kl), s->f);
}
triplets_m3fl(tlist_dFdX, s->dfdx, s->ij, s->ij, 1.0f);
triplets_m3fl(tlist_dFdX, s->dfdx, s->kl, s->kl, 1.0f);
triplets_m3fl(tlist_dFdX, s->dfdx, s->ij, s->kl, -1.0f);
triplets_m3fl(tlist_dFdX, s->dfdx, s->kl, s->ij, -1.0f);
}
static float calc_nor_area_tri(float nor[3], const float v1[3], const float v2[3], const float v3[3])
{
float n1[3], n2[3];
sub_v3_v3v3(n1, v1, v2);
sub_v3_v3v3(n2, v2, v3);
cross_v3_v3v3(nor, n1, n2);
return normalize_v3(nor);
}
static float calc_nor_area_quad(float nor[3], const float v1[3], const float v2[3], const float v3[3], const float v4[3])
{
float n1[3], n2[3];
sub_v3_v3v3(n1, v1, v3);
sub_v3_v3v3(n2, v2, v4);
cross_v3_v3v3(nor, n1, n2);
return normalize_v3(nor);
}
static void cloth_calc_force(ClothModifierData *clmd, lVector &F, lMatrix &dFdX, lMatrix &dFdV, const lVector &X, const lVector &V, const lMatrix &M, ListBase *effectors, float time)
{
Cloth *cloth = clmd->clothObject;
Implicit_Data *id = cloth->implicit;
unsigned int numverts = cloth->numverts;
ClothVertex *verts = cloth->verts;
float drag = clmd->sim_parms->Cvi * 0.01f; /* viscosity of air scaled in percent */
float gravity[3] = {0,0,0};
float f[3], dfdx[3][3], dfdv[3][3];
F.setZero();
dFdX.setZero();
dFdV.setZero();
TripletList tlist_dFdV, tlist_dFdX;
#ifdef CLOTH_FORCE_GRAVITY
/* global acceleration (gravitation) */
if (clmd->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY) {
/* scale gravity force
* XXX 0.001 factor looks totally arbitrary ... what is this? lukas_t
*/
mul_v3_v3fl(gravity, clmd->scene->physics_settings.gravity, 0.001f * clmd->sim_parms->effector_weights->global_gravity);
}
for (int i = 0; i < numverts; ++i) {
float acc[3];
/* gravitational mass same as inertial mass */
acc_world_to_root(acc, lVector_v3(X, i), lVector_v3(V, i), gravity, id->root[i]);
madd_v3_v3fl(lVector_v3(F, i), acc, verts[i].mass);
}
#endif
#ifdef CLOTH_FORCE_DRAG
/* air drag */
for (int i = 0; i < numverts; ++i) {
#if 1
/* NB: uses root space velocity, no need to transform */
mul_v3_v3fl(f, lVector_v3(V, i), -drag);
add_v3_v3(lVector_v3(F, i), f);
triplets_m3fl(tlist_dFdV, I, i, i, -drag);
#else
float drag_dfdv[3][3], t[3];
mul_v3_v3fl(f, lVector_v3(V, i), -drag);
force_world_to_root(t, lVector_v3(X, i), lVector_v3(V, i), f, verts[i].mass, id->root[i]);
add_v3_v3(lVector_v3(F, i), t);
copy_m3_m3(drag_dfdv, I);
mul_m3_fl(drag_dfdv, -drag);
dfdv_world_to_root(dfdv, drag_dfdv, verts[i].mass, id->root[i]);
triplets_m3(tlist_dFdV, dfdv, i, i);
#endif
}
#endif
2014-09-11 14:15:00 +02:00
// hair_volume_forces(clmd, lF, lX, lV, numverts);
#ifdef CLOTH_FORCE_EFFECTORS
/* handle external forces like wind */
if (effectors) {
const float effector_scale = 0.02f;
MFace *mfaces = cloth->mfaces;
EffectedPoint epoint;
lVector winvec(F.rows());
winvec.setZero();
// precalculate wind forces
for (int i = 0; i < cloth->numverts; i++) {
pd_point_from_loc(clmd->scene, (float*)lVector_v3(X, i), (float*)lVector_v3(V, i), i, &epoint);
pdDoEffectors(effectors, NULL, clmd->sim_parms->effector_weights, &epoint, lVector_v3(winvec, i), NULL);
}
for (int i = 0; i < cloth->numfaces; i++) {
float nor[3], area;
float factor;
MFace *mf = &mfaces[i];
// calculate face normal and area
if (mf->v4) {
area = calc_nor_area_quad(nor, lVector_v3(X, mf->v1), lVector_v3(X, mf->v2), lVector_v3(X, mf->v3), lVector_v3(X, mf->v4));
factor = effector_scale * area * 0.25f;
}
else {
area = calc_nor_area_tri(nor, lVector_v3(X, mf->v1), lVector_v3(X, mf->v2), lVector_v3(X, mf->v3));
factor = effector_scale * area / 3.0f;
}
madd_v3_v3fl(lVector_v3(F, mf->v1), nor, factor * dot_v3v3(lVector_v3(winvec, mf->v1), nor));
madd_v3_v3fl(lVector_v3(F, mf->v2), nor, factor * dot_v3v3(lVector_v3(winvec, mf->v2), nor));
madd_v3_v3fl(lVector_v3(F, mf->v3), nor, factor * dot_v3v3(lVector_v3(winvec, mf->v3), nor));
if (mf->v4)
madd_v3_v3fl(lVector_v3(F, mf->v4), nor, factor * dot_v3v3(lVector_v3(winvec, mf->v4), nor));
}
/* Hair has only edges */
if (cloth->numfaces == 0) {
ClothSpring *spring;
float dir[3], length;
float factor = 0.01;
for (LinkNode *link = cloth->springs; link; link = link->next) {
spring = (ClothSpring *)link->link;
/* structural springs represent hair strands,
* their length signifies surface area and mass
*/
if (spring->type != CLOTH_SPRING_TYPE_STRUCTURAL)
continue;
float *win_ij = lVector_v3(winvec, spring->ij);
float *win_kl = lVector_v3(winvec, spring->kl);
float win_ortho[3];
sub_v3_v3v3(dir, (float*)lVector_v3(X, spring->ij), (float*)lVector_v3(X, spring->kl));
length = normalize_v3(dir);
madd_v3_v3v3fl(win_ortho, win_ij, dir, -dot_v3v3(win_ij, dir));
madd_v3_v3fl(lVector_v3(F, spring->ij), win_ortho, factor * length);
madd_v3_v3v3fl(win_ortho, win_kl, dir, -dot_v3v3(win_kl, dir));
madd_v3_v3fl(lVector_v3(F, spring->kl), win_ortho, factor * length);
}
}
}
#endif
// calculate spring forces
for (LinkNode *link = cloth->springs; link; link = link->next) {
// only handle active springs
ClothSpring *spring = (ClothSpring *)link->link;
if (!(spring->flags & CLOTH_SPRING_FLAG_DEACTIVATE))
cloth_calc_spring_force(clmd, spring, X, V, time);
}
// apply spring forces
for (LinkNode *link = cloth->springs; link; link = link->next) {
// only handle active springs
ClothSpring *spring = (ClothSpring *)link->link;
if (!(spring->flags & CLOTH_SPRING_FLAG_DEACTIVATE))
cloth_apply_spring_force(clmd, spring, F, tlist_dFdX, tlist_dFdV);
}
lMatrix_add_triplets(dFdV, tlist_dFdV);
lMatrix_add_triplets(dFdX, tlist_dFdX);
}
/* Init constraint matrix
* This is part of the modified CG method suggested by Baraff/Witkin in
* "Large Steps in Cloth Simulation" (Siggraph 1998)
*/
static void setup_constraint_matrix(ClothModifierData *clmd, ColliderContacts *contacts, int totcolliders, const lVector &V, lMatrix &S, lVector &z, float dt)
{
ClothVertex *verts = clmd->clothObject->verts;
int numverts = clmd->clothObject->numverts;
TripletList tlist_sub;
int i, j, v;
S.setIdentity();
z.setZero();
for (v = 0; v < numverts; v++) {
if (verts[v].flags & CLOTH_VERT_FLAG_PINNED) {
/* pinned vertex constraints */
zero_v3(lVector_v3(z, v)); /* velocity is defined externally */
triplets_m3(tlist_sub, I, v, v);
}
}
#if 0 // TODO
for (i = 0; i < totcolliders; ++i) {
ColliderContacts *ct = &contacts[i];
for (j = 0; j < ct->totcollisions; ++j) {
CollPair *collpair = &ct->collisions[j];
int v = collpair->face1;
float cmat[3][3];
float impulse[3];
/* pinned verts handled separately */
if (verts[v].flags & CLOTH_VERT_FLAG_PINNED)
continue;
/* calculate collision response */
if (!cloth_points_collpair_response(clmd, ct->collmd, ct->ob->pd, collpair, dt, impulse))
continue;
add_v3_v3(z[v], impulse);
/* modify S to enforce velocity constraint in normal direction */
mul_fvectorT_fvector(cmat, collpair->normal, collpair->normal);
sub_m3_m3m3(S[v].m, I, cmat);
BKE_sim_debug_data_add_dot(clmd->debug_data, collpair->pa, 0, 1, 0, "collision", hash_collpair(936, collpair));
BKE_sim_debug_data_add_dot(clmd->debug_data, collpair->pb, 1, 0, 0, "collision", hash_collpair(937, collpair));
BKE_sim_debug_data_add_line(clmd->debug_data, collpair->pa, collpair->pb, 0.7, 0.7, 0.7, "collision", hash_collpair(938, collpair));
{ /* DEBUG */
// float nor[3];
// mul_v3_v3fl(nor, collpair->normal, collpair->distance);
// BKE_sim_debug_data_add_vector(clmd->debug_data, collpair->pb, nor, 1, 1, 0, "collision", hash_collpair(939, collpair));
BKE_sim_debug_data_add_vector(clmd->debug_data, collpair->pb, impulse, 1, 1, 0, "collision", hash_collpair(940, collpair));
// BKE_sim_debug_data_add_vector(clmd->debug_data, collpair->pb, collpair->normal, 1, 1, 0, "collision", hash_collpair(941, collpair));
}
}
}
#endif
lMatrix_sub_triplets(S, tlist_sub);
}
int implicit_solver(Object *ob, float frame, ClothModifierData *clmd, ListBase *effectors)
{
float step=0.0f, tf=clmd->sim_parms->timescale;
Cloth *cloth = clmd->clothObject;
ClothVertex *verts = cloth->verts/*, *cv*/;
unsigned int numverts = cloth->numverts;
float dt = clmd->sim_parms->timescale / clmd->sim_parms->stepsPerFrame;
float spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
Implicit_Data *id = cloth->implicit;
ColliderContacts *contacts = NULL;
int totcolliders = 0;
BKE_sim_debug_data_clear_category(clmd->debug_data, "collision");
if (clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL) { /* do goal stuff */
for (int i = 0; i < numverts; i++) {
// update velocities with constrained velocities from pinned verts
if (verts[i].flags & CLOTH_VERT_FLAG_PINNED) {
float v[3];
sub_v3_v3v3(v, verts[i].xconst, verts[i].xold);
// mul_v3_fl(id->V[i], clmd->sim_parms->stepsPerFrame);
/* note: should be zero for root vertices, but other verts could be pinned as well */
vel_world_to_root(lVector_v3(id->V, i), lVector_v3(id->X, i), v, id->root[i]);
}
}
}
if (clmd->debug_data) {
for (int i = 0; i < numverts; i++) {
BKE_sim_debug_data_add_dot(clmd->debug_data, verts[i].x, 1.0f, 0.1f, 1.0f, "points", hash_vertex(583, i));
}
}
while (step < tf) {
/* copy velocities for collision */
for (int i = 0; i < numverts; i++) {
vel_root_to_world(verts[i].tv, lVector_v3(id->X, i), lVector_v3(id->V, i), id->root[i]);
copy_v3_v3(verts[i].v, verts[i].tv);
}
/* determine contact points */
if (clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_ENABLED) {
if (clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_POINTS) {
cloth_find_point_contacts(ob, clmd, 0.0f, tf, &contacts, &totcolliders);
}
}
/* setup vertex constraints for pinned vertices and contacts */
setup_constraint_matrix(clmd, contacts, totcolliders, id->V, id->S, id->z, dt);
// damping velocity for artistic reasons
// mul_lfvectorS(id->V, id->V, clmd->sim_parms->vel_damping, numverts);
// calculate forces
cloth_calc_force(clmd, id->F, id->dFdX, id->dFdV, id->X, id->V, id->M, effectors, step);
// calculate new velocity
simulate_implicit_euler(id, dt);
// advance positions
id->Xnew = id->X + id->Vnew * dt;
for (int i = 0; i < numverts; i++) {
/* move pinned verts to correct position */
if (clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL) {
if (verts[i].flags & CLOTH_VERT_FLAG_PINNED) {
float x[3];
interp_v3_v3v3(x, verts[i].xold, verts[i].xconst, step + dt);
loc_world_to_root(lVector_v3(id->Xnew, i), x, id->root[i]);
}
}
loc_root_to_world(verts[i].txold, lVector_v3(id->X, i), id->root[i]);
if (!(verts[i].flags & CLOTH_VERT_FLAG_PINNED) && i > 0) {
BKE_sim_debug_data_add_line(clmd->debug_data, lVector_v3(id->X, i), lVector_v3(id->X, i-1), 0.6, 0.3, 0.3, "hair", hash_vertex(4892, i));
BKE_sim_debug_data_add_line(clmd->debug_data, lVector_v3(id->Xnew, i), lVector_v3(id->Xnew, i-1), 1, 0.5, 0.5, "hair", hash_vertex(4893, i));
BKE_sim_debug_data_add_line(clmd->debug_data, verts[i].xconst, verts[i-1].xconst, 0.25, 0.4, 0.25, "hair", hash_vertex(4873, i));
}
// BKE_sim_debug_data_add_vector(clmd->debug_data, id->X[i], id->V[i], 0, 0, 1, "velocity", hash_vertex(3158, i));
}
/* free contact points */
if (contacts) {
cloth_free_contacts(contacts, totcolliders);
}
id->X = id->Xnew;
id->V = id->Vnew;
step += dt;
}
for (int i = 0; i < numverts; i++) {
if ((clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL) && (verts [i].flags & CLOTH_VERT_FLAG_PINNED)) {
copy_v3_v3(verts[i].x, verts[i].xconst);
copy_v3_v3(verts[i].txold, verts[i].x);
vel_root_to_world(verts[i].v, lVector_v3(id->X, i), lVector_v3(id->V, i), id->root[i]);
}
else {
loc_root_to_world(verts[i].x, lVector_v3(id->X, i), id->root[i]);
copy_v3_v3(verts[i].txold, verts[i].x);
vel_root_to_world(verts[i].v, lVector_v3(id->X, i), lVector_v3(id->V, i), id->root[i]);
}
}
return 1;
}
void implicit_set_positions(ClothModifierData *clmd)
{
Cloth *cloth = clmd->clothObject;
ClothVertex *verts = cloth->verts;
ClothHairRoot *cloth_roots = clmd->roots;
unsigned int numverts = cloth->numverts, i;
Implicit_Data::RootTransforms &root = cloth->implicit->root;
lVector &X = cloth->implicit->X;
lVector &V = cloth->implicit->V;
for (i = 0; i < numverts; i++) {
copy_v3_v3(root[i].loc, cloth_roots[i].loc);
copy_m3_m3(root[i].rot, cloth_roots[i].rot);
loc_world_to_root(lVector_v3(X, i), verts[i].x, root[i]);
vel_world_to_root(lVector_v3(V, i), lVector_v3(X, i), verts[i].v, root[i]);
}
}
static void implicit_set_mass(ClothModifierData *clmd)
{
Cloth *cloth = clmd->clothObject;
ClothVertex *verts = cloth->verts;
unsigned int numverts = cloth->numverts;
lMatrix &M = cloth->implicit->M;
lMatrix_reserve_elems(M, 1);
for (int i = 0; i < numverts; ++i) {
M.insert(3*i+0, 3*i+0) = verts[i].mass;
M.insert(3*i+1, 3*i+1) = verts[i].mass;
M.insert(3*i+2, 3*i+2) = verts[i].mass;
}
}
int implicit_init(Object *UNUSED(ob), ClothModifierData *clmd)
{
Cloth *cloth = clmd->clothObject;
cloth->implicit = new Implicit_Data(cloth->numverts);
implicit_set_mass(clmd);
implicit_set_positions(clmd);
#if 0
// init springs
search = cloth->springs;
for (i = 0; i < cloth->numsprings; i++) {
spring = search->link;
// dFdV_start[i].r = big_I[i].r = big_zero[i].r =
id->A[i+cloth->numverts].r = id->dFdV[i+cloth->numverts].r = id->dFdX[i+cloth->numverts].r =
id->P[i+cloth->numverts].r = id->Pinv[i+cloth->numverts].r = id->bigI[i+cloth->numverts].r = id->M[i+cloth->numverts].r = spring->ij;
// dFdV_start[i].c = big_I[i].c = big_zero[i].c =
id->A[i+cloth->numverts].c = id->dFdV[i+cloth->numverts].c = id->dFdX[i+cloth->numverts].c =
id->P[i+cloth->numverts].c = id->Pinv[i+cloth->numverts].c = id->bigI[i+cloth->numverts].c = id->M[i+cloth->numverts].c = spring->kl;
spring->matrix_index = i + cloth->numverts;
search = search->next;
}
#endif
return 1;
}
int implicit_free(ClothModifierData *clmd)
{
Cloth *cloth = clmd->clothObject;
if (cloth && cloth->implicit) {
delete cloth->implicit;
}
return 1;
}
/* ================ Volumetric Hair Interaction ================
* adapted from
* Volumetric Methods for Simulation and Rendering of Hair
* by Lena Petrovic, Mark Henne and John Anderson
* Pixar Technical Memo #06-08, Pixar Animation Studios
*/
/* Note about array indexing:
* Generally the arrays here are one-dimensional.
* The relation between 3D indices and the array offset is
* offset = x + res_x * y + res_y * z
*/
/* TODO: This is an initial implementation and should be made much better in due time.
* What should at least be implemented is a grid size parameter and a smoothing kernel
* for bigger grids.
*/
#if 0
/* 10x10x10 grid gives nice initial results */
static const int hair_grid_res = 10;
static int hair_grid_size(int res)
{
return res * res * res;
}
BLI_INLINE void hair_grid_get_scale(int res, const float gmin[3], const float gmax[3], float scale[3])
{
sub_v3_v3v3(scale, gmax, gmin);
mul_v3_fl(scale, 1.0f / (res-1));
}
typedef struct HairGridVert {
float velocity[3];
float density;
} HairGridVert;
#define HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, axis) ( min_ii( max_ii( (int)((vec[axis] - gmin[axis]) / scale[axis]), 0), res-2 ) )
BLI_INLINE int hair_grid_offset(const float vec[3], int res, const float gmin[3], const float scale[3])
{
int i, j, k;
i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
return i + (j + k*res)*res;
}
BLI_INLINE int hair_grid_interp_weights(int res, const float gmin[3], const float scale[3], const float vec[3], float uvw[3])
{
int i, j, k, offset;
i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
offset = i + (j + k*res)*res;
uvw[0] = (vec[0] - gmin[0]) / scale[0] - (float)i;
uvw[1] = (vec[1] - gmin[1]) / scale[1] - (float)j;
uvw[2] = (vec[2] - gmin[2]) / scale[2] - (float)k;
return offset;
}
BLI_INLINE void hair_grid_interpolate(const HairGridVert *grid, int res, const float gmin[3], const float scale[3], const float vec[3],
float *density, float velocity[3], float density_gradient[3])
{
HairGridVert data[8];
float uvw[3], muvw[3];
int res2 = res * res;
int offset;
offset = hair_grid_interp_weights(res, gmin, scale, vec, uvw);
muvw[0] = 1.0f - uvw[0];
muvw[1] = 1.0f - uvw[1];
muvw[2] = 1.0f - uvw[2];
data[0] = grid[offset ];
data[1] = grid[offset +1];
data[2] = grid[offset +res ];
data[3] = grid[offset +res+1];
data[4] = grid[offset+res2 ];
data[5] = grid[offset+res2 +1];
data[6] = grid[offset+res2+res ];
data[7] = grid[offset+res2+res+1];
if (density) {
*density = muvw[2]*( muvw[1]*( muvw[0]*data[0].density + uvw[0]*data[1].density ) +
uvw[1]*( muvw[0]*data[2].density + uvw[0]*data[3].density ) ) +
uvw[2]*( muvw[1]*( muvw[0]*data[4].density + uvw[0]*data[5].density ) +
uvw[1]*( muvw[0]*data[6].density + uvw[0]*data[7].density ) );
}
if (velocity) {
int k;
for (k = 0; k < 3; ++k) {
velocity[k] = muvw[2]*( muvw[1]*( muvw[0]*data[0].velocity[k] + uvw[0]*data[1].velocity[k] ) +
uvw[1]*( muvw[0]*data[2].velocity[k] + uvw[0]*data[3].velocity[k] ) ) +
uvw[2]*( muvw[1]*( muvw[0]*data[4].velocity[k] + uvw[0]*data[5].velocity[k] ) +
uvw[1]*( muvw[0]*data[6].velocity[k] + uvw[0]*data[7].velocity[k] ) );
}
}
if (density_gradient) {
density_gradient[0] = muvw[1] * muvw[2] * ( data[0].density - data[1].density ) +
uvw[1] * muvw[2] * ( data[2].density - data[3].density ) +
muvw[1] * uvw[2] * ( data[4].density - data[5].density ) +
uvw[1] * uvw[2] * ( data[6].density - data[7].density );
density_gradient[1] = muvw[2] * muvw[0] * ( data[0].density - data[2].density ) +
uvw[2] * muvw[0] * ( data[4].density - data[6].density ) +
muvw[2] * uvw[0] * ( data[1].density - data[3].density ) +
uvw[2] * uvw[0] * ( data[5].density - data[7].density );
density_gradient[2] = muvw[2] * muvw[0] * ( data[0].density - data[4].density ) +
uvw[2] * muvw[0] * ( data[1].density - data[5].density ) +
muvw[2] * uvw[0] * ( data[2].density - data[6].density ) +
uvw[2] * uvw[0] * ( data[3].density - data[7].density );
}
}
static void hair_velocity_smoothing(const HairGridVert *hairgrid, const float gmin[3], const float scale[3], float smoothfac,
lfVector *lF, lfVector *lX, lfVector *lV, unsigned int numverts)
{
int v;
/* calculate forces */
for (v = 0; v < numverts; v++) {
float density, velocity[3];
hair_grid_interpolate(hairgrid, hair_grid_res, gmin, scale, lX[v], &density, velocity, NULL);
sub_v3_v3(velocity, lV[v]);
madd_v3_v3fl(lF[v], velocity, smoothfac);
}
}
static void hair_velocity_collision(const HairGridVert *collgrid, const float gmin[3], const float scale[3], float collfac,
lfVector *lF, lfVector *lX, lfVector *lV, unsigned int numverts)
{
int v;
/* calculate forces */
for (v = 0; v < numverts; v++) {
int offset = hair_grid_offset(lX[v], hair_grid_res, gmin, scale);
if (collgrid[offset].density > 0.0f) {
lF[v][0] += collfac * (collgrid[offset].velocity[0] - lV[v][0]);
lF[v][1] += collfac * (collgrid[offset].velocity[1] - lV[v][1]);
lF[v][2] += collfac * (collgrid[offset].velocity[2] - lV[v][2]);
}
}
}
static void hair_pressure_force(const HairGridVert *hairgrid, const float gmin[3], const float scale[3], float pressurefac, float minpressure,
lfVector *lF, lfVector *lX, unsigned int numverts)
{
int v;
/* calculate forces */
for (v = 0; v < numverts; v++) {
float density, gradient[3], gradlen;
hair_grid_interpolate(hairgrid, hair_grid_res, gmin, scale, lX[v], &density, NULL, gradient);
gradlen = normalize_v3(gradient) - minpressure;
if (gradlen < 0.0f)
continue;
mul_v3_fl(gradient, gradlen);
madd_v3_v3fl(lF[v], gradient, pressurefac);
}
}
static void hair_volume_get_boundbox(lfVector *lX, unsigned int numverts, float gmin[3], float gmax[3])
{
int i;
INIT_MINMAX(gmin, gmax);
for (i = 0; i < numverts; i++)
DO_MINMAX(lX[i], gmin, gmax);
}
BLI_INLINE bool hair_grid_point_valid(const float vec[3], float gmin[3], float gmax[3])
{
return !(vec[0] < gmin[0] || vec[1] < gmin[1] || vec[2] < gmin[2] ||
vec[0] > gmax[0] || vec[1] > gmax[1] || vec[2] > gmax[2]);
}
BLI_INLINE float dist_tent_v3f3(const float a[3], float x, float y, float z)
{
float w = (1.0f - fabsf(a[0] - x)) * (1.0f - fabsf(a[1] - y)) * (1.0f - fabsf(a[2] - z));
return w;
}
/* returns the grid array offset as well to avoid redundant calculation */
static int hair_grid_weights(int res, const float gmin[3], const float scale[3], const float vec[3], float weights[8])
{
int i, j, k, offset;
float uvw[3];
i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
offset = i + (j + k*res)*res;
uvw[0] = (vec[0] - gmin[0]) / scale[0];
uvw[1] = (vec[1] - gmin[1]) / scale[1];
uvw[2] = (vec[2] - gmin[2]) / scale[2];
weights[0] = dist_tent_v3f3(uvw, (float)i , (float)j , (float)k );
weights[1] = dist_tent_v3f3(uvw, (float)(i+1), (float)j , (float)k );
weights[2] = dist_tent_v3f3(uvw, (float)i , (float)(j+1), (float)k );
weights[3] = dist_tent_v3f3(uvw, (float)(i+1), (float)(j+1), (float)k );
weights[4] = dist_tent_v3f3(uvw, (float)i , (float)j , (float)(k+1));
weights[5] = dist_tent_v3f3(uvw, (float)(i+1), (float)j , (float)(k+1));
weights[6] = dist_tent_v3f3(uvw, (float)i , (float)(j+1), (float)(k+1));
weights[7] = dist_tent_v3f3(uvw, (float)(i+1), (float)(j+1), (float)(k+1));
return offset;
}
static HairGridVert *hair_volume_create_hair_grid(ClothModifierData *clmd, lfVector *lX, lfVector *lV, unsigned int numverts)
{
int res = hair_grid_res;
int size = hair_grid_size(res);
HairGridVert *hairgrid;
float gmin[3], gmax[3], scale[3];
/* 2.0f is an experimental value that seems to give good results */
float smoothfac = 2.0f * clmd->sim_parms->velocity_smooth;
unsigned int v = 0;
int i = 0;
hair_volume_get_boundbox(lX, numverts, gmin, gmax);
hair_grid_get_scale(res, gmin, gmax, scale);
hairgrid = MEM_mallocN(sizeof(HairGridVert) * size, "hair voxel data");
/* initialize grid */
for (i = 0; i < size; ++i) {
zero_v3(hairgrid[i].velocity);
hairgrid[i].density = 0.0f;
}
/* gather velocities & density */
if (smoothfac > 0.0f) {
for (v = 0; v < numverts; v++) {
float *V = lV[v];
float weights[8];
int di, dj, dk;
int offset;
if (!hair_grid_point_valid(lX[v], gmin, gmax))
continue;
offset = hair_grid_weights(res, gmin, scale, lX[v], weights);
for (di = 0; di < 2; ++di) {
for (dj = 0; dj < 2; ++dj) {
for (dk = 0; dk < 2; ++dk) {
int voffset = offset + di + (dj + dk*res)*res;
int iw = di + dj*2 + dk*4;
hairgrid[voffset].density += weights[iw];
madd_v3_v3fl(hairgrid[voffset].velocity, V, weights[iw]);
}
}
}
}
}
/* divide velocity with density */
for (i = 0; i < size; i++) {
float density = hairgrid[i].density;
if (density > 0.0f)
mul_v3_fl(hairgrid[i].velocity, 1.0f/density);
}
return hairgrid;
}
static HairGridVert *hair_volume_create_collision_grid(ClothModifierData *clmd, lfVector *lX, unsigned int numverts)
{
int res = hair_grid_res;
int size = hair_grid_size(res);
HairGridVert *collgrid;
ListBase *colliders;
ColliderCache *col = NULL;
float gmin[3], gmax[3], scale[3];
/* 2.0f is an experimental value that seems to give good results */
float collfac = 2.0f * clmd->sim_parms->collider_friction;
unsigned int v = 0;
int i = 0;
hair_volume_get_boundbox(lX, numverts, gmin, gmax);
hair_grid_get_scale(res, gmin, gmax, scale);
collgrid = MEM_mallocN(sizeof(HairGridVert) * size, "hair collider voxel data");
/* initialize grid */
for (i = 0; i < size; ++i) {
zero_v3(collgrid[i].velocity);
collgrid[i].density = 0.0f;
}
/* gather colliders */
colliders = get_collider_cache(clmd->scene, NULL, NULL);
if (colliders && collfac > 0.0f) {
for (col = colliders->first; col; col = col->next) {
MVert *loc0 = col->collmd->x;
MVert *loc1 = col->collmd->xnew;
float vel[3];
float weights[8];
int di, dj, dk;
for (v=0; v < col->collmd->numverts; v++, loc0++, loc1++) {
int offset;
if (!hair_grid_point_valid(loc1->co, gmin, gmax))
continue;
offset = hair_grid_weights(res, gmin, scale, lX[v], weights);
sub_v3_v3v3(vel, loc1->co, loc0->co);
for (di = 0; di < 2; ++di) {
for (dj = 0; dj < 2; ++dj) {
for (dk = 0; dk < 2; ++dk) {
int voffset = offset + di + (dj + dk*res)*res;
int iw = di + dj*2 + dk*4;
collgrid[voffset].density += weights[iw];
madd_v3_v3fl(collgrid[voffset].velocity, vel, weights[iw]);
}
}
}
}
}
}
free_collider_cache(&colliders);
/* divide velocity with density */
for (i = 0; i < size; i++) {
float density = collgrid[i].density;
if (density > 0.0f)
mul_v3_fl(collgrid[i].velocity, 1.0f/density);
}
return collgrid;
}
static void hair_volume_forces(ClothModifierData *clmd, lfVector *lF, lfVector *lX, lfVector *lV, unsigned int numverts)
{
HairGridVert *hairgrid, *collgrid;
float gmin[3], gmax[3], scale[3];
/* 2.0f is an experimental value that seems to give good results */
float smoothfac = 2.0f * clmd->sim_parms->velocity_smooth;
float collfac = 2.0f * clmd->sim_parms->collider_friction;
float pressfac = clmd->sim_parms->pressure;
float minpress = clmd->sim_parms->pressure_threshold;
if (smoothfac <= 0.0f && collfac <= 0.0f && pressfac <= 0.0f)
return;
hair_volume_get_boundbox(lX, numverts, gmin, gmax);
hair_grid_get_scale(hair_grid_res, gmin, gmax, scale);
hairgrid = hair_volume_create_hair_grid(clmd, lX, lV, numverts);
collgrid = hair_volume_create_collision_grid(clmd, lX, numverts);
hair_velocity_smoothing(hairgrid, gmin, scale, smoothfac, lF, lX, lV, numverts);
hair_velocity_collision(collgrid, gmin, scale, collfac, lF, lX, lV, numverts);
hair_pressure_force(hairgrid, gmin, scale, pressfac, minpress, lF, lX, numverts);
MEM_freeN(hairgrid);
MEM_freeN(collgrid);
}
#endif
bool implicit_hair_volume_get_texture_data(Object *UNUSED(ob), ClothModifierData *clmd, ListBase *UNUSED(effectors), VoxelData *vd)
{
#if 0
lfVector *lX, *lV;
HairGridVert *hairgrid/*, *collgrid*/;
int numverts;
int totres, i;
int depth;
if (!clmd->clothObject || !clmd->clothObject->implicit)
return false;
lX = clmd->clothObject->implicit->X;
lV = clmd->clothObject->implicit->V;
numverts = clmd->clothObject->numverts;
hairgrid = hair_volume_create_hair_grid(clmd, lX, lV, numverts);
// collgrid = hair_volume_create_collision_grid(clmd, lX, numverts);
vd->resol[0] = hair_grid_res;
vd->resol[1] = hair_grid_res;
vd->resol[2] = hair_grid_res;
totres = hair_grid_size(hair_grid_res);
if (vd->hair_type == TEX_VD_HAIRVELOCITY) {
depth = 4;
vd->data_type = TEX_VD_RGBA_PREMUL;
}
else {
depth = 1;
vd->data_type = TEX_VD_INTENSITY;
}
if (totres > 0) {
vd->dataset = (float *)MEM_mapallocN(sizeof(float) * depth * (totres), "hair volume texture data");
for (i = 0; i < totres; ++i) {
switch (vd->hair_type) {
case TEX_VD_HAIRDENSITY:
vd->dataset[i] = hairgrid[i].density;
break;
case TEX_VD_HAIRRESTDENSITY:
vd->dataset[i] = 0.0f; // TODO
break;
case TEX_VD_HAIRVELOCITY:
vd->dataset[i + 0*totres] = hairgrid[i].velocity[0];
vd->dataset[i + 1*totres] = hairgrid[i].velocity[1];
vd->dataset[i + 2*totres] = hairgrid[i].velocity[2];
vd->dataset[i + 3*totres] = len_v3(hairgrid[i].velocity);
break;
case TEX_VD_HAIRENERGY:
vd->dataset[i] = 0.0f; // TODO
break;
}
}
}
else {
vd->dataset = NULL;
}
MEM_freeN(hairgrid);
// MEM_freeN(collgrid);
return true;
#else
return false; // XXX TODO
#endif
}
/* ================================ */
#endif /* IMPLICIT_SOLVER_EIGEN */