This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/mesh/meshtools.c

1303 lines
33 KiB
C
Raw Normal View History

/**
* $Id:
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2004 by Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/*
meshtools.c: no editmode (violated already :), tools operating on meshes
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
2009-09-16 17:43:09 +00:00
#include <float.h>
#include "MEM_guardedalloc.h"
#include "DNA_image_types.h"
#include "DNA_key_types.h"
#include "DNA_material_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_mesh_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_screen_types.h"
#include "DNA_space_types.h"
#include "DNA_view3d_types.h"
2009-02-14 21:31:34 +00:00
#include "DNA_windowmanager_types.h"
#include "DNA_world_types.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "BLI_editVert.h"
#include "BLI_ghash.h"
#include "BLI_rand.h" /* for randome face sorting */
#include "BLI_threads.h"
#include "BKE_blender.h"
#include "BKE_context.h"
#include "BKE_depsgraph.h"
#include "BKE_customdata.h"
#include "BKE_global.h"
#include "BKE_image.h"
#include "BKE_key.h"
#include "BKE_library.h"
#include "BKE_main.h"
#include "BKE_mesh.h"
#include "BKE_material.h"
#include "BKE_object.h"
#include "BKE_utildefines.h"
2009-02-14 21:31:34 +00:00
#include "BKE_report.h"
#include "BKE_tessmesh.h"
#include "RE_pipeline.h"
#include "RE_shader_ext.h"
#include "PIL_time.h"
#include "IMB_imbuf_types.h"
#include "IMB_imbuf.h"
#include "GPU_draw.h"
#include "BLO_sys_types.h" // for intptr_t support
#include "ED_mesh.h"
#include "ED_object.h"
#include "ED_view3d.h"
#include "WM_api.h"
#include "WM_types.h"
/* own include */
#include "mesh_intern.h"
/* XXX */
static void waitcursor(int val) {}
static void error() {}
static int pupmenu() {return 0;}
/* XXX */
/* * ********************** no editmode!!! *********** */
/*********************** JOIN ***************************/
/* join selected meshes into the active mesh, context sensitive
return 0 if no join is made (error) and 1 of the join is done */
int join_mesh_exec(bContext *C, wmOperator *op)
{
Scene *scene= CTX_data_scene(C);
Object *ob= CTX_data_active_object(C);
Material **matar, *ma;
Mesh *me;
MVert *mvert, *mv, *mvertmain;
MEdge *medge = NULL, *medgemain;
MFace *mface = NULL, *mfacemain;
2009-07-16 06:27:37 +00:00
MPoly *mpoly = NULL, *mpolymain;
MLoop *mloop = NULL, *mloopmain;
Key *key, *nkey=NULL;
KeyBlock *kb, *okb, *kbn;
float imat[4][4], cmat[4][4], *fp1, *fp2, curpos;
int a, b, totcol, totmat=0, totedge=0, totvert=0, totface=0, ok=0;
2009-07-16 06:27:37 +00:00
int totloop=0, totpoly=0, vertofs, *matmap;
int i, j, index, haskey=0, edgeofs, faceofs, loopofs, polyofs;
bDeformGroup *dg, *odg;
MDeformVert *dvert;
2009-07-16 06:27:37 +00:00
CustomData vdata, edata, fdata, ldata, pdata;
if(scene->obedit)
return OPERATOR_CANCELLED;
/* ob is the object we are adding geometry to */
if(!ob || ob->type!=OB_MESH)
return OPERATOR_CANCELLED;
/* count & check */
CTX_DATA_BEGIN(C, Base*, base, selected_editable_bases) {
if(base->object->type==OB_MESH) {
me= base->object->data;
totvert+= me->totvert;
totedge+= me->totedge;
totface+= me->totface;
2009-07-16 06:27:37 +00:00
totloop+= me->totloop;
totpoly+= me->totpoly;
totmat+= base->object->totcol;
if(base->object == ob)
ok= 1;
/* check for shapekeys */
if(me->key)
haskey++;
}
}
CTX_DATA_END;
/* that way the active object is always selected */
if(ok==0)
return OPERATOR_CANCELLED;
/* only join meshes if there are verts to join, there aren't too many, and we only had one mesh selected */
me= (Mesh *)ob->data;
key= me->key;
if(totvert==0 || totvert>MESH_MAX_VERTS || totvert==me->totvert)
return OPERATOR_CANCELLED;
/* new material indices and material array */
matar= MEM_callocN(sizeof(void*)*totmat, "join_mesh matar");
matmap= MEM_callocN(sizeof(int)*totmat, "join_mesh matmap");
totcol= ob->totcol;
/* obact materials in new main array, is nicer start! */
for(a=0; a<ob->totcol; a++) {
matar[a]= give_current_material(ob, a+1);
id_us_plus((ID *)matar[a]);
/* increase id->us : will be lowered later */
}
/* - if destination mesh had shapekeys, move them somewhere safe, and set up placeholders
* with arrays that are large enough to hold shapekey data for all meshes
* - if destination mesh didn't have shapekeys, but we encountered some in the meshes we're
* joining, set up a new keyblock and assign to the mesh
*/
if(key) {
/* make a duplicate copy that will only be used here... (must remember to free it!) */
nkey= copy_key(key);
/* for all keys in old block, clear data-arrays */
for(kb= key->block.first; kb; kb= kb->next) {
if(kb->data) MEM_freeN(kb->data);
kb->data= MEM_callocN(sizeof(float)*3*totvert, "join_shapekey");
kb->totelem= totvert;
kb->weights= NULL;
}
}
else if(haskey) {
/* add a new key-block and add to the mesh */
key= me->key= add_key((ID *)me);
key->type = KEY_RELATIVE;
}
/* first pass over objects - copying materials and vertexgroups across */
CTX_DATA_BEGIN(C, Base*, base, selected_editable_bases) {
/* only act if a mesh, and not the one we're joining to */
if((ob!=base->object) && (base->object->type==OB_MESH)) {
me= base->object->data;
/* Join this object's vertex groups to the base one's */
for(dg=base->object->defbase.first; dg; dg=dg->next) {
/* See if this group exists in the object (if it doesn't, add it to the end) */
for(odg=ob->defbase.first; odg; odg=odg->next) {
if(!strcmp(odg->name, dg->name)) {
break;
}
}
if(!odg) {
odg = MEM_callocN(sizeof(bDeformGroup), "join deformGroup");
memcpy(odg, dg, sizeof(bDeformGroup));
BLI_addtail(&ob->defbase, odg);
}
}
if(ob->defbase.first && ob->actdef==0)
ob->actdef=1;
if(me->totvert) {
/* Add this object's materials to the base one's if they don't exist already (but only if limits not exceeded yet) */
if(totcol < MAXMAT-1) {
for(a=1; a<=base->object->totcol; a++) {
ma= give_current_material(base->object, a);
for(b=0; b<totcol; b++) {
if(ma == matar[b]) break;
}
if(b==totcol) {
matar[b]= ma;
if(ma)
ma->id.us++;
totcol++;
}
if(totcol>=MAXMAT-1)
break;
}
}
/* if this mesh has shapekeys, check if destination mesh already has matching entries too */
if(me->key && key) {
for(kb= me->key->block.first; kb; kb= kb->next) {
/* if key doesn't exist in destination mesh, add it */
if(key_get_named_keyblock(key, kb->name) == NULL) {
/* copy this existing one over to the new shapekey block */
kbn= MEM_dupallocN(kb);
kbn->prev= kbn->next= NULL;
/* adjust adrcode and other settings to fit (allocate a new data-array) */
kbn->data= MEM_callocN(sizeof(float)*3*totvert, "joined_shapekey");
kbn->totelem= totvert;
kbn->weights= NULL;
okb= key->block.last;
curpos= (okb) ? okb->pos : -0.1f;
if(key->type == KEY_RELATIVE)
kbn->pos= curpos + 0.1f;
else
kbn->pos= curpos;
BLI_addtail(&key->block, kbn);
kbn->adrcode= key->totkey;
key->totkey++;
if(key->totkey==1) key->refkey= kbn;
// XXX 2.5 Animato
#if 0
/* also, copy corresponding ipo-curve to ipo-block if applicable */
if(me->key->ipo && key->ipo) {
// FIXME... this is a luxury item!
puts("FIXME: ignoring IPO's when joining shapekeys on Meshes for now...");
}
#endif
}
}
}
}
}
}
CTX_DATA_END;
/* setup new data for destination mesh */
memset(&vdata, 0, sizeof(vdata));
memset(&edata, 0, sizeof(edata));
memset(&fdata, 0, sizeof(fdata));
2009-07-16 06:27:37 +00:00
memset(&ldata, 0, sizeof(ldata));
memset(&pdata, 0, sizeof(pdata));
mvert= CustomData_add_layer(&vdata, CD_MVERT, CD_CALLOC, NULL, totvert);
medge= CustomData_add_layer(&edata, CD_MEDGE, CD_CALLOC, NULL, totedge);
mface= CustomData_add_layer(&fdata, CD_MFACE, CD_CALLOC, NULL, totface);
2009-07-16 06:27:37 +00:00
mloop= CustomData_add_layer(&ldata, CD_MLOOP, CD_CALLOC, NULL, totloop);
mpoly= CustomData_add_layer(&pdata, CD_MPOLY, CD_CALLOC, NULL, totpoly);
mvertmain= mvert;
medgemain= medge;
mfacemain= mface;
2009-07-16 06:27:37 +00:00
mloopmain = mloop;
mpolymain = mpoly;
vertofs= 0;
edgeofs= 0;
faceofs= 0;
2009-07-16 06:27:37 +00:00
loopofs= 0;
polyofs= 0;
/* inverse transform for all selected meshes in this object */
Mat4Invert(imat, ob->obmat);
CTX_DATA_BEGIN(C, Base*, base, selected_editable_bases) {
/* only join if this is a mesh */
if(base->object->type==OB_MESH) {
me= base->object->data;
if(me->totvert) {
/* standard data */
CustomData_merge(&me->vdata, &vdata, CD_MASK_MESH, CD_DEFAULT, totvert);
CustomData_copy_data(&me->vdata, &vdata, 0, vertofs, me->totvert);
/* vertex groups */
dvert= CustomData_get(&vdata, vertofs, CD_MDEFORMVERT);
/* NB: vertex groups here are new version */
if(dvert) {
for(i=0; i<me->totvert; i++) {
for(j=0; j<dvert[i].totweight; j++) {
/* Find the old vertex group */
odg = BLI_findlink(&base->object->defbase, dvert[i].dw[j].def_nr);
if(odg) {
/* Search for a match in the new object, and set new index */
for(dg=ob->defbase.first, index=0; dg; dg=dg->next, index++) {
if(!strcmp(dg->name, odg->name)) {
dvert[i].dw[j].def_nr = index;
break;
}
}
}
}
}
}
/* if this is the object we're merging into, no need to do anything */
if(base->object != ob) {
/* watch this: switch matmul order really goes wrong */
Mat4MulMat4(cmat, base->object->obmat, imat);
/* transform vertex coordinates into new space */
for(a=0, mv=mvert; a < me->totvert; a++, mv++) {
Mat4MulVecfl(cmat, mv->co);
}
/* for each shapekey in destination mesh:
* - if there's a matching one, copy it across (will need to transform vertices into new space...)
* - otherwise, just copy own coordinates of mesh (no need to transform vertex coordinates into new space)
*/
if(key) {
/* if this mesh has any shapekeys, check first, otherwise just copy coordinates */
for(kb= key->block.first; kb; kb= kb->next) {
/* get pointer to where to write data for this mesh in shapekey's data array */
fp1= ((float *)kb->data) + (vertofs*3);
/* check if this mesh has such a shapekey */
okb= key_get_named_keyblock(me->key, kb->name);
if(okb) {
/* copy this mesh's shapekey to the destination shapekey (need to transform first) */
fp2= ((float *)(okb->data));
for(a=0; a < me->totvert; a++, fp1+=3, fp2+=3) {
VECCOPY(fp1, fp2);
Mat4MulVecfl(cmat, fp1);
}
}
else {
/* copy this mesh's vertex coordinates to the destination shapekey */
mv= mvert;
for(a=0; a < me->totvert; a++, fp1+=3, mv++) {
VECCOPY(fp1, mv->co);
}
}
}
}
}
else {
/* for each shapekey in destination mesh:
* - if it was an 'original', copy the appropriate data from nkey
* - otherwise, copy across plain coordinates (no need to transform coordinates)
*/
if(key) {
for(kb= key->block.first; kb; kb= kb->next) {
/* get pointer to where to write data for this mesh in shapekey's data array */
fp1= ((float *)kb->data) + (vertofs*3);
/* check if this was one of the original shapekeys */
okb= key_get_named_keyblock(nkey, kb->name);
if(okb) {
/* copy this mesh's shapekey to the destination shapekey */
fp2= ((float *)(okb->data));
for(a=0; a < me->totvert; a++, fp1+=3, fp2+=3) {
VECCOPY(fp1, fp2);
}
}
else {
/* copy base-coordinates to the destination shapekey */
mv= mvert;
for(a=0; a < me->totvert; a++, fp1+=3, mv++) {
VECCOPY(fp1, mv->co);
}
}
}
}
}
/* advance mvert pointer to end of base mesh's data */
mvert+= me->totvert;
}
if(me->totface) {
/* make mapping for materials */
for(a=1; a<=base->object->totcol; a++) {
ma= give_current_material(base->object, a);
for(b=0; b<totcol; b++) {
if(ma == matar[b]) {
matmap[a-1]= b;
break;
}
}
}
CustomData_merge(&me->fdata, &fdata, CD_MASK_MESH, CD_DEFAULT, totface);
CustomData_copy_data(&me->fdata, &fdata, 0, faceofs, me->totface);
for(a=0; a<me->totface; a++, mface++) {
mface->v1+= vertofs;
mface->v2+= vertofs;
mface->v3+= vertofs;
if(mface->v4) mface->v4+= vertofs;
mface->mat_nr= matmap[(int)mface->mat_nr];
}
faceofs += me->totface;
}
if(me->totedge) {
CustomData_merge(&me->edata, &edata, CD_MASK_MESH, CD_DEFAULT, totedge);
CustomData_copy_data(&me->edata, &edata, 0, edgeofs, me->totedge);
for(a=0; a<me->totedge; a++, medge++) {
medge->v1+= vertofs;
medge->v2+= vertofs;
}
edgeofs += me->totedge;
}
2009-07-16 06:27:37 +00:00
if (me->totloop) {
CustomData_merge(&me->ldata, &ldata, CD_MASK_MESH, CD_DEFAULT, totloop);
CustomData_copy_data(&me->ldata, &ldata, 0, loopofs, me->totloop);
for(a=0; a<me->totloop; a++, mloop++) {
mloop->v += vertofs;
mloop->e += edgeofs;
}
loopofs += me->totloop;
}
2009-07-16 06:27:37 +00:00
if(me->totpoly) {
/* make mapping for materials */
for(a=1; a<=base->object->totcol; a++) {
ma= give_current_material(base->object, a);
for(b=0; b<totcol; b++) {
if(ma == matar[b]) {
matmap[a-1]= b;
break;
}
}
}
2009-07-16 06:27:37 +00:00
CustomData_merge(&me->pdata, &pdata, CD_MASK_MESH, CD_DEFAULT, totpoly);
CustomData_copy_data(&me->pdata, &pdata, 0, polyofs, me->totpoly);
for(a=0; a<me->totpoly; a++, mpoly++) {
mpoly->loopstart += loopofs;
mpoly->mat_nr= matmap[(int)mpoly->mat_nr];
}
2009-07-16 06:27:37 +00:00
polyofs += me->totface;
}
2009-07-16 06:27:37 +00:00
/* vertofs is used to help newly added verts be reattached to their edge/face
* (cannot be set earlier, or else reattaching goes wrong)
*/
vertofs += me->totvert;
/* free base, now that data is merged */
if(base->object != ob)
ED_base_object_free_and_unlink(scene, base);
}
}
CTX_DATA_END;
/* return to mesh we're merging to */
me= ob->data;
CustomData_free(&me->vdata, me->totvert);
CustomData_free(&me->edata, me->totedge);
CustomData_free(&me->fdata, me->totface);
2009-07-16 06:27:37 +00:00
CustomData_free(&me->ldata, me->totloop);
CustomData_free(&me->pdata, me->totpoly);
me->totvert= totvert;
me->totedge= totedge;
me->totface= totface;
2009-07-16 06:27:37 +00:00
me->totloop= totloop;
me->totpoly= totpoly;
me->vdata= vdata;
me->edata= edata;
me->fdata= fdata;
2009-07-16 06:27:37 +00:00
me->ldata= ldata;
me->pdata= pdata;
mesh_update_customdata_pointers(me);
/* old material array */
for(a=1; a<=ob->totcol; a++) {
ma= ob->mat[a-1];
if(ma) ma->id.us--;
}
for(a=1; a<=me->totcol; a++) {
ma= me->mat[a-1];
if(ma) ma->id.us--;
}
if(ob->mat) MEM_freeN(ob->mat);
if(ob->matbits) MEM_freeN(ob->matbits);
if(me->mat) MEM_freeN(me->mat);
ob->mat= me->mat= NULL;
ob->matbits= NULL;
if(totcol) {
me->mat= matar;
ob->mat= MEM_callocN(sizeof(void *)*totcol, "join obmatar");
ob->matbits= MEM_callocN(sizeof(char)*totcol, "join obmatbits");
}
else
MEM_freeN(matar);
ob->totcol= me->totcol= totcol;
ob->colbits= 0;
MEM_freeN(matmap);
/* other mesh users */
test_object_materials((ID *)me);
/* free temp copy of destination shapekeys (if applicable) */
if(nkey) {
// XXX 2.5 Animato
#if 0
/* free it's ipo too - both are not actually freed from memory yet as ID-blocks */
if(nkey->ipo) {
free_ipo(nkey->ipo);
BLI_remlink(&G.main->ipo, nkey->ipo);
MEM_freeN(nkey->ipo);
}
#endif
free_key(nkey);
BLI_remlink(&G.main->key, nkey);
MEM_freeN(nkey);
}
DAG_scene_sort(scene); // removed objects, need to rebuild dag before editmode call
ED_object_enter_editmode(C, EM_WAITCURSOR);
ED_object_exit_editmode(C, EM_FREEDATA|EM_WAITCURSOR|EM_DO_UNDO);
WM_event_add_notifier(C, NC_SCENE|ND_OB_ACTIVE, scene);
return OPERATOR_FINISHED;
}
/* ********************** SORT FACES ******************* */
static void permutate(void *list, int num, int size, int *index)
{
void *buf;
int len;
int i;
len = num * size;
buf = MEM_mallocN(len, "permutate");
memcpy(buf, list, len);
for (i = 0; i < num; i++) {
memcpy((char *)list + (i * size), (char *)buf + (index[i] * size), size);
}
MEM_freeN(buf);
}
/* sort faces on view axis */
static float *face_sort_floats;
static int float_sort(const void *v1, const void *v2)
{
float x1, x2;
x1 = face_sort_floats[((int *) v1)[0]];
x2 = face_sort_floats[((int *) v2)[0]];
if( x1 > x2 ) return 1;
else if( x1 < x2 ) return -1;
return 0;
}
void sort_faces(Scene *scene, View3D *v3d)
{
RegionView3D *rv3d= NULL; // get from context
Object *ob= OBACT;
Mesh *me;
CustomDataLayer *layer;
int i, *index;
short event;
float reverse = 1;
int ctrl= 0; // XXX
if(!ob) return;
if(scene->obedit) return;
if(ob->type!=OB_MESH) return;
if (!v3d) return;
me= ob->data;
if(me->totface==0) return;
event = pupmenu(
"Sort Faces (Ctrl to reverse)%t|"
"View Axis%x1|"
"Cursor Distance%x2|"
"Material%x3|"
"Selection%x4|"
"Randomize%x5");
if (event==-1) return;
if(ctrl)
reverse = -1;
/* create index list */
index = (int *) MEM_mallocN(sizeof(int) * me->totface, "sort faces");
for (i = 0; i < me->totface; i++) {
index[i] = i;
}
face_sort_floats = (float *) MEM_mallocN(sizeof(float) * me->totface, "sort faces float");
/* sort index list instead of faces itself
and apply this permutation to all face layers */
if (event == 5) {
/* Random */
for(i=0; i<me->totface; i++) {
face_sort_floats[i] = BLI_frand();
}
qsort(index, me->totface, sizeof(int), float_sort);
} else {
MFace *mf;
float vec[3];
float mat[4][4];
float cur[3];
if (event == 1)
Mat4MulMat4(mat, OBACT->obmat, rv3d->viewmat); /* apply the view matrix to the object matrix */
else if (event == 2) { /* sort from cursor */
if( v3d && v3d->localvd ) {
VECCOPY(cur, v3d->cursor);
} else {
VECCOPY(cur, scene->cursor);
}
Mat4Invert(mat, OBACT->obmat);
Mat4MulVecfl(mat, cur);
}
mf= me->mface;
for(i=0; i<me->totface; i++, mf++) {
if (event==3) {
face_sort_floats[i] = ((float)mf->mat_nr)*reverse;
} else if (event==4) {
/*selected first*/
if (mf->flag & ME_FACE_SEL) face_sort_floats[i] = 0.0;
else face_sort_floats[i] = reverse;
} else {
/* find the faces center */
VecAddf(vec, (me->mvert+mf->v1)->co, (me->mvert+mf->v2)->co);
if (mf->v4) {
VecAddf(vec, vec, (me->mvert+mf->v3)->co);
VecAddf(vec, vec, (me->mvert+mf->v4)->co);
VecMulf(vec, 0.25f);
} else {
VecAddf(vec, vec, (me->mvert+mf->v3)->co);
VecMulf(vec, 1.0f/3.0f);
} /* done */
if (event == 1) { /* sort on view axis */
Mat4MulVecfl(mat, vec);
face_sort_floats[i] = vec[2] * reverse;
} else { /* distance from cursor*/
face_sort_floats[i] = VecLenf(cur, vec) * reverse; /* back to front */
}
}
}
qsort(index, me->totface, sizeof(int), float_sort);
}
MEM_freeN(face_sort_floats);
for(i = 0; i < me->fdata.totlayer; i++) {
layer = &me->fdata.layers[i];
permutate(layer->data, me->totface, CustomData_sizeof(layer->type), index);
}
MEM_freeN(index);
2009-09-16 17:43:09 +00:00
DAG_id_flush_update(ob->data, OB_RECALC_DATA);
}
/* ********************* MESH VERTEX OCTREE LOOKUP ************* */
/* important note; this is unfinished, needs better API for editmode, and custom threshold */
#define MOC_RES 8
#define MOC_NODE_RES 8
#define MOC_THRESH 0.0002f
typedef struct MocNode {
struct MocNode *next;
intptr_t index[MOC_NODE_RES];
} MocNode;
static int mesh_octree_get_base_offs(float *co, float *offs, float *div)
{
int vx, vy, vz;
vx= floor( (co[0]-offs[0])/div[0] );
vy= floor( (co[1]-offs[1])/div[1] );
vz= floor( (co[2]-offs[2])/div[2] );
CLAMP(vx, 0, MOC_RES-1);
CLAMP(vy, 0, MOC_RES-1);
CLAMP(vz, 0, MOC_RES-1);
return (vx*MOC_RES*MOC_RES) + vy*MOC_RES + vz;
}
static void mesh_octree_add_node(MocNode **bt, intptr_t index)
{
if(*bt==NULL) {
*bt= MEM_callocN(sizeof(MocNode), "MocNode");
(*bt)->index[0]= index;
}
else {
int a;
for(a=0; a<MOC_NODE_RES; a++) {
if((*bt)->index[a]==index)
return;
else if((*bt)->index[a]==0) {
(*bt)->index[a]= index;
return;
}
}
mesh_octree_add_node(&(*bt)->next, index);
}
}
static void mesh_octree_free_node(MocNode **bt)
{
if( (*bt)->next ) {
mesh_octree_free_node(&(*bt)->next);
}
MEM_freeN(*bt);
}
/* temporal define, just to make nicer code below */
#define MOC_ADDNODE(vx, vy, vz) mesh_octree_add_node(basetable + ((vx)*MOC_RES*MOC_RES) + (vy)*MOC_RES + (vz), index)
static void mesh_octree_add_nodes(MocNode **basetable, float *co, float *offs, float *div, intptr_t index)
{
float fx, fy, fz;
int vx, vy, vz;
if (!finite(co[0]) ||
!finite(co[1]) ||
!finite(co[2])
) {
return;
}
fx= (co[0]-offs[0])/div[0];
fy= (co[1]-offs[1])/div[1];
fz= (co[2]-offs[2])/div[2];
CLAMP(fx, 0.0f, MOC_RES-MOC_THRESH);
CLAMP(fy, 0.0f, MOC_RES-MOC_THRESH);
CLAMP(fz, 0.0f, MOC_RES-MOC_THRESH);
vx= floor(fx);
vy= floor(fy);
vz= floor(fz);
MOC_ADDNODE(vx, vy, vz);
if( vx>0 )
if( fx-((float)vx)-MOC_THRESH < 0.0f)
MOC_ADDNODE(vx-1, vy, vz);
if( vx<MOC_RES-2 )
if( fx-((float)vx)+MOC_THRESH > 1.0f)
MOC_ADDNODE(vx+1, vy, vz);
if( vy>0 )
if( fy-((float)vy)-MOC_THRESH < 0.0f)
MOC_ADDNODE(vx, vy-1, vz);
if( vy<MOC_RES-2 )
if( fy-((float)vy)+MOC_THRESH > 1.0f)
MOC_ADDNODE(vx, vy+1, vz);
if( vz>0 )
if( fz-((float)vz)-MOC_THRESH < 0.0f)
MOC_ADDNODE(vx, vy, vz-1);
if( vz<MOC_RES-2 )
if( fz-((float)vz)+MOC_THRESH > 1.0f)
MOC_ADDNODE(vx, vy, vz+1);
}
static intptr_t mesh_octree_find_index(MocNode **bt, MVert *mvert, float *co)
{
float *vec;
int a;
if(*bt==NULL)
return -1;
for(a=0; a<MOC_NODE_RES; a++) {
if((*bt)->index[a]) {
/* does mesh verts and editmode, code looks potential dangerous, octree should really be filled OK! */
if(mvert) {
vec= (mvert+(*bt)->index[a]-1)->co;
if(FloatCompare(vec, co, MOC_THRESH))
return (*bt)->index[a]-1;
}
else {
EditVert *eve= (EditVert *)((*bt)->index[a]);
if(FloatCompare(eve->co, co, MOC_THRESH))
return (*bt)->index[a];
}
}
else return -1;
}
if( (*bt)->next)
return mesh_octree_find_index(&(*bt)->next, mvert, co);
return -1;
}
static struct {
MocNode **table;
float offs[3], div[3];
} MeshOctree = {NULL, {0, 0, 0}, {0, 0, 0}};
/* mode is 's' start, or 'e' end, or 'u' use */
/* if end, ob can be NULL */
intptr_t mesh_octree_table(Object *ob, BMEditMesh *em, float *co, char mode)
{
MocNode **bt;
if(mode=='u') { /* use table */
if(MeshOctree.table==NULL)
mesh_octree_table(ob, em, NULL, 's');
if(MeshOctree.table) {
Mesh *me= ob->data;
bt= MeshOctree.table + mesh_octree_get_base_offs(co, MeshOctree.offs, MeshOctree.div);
if(em)
return mesh_octree_find_index(bt, NULL, co);
else
return mesh_octree_find_index(bt, me->mvert, co);
}
return -1;
}
else if(mode=='s') { /* start table */
Mesh *me= ob->data;
float min[3], max[3];
/* we compute own bounding box and don't reuse ob->bb because
* we are using the undeformed coordinates*/
INIT_MINMAX(min, max);
if(em && me->edit_btmesh==em) {
BMIter iter;
BMVert *eve;
eve = BMIter_New(&iter, em->bm, BM_VERTS_OF_MESH, NULL);
for (; eve; eve=BMIter_Step(&iter))
DO_MINMAX(eve->co, min, max)
}
else {
MVert *mvert;
int a;
for(a=0, mvert= me->mvert; a<me->totvert; a++, mvert++)
DO_MINMAX(mvert->co, min, max);
}
/* for quick unit coordinate calculus */
VECCOPY(MeshOctree.offs, min);
MeshOctree.offs[0]-= MOC_THRESH; /* we offset it 1 threshold unit extra */
MeshOctree.offs[1]-= MOC_THRESH;
MeshOctree.offs[2]-= MOC_THRESH;
VecSubf(MeshOctree.div, max, min);
MeshOctree.div[0]+= 2*MOC_THRESH; /* and divide with 2 threshold unit more extra (try 8x8 unit grid on paint) */
MeshOctree.div[1]+= 2*MOC_THRESH;
MeshOctree.div[2]+= 2*MOC_THRESH;
VecMulf(MeshOctree.div, 1.0f/MOC_RES);
if(MeshOctree.div[0]==0.0f) MeshOctree.div[0]= 1.0f;
if(MeshOctree.div[1]==0.0f) MeshOctree.div[1]= 1.0f;
if(MeshOctree.div[2]==0.0f) MeshOctree.div[2]= 1.0f;
if(MeshOctree.table) /* happens when entering this call without ending it */
mesh_octree_table(ob, em, co, 'e');
MeshOctree.table= MEM_callocN(MOC_RES*MOC_RES*MOC_RES*sizeof(void *), "sym table");
if(em && me->edit_btmesh==em) {
BMVert *eve;
BMIter iter;
eve = BMIter_New(&iter, em->bm, BM_VERTS_OF_MESH, NULL);
for (; eve; eve=BMIter_Step(&iter)) {
mesh_octree_add_nodes(MeshOctree.table, eve->co, MeshOctree.offs, MeshOctree.div, (intptr_t)(eve));
}
}
else {
MVert *mvert;
int a;
for(a=0, mvert= me->mvert; a<me->totvert; a++, mvert++)
mesh_octree_add_nodes(MeshOctree.table, mvert->co, MeshOctree.offs, MeshOctree.div, a+1);
}
}
else if(mode=='e') { /* end table */
if(MeshOctree.table) {
int a;
for(a=0, bt=MeshOctree.table; a<MOC_RES*MOC_RES*MOC_RES; a++, bt++) {
if(*bt) mesh_octree_free_node(bt);
}
MEM_freeN(MeshOctree.table);
MeshOctree.table= NULL;
}
}
return 0;
}
int mesh_get_x_mirror_vert(Object *ob, int index)
{
Mesh *me= ob->data;
MVert *mvert;
float vec[3];
mvert= me->mvert+index;
vec[0]= -mvert->co[0];
vec[1]= mvert->co[1];
vec[2]= mvert->co[2];
return mesh_octree_table(ob, NULL, vec, 'u');
}
BMVert *editmesh_get_x_mirror_vert(Object *ob, BMEditMesh *em, float *co)
{
float vec[3];
intptr_t poinval;
/* ignore nan verts */
if (!finite(co[0]) ||
!finite(co[1]) ||
!finite(co[2])
)
return NULL;
vec[0]= -co[0];
vec[1]= co[1];
vec[2]= co[2];
poinval= mesh_octree_table(ob, em, vec, 'u');
if(poinval != -1)
return (BMVert *)(poinval);
return NULL;
}
static unsigned int mirror_facehash(void *ptr)
{
MFace *mf= ptr;
int v0, v1;
if(mf->v4) {
v0= MIN4(mf->v1, mf->v2, mf->v3, mf->v4);
v1= MAX4(mf->v1, mf->v2, mf->v3, mf->v4);
}
else {
v0= MIN3(mf->v1, mf->v2, mf->v3);
v1= MAX3(mf->v1, mf->v2, mf->v3);
}
return ((v0*39)^(v1*31));
}
static int mirror_facerotation(MFace *a, MFace *b)
{
if(b->v4) {
if(a->v1==b->v1 && a->v2==b->v2 && a->v3==b->v3 && a->v4==b->v4)
return 0;
else if(a->v4==b->v1 && a->v1==b->v2 && a->v2==b->v3 && a->v3==b->v4)
return 1;
else if(a->v3==b->v1 && a->v4==b->v2 && a->v1==b->v3 && a->v2==b->v4)
return 2;
else if(a->v2==b->v1 && a->v3==b->v2 && a->v4==b->v3 && a->v1==b->v4)
return 3;
}
else {
if(a->v1==b->v1 && a->v2==b->v2 && a->v3==b->v3)
return 0;
else if(a->v3==b->v1 && a->v1==b->v2 && a->v2==b->v3)
return 1;
else if(a->v2==b->v1 && a->v3==b->v2 && a->v1==b->v3)
return 2;
}
return -1;
}
static int mirror_facecmp(void *a, void *b)
{
return (mirror_facerotation((MFace*)a, (MFace*)b) == -1);
}
int *mesh_get_x_mirror_faces(Object *ob, BMEditMesh *em)
{
Mesh *me= ob->data;
MVert *mv, *mvert= me->mvert;
MFace mirrormf, *mf, *hashmf, *mface= me->mface;
GHash *fhash;
int *mirrorverts, *mirrorfaces;
int a;
mirrorverts= MEM_callocN(sizeof(int)*me->totvert, "MirrorVerts");
mirrorfaces= MEM_callocN(sizeof(int)*2*me->totface, "MirrorFaces");
mesh_octree_table(ob, em, NULL, 's');
for(a=0, mv=mvert; a<me->totvert; a++, mv++)
mirrorverts[a]= mesh_get_x_mirror_vert(ob, a);
mesh_octree_table(ob, em, NULL, 'e');
fhash= BLI_ghash_new(mirror_facehash, mirror_facecmp);
for(a=0, mf=mface; a<me->totface; a++, mf++)
BLI_ghash_insert(fhash, mf, mf);
for(a=0, mf=mface; a<me->totface; a++, mf++) {
mirrormf.v1= mirrorverts[mf->v3];
mirrormf.v2= mirrorverts[mf->v2];
mirrormf.v3= mirrorverts[mf->v1];
mirrormf.v4= (mf->v4)? mirrorverts[mf->v4]: 0;
/* make sure v4 is not 0 if a quad */
if(mf->v4 && mirrormf.v4==0) {
SWAP(int, mirrormf.v1, mirrormf.v3);
SWAP(int, mirrormf.v2, mirrormf.v4);
}
hashmf= BLI_ghash_lookup(fhash, &mirrormf);
if(hashmf) {
mirrorfaces[a*2]= hashmf - mface;
mirrorfaces[a*2+1]= mirror_facerotation(&mirrormf, hashmf);
}
else
mirrorfaces[a*2]= -1;
}
BLI_ghash_free(fhash, NULL, NULL);
MEM_freeN(mirrorverts);
return mirrorfaces;
}
/* ****************** render BAKING ********************** */
/* threaded break test */
2009-01-22 14:59:49 +00:00
static int thread_break(void *unused)
{
return G.afbreek;
}
static ScrArea *biggest_image_area(bScreen *screen)
{
ScrArea *sa, *big= NULL;
int size, maxsize= 0;
for(sa= screen->areabase.first; sa; sa= sa->next) {
if(sa->spacetype==SPACE_IMAGE) {
size= sa->winx*sa->winy;
if(sa->winx > 10 && sa->winy > 10 && size > maxsize) {
maxsize= size;
big= sa;
}
}
}
return big;
}
typedef struct BakeRender {
Render *re;
struct Object *actob;
int event, tot, ready;
} BakeRender;
static void *do_bake_render(void *bake_v)
{
BakeRender *bkr= bake_v;
bkr->tot= RE_bake_shade_all_selected(bkr->re, bkr->event, bkr->actob);
bkr->ready= 1;
return NULL;
}
void objects_bake_render(Scene *scene, short event, char **error_msg)
{
Object *actob= OBACT;
int active= scene->r.bake_flag & R_BAKE_TO_ACTIVE;
short prev_r_raytrace= 0, prev_wo_amb_occ= 0;
if(event==0) event= scene->r.bake_mode;
if(scene->r.renderer!=R_INTERN) {
*error_msg = "Bake only supported for Internal Renderer";
return;
}
if(active && !actob) {
*error_msg = "No active object";
return;
}
if(event>0) {
bScreen *screen= NULL; // XXX CTX
Render *re= RE_NewRender("_Bake View_");
ScrArea *area= biggest_image_area(screen);
ListBase threads;
BakeRender bkr;
int timer=0, tot; // XXX, sculptmode= G.f & G_SCULPTMODE;
// XXX if(sculptmode) set_sculptmode();
if(event==1) event= RE_BAKE_ALL;
else if(event==2) event= RE_BAKE_AO;
else if(event==3) event= RE_BAKE_NORMALS;
else if(event==4) event= RE_BAKE_TEXTURE;
else if(event==5) event= RE_BAKE_DISPLACEMENT;
else event= RE_BAKE_SHADOW;
if(event==RE_BAKE_AO) {
if(scene->world==NULL) {
*error_msg = "No world set up";
return;
}
/* If raytracing or AO is disabled, switch it on temporarily for baking. */
prev_wo_amb_occ = (scene->world->mode & WO_AMB_OCC) != 0;
scene->world->mode |= WO_AMB_OCC;
}
if(event==RE_BAKE_AO || active) {
prev_r_raytrace = (scene->r.mode & R_RAYTRACE) != 0;
scene->r.mode |= R_RAYTRACE;
}
waitcursor(1);
2009-01-22 14:59:49 +00:00
RE_test_break_cb(re, NULL, thread_break);
G.afbreek= 0; /* blender_test_break uses this global */
RE_Database_Baking(re, scene, event, (active)? actob: NULL);
/* baking itself is threaded, cannot use test_break in threads. we also update optional imagewindow */
BLI_init_threads(&threads, do_bake_render, 1);
bkr.re= re;
bkr.event= event;
bkr.ready= 0;
bkr.actob= (active)? actob: NULL;
BLI_insert_thread(&threads, &bkr);
while(bkr.ready==0) {
PIL_sleep_ms(50);
if(bkr.ready)
break;
if (!G.background) {
blender_test_break();
timer++;
if(area && timer==20) {
Image *ima= RE_bake_shade_get_image();
if(ima) ((SpaceImage *)area->spacedata.first)->image= ima;
// XX scrarea_do_windraw(area);
// myswapbuffers();
timer= 0;
}
}
}
BLI_end_threads(&threads);
tot= bkr.tot;
RE_Database_Free(re);
waitcursor(0);
if(tot==0) *error_msg = "No Images found to bake to";
else {
Image *ima;
/* force OpenGL reload and mipmap recalc */
for(ima= G.main->image.first; ima; ima= ima->id.next) {
if(ima->ok==IMA_OK_LOADED) {
ImBuf *ibuf= BKE_image_get_ibuf(ima, NULL);
if(ibuf && (ibuf->userflags & IB_BITMAPDIRTY)) {
GPU_free_image(ima);
imb_freemipmapImBuf(ibuf);
}
}
}
}
/* restore raytrace and AO */
if(event==RE_BAKE_AO)
if(prev_wo_amb_occ == 0)
scene->world->mode &= ~WO_AMB_OCC;
if(event==RE_BAKE_AO || active)
if(prev_r_raytrace == 0)
scene->r.mode &= ~R_RAYTRACE;
// XXX if(sculptmode) set_sculptmode();
}
}
/* all selected meshes with UV maps are rendered for current scene visibility */
static void objects_bake_render_ui(Scene *scene, short event)
{
char *error_msg = NULL;
// int is_editmode = (obedit!=NULL);
/* Deal with editmode, this is a bit clunky but since UV's are in editmode, users are likely to bake from their */
// XXX if (is_editmode) exit_editmode(0);
objects_bake_render(scene, event, &error_msg);
// XXX if (is_editmode) enter_editmode(0);
if (error_msg)
error(error_msg);
}
void objects_bake_render_menu(Scene *scene)
{
short event;
event= pupmenu("Bake Selected Meshes %t|Full Render %x1|Ambient Occlusion %x2|Normals %x3|Texture Only %x4|Displacement %x5|Shadow %x6");
if (event < 1) return;
objects_bake_render_ui(scene, event);
}