This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/render/intern/include/rayobject.h

125 lines
3.7 KiB
C++
Raw Normal View History

/*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2009 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): André Pinto.
*
* ***** END GPL LICENSE BLOCK *****
*/
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
2011-02-27 19:31:27 +00:00
/** \file blender/render/intern/include/rayobject.h
* \ingroup render
*/
#ifndef RE_RAYOBJECT_H
#define RE_RAYOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
struct Isect;
struct ObjectInstanceRen;
struct RayHint;
struct VlakRen;
/* RayObject
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
Can be a face/triangle, bvh tree, object instance, etc. This is the
public API used by the renderer, see rayobject_internal.h for the
internal implementation details. */
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
typedef struct RayObject RayObject;
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* Intersection, see rayintersection.h */
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
int RE_rayobject_raycast(RayObject *r, struct Isect *i);
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* Acceleration Structures */
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
RayObject* RE_rayobject_octree_create(int ocres, int size);
RayObject* RE_rayobject_instance_create(RayObject *target, float transform[][4], void *ob, void *target_ob);
RayObject* RE_rayobject_empty_create(void);
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
RayObject* RE_rayobject_blibvh_create(int size); /* BLI_kdopbvh.c */
RayObject* RE_rayobject_vbvh_create(int size); /* raytrace/rayobject_vbvh.c */
RayObject* RE_rayobject_svbvh_create(int size); /* raytrace/rayobject_svbvh.c */
RayObject* RE_rayobject_qbvh_create(int size); /* raytrace/rayobject_qbvh.c */
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* Building */
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
void RE_rayobject_add(RayObject *r, RayObject *);
void RE_rayobject_done(RayObject *r);
void RE_rayobject_free(RayObject *r);
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
void RE_rayobject_set_control(RayObject *r, void *data, int (*test_break)(void *data));
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* RayObject representing faces, all data is locally available instead
of referring to some external data structure, for possibly faster
intersection tests. */
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
typedef struct RayFace {
float v1[4], v2[4], v3[4], v4[3];
int quad;
void *ob;
void *face;
} RayFace;
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
#define RE_rayface_isQuad(a) ((a)->quad)
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
RayObject* RE_rayface_from_vlak(RayFace *face, struct ObjectInstanceRen *obi, struct VlakRen *vlr);
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* RayObject representing faces directly from a given VlakRen structure. Thus
allowing to save memory, but making code triangle intersection dependant on
render structures. */
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
typedef struct VlakPrimitive {
struct ObjectInstanceRen *ob;
struct VlakRen *face;
} VlakPrimitive;
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
RayObject* RE_vlakprimitive_from_vlak(VlakPrimitive *face, struct ObjectInstanceRen *obi, struct VlakRen *vlr);
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* Bounding Box */
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* extend min/max coords so that the rayobject is inside them */
void RE_rayobject_merge_bb(RayObject *ob, float *min, float *max);
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* initializes an hint for optiming raycast where it is know that a ray will pass by the given BB often the origin point */
void RE_rayobject_hint_bb(RayObject *r, struct RayHint *hint, float *min, float *max);
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* initializes an hint for optiming raycast where it is know that a ray will be contained inside the given cone*/
/* void RE_rayobject_hint_cone(RayObject *r, struct RayHint *hint, float *); */
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* Internals */
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
#include "../raytrace/rayobject_internal.h"
#ifdef __cplusplus
}
#endif
#endif
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00