This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/curveprofile.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1133 lines
39 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright (C) 2019 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include <float.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_curve_types.h"
#include "DNA_curveprofile_types.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_task.h"
#include "BLI_threads.h"
#include "BLI_utildefines.h"
#include "BKE_curve.h"
#include "BKE_curveprofile.h"
#include "BKE_fcurve.h"
#include "BLO_read_write.h"
void BKE_curveprofile_free_data(CurveProfile *profile)
{
MEM_SAFE_FREE(profile->path);
MEM_SAFE_FREE(profile->table);
MEM_SAFE_FREE(profile->segments);
}
void BKE_curveprofile_free(CurveProfile *profile)
{
if (profile) {
BKE_curveprofile_free_data(profile);
MEM_freeN(profile);
}
}
void BKE_curveprofile_copy_data(CurveProfile *target, const CurveProfile *profile)
{
*target = *profile;
target->path = MEM_dupallocN(profile->path);
target->table = MEM_dupallocN(profile->table);
target->segments = MEM_dupallocN(profile->segments);
/* Update the reference the points have to the profile. */
for (int i = 0; i < target->path_len; i++) {
target->path[i].profile = target;
}
}
CurveProfile *BKE_curveprofile_copy(const CurveProfile *profile)
{
if (profile) {
CurveProfile *new_prdgt = MEM_dupallocN(profile);
BKE_curveprofile_copy_data(new_prdgt, profile);
return new_prdgt;
}
return NULL;
}
/**
* Move a point's handle, accounting for the alignment of handles with the #HD_ALIGN type.
*
* \param handle_1: Whether to move the 1st or 2nd control point.
* \param delta: The *relative* change in the handle's position.
* \note Requires #BKE_curveprofile_update call after.
* \return Whether the handle moved from its start position.
*/
bool BKE_curveprofile_move_handle(struct CurveProfilePoint *point,
const bool handle_1,
const bool snap,
const float delta[2])
{
short handle_type = (handle_1) ? point->h1 : point->h2;
float *handle_location = (handle_1) ? &point->h1_loc[0] : &point->h2_loc[0];
float start_position[2];
copy_v2_v2(start_position, handle_location);
/* Don't move the handle if it's not a free handle type. */
if (!ELEM(handle_type, HD_FREE, HD_ALIGN)) {
return false;
}
/* Move the handle. */
handle_location[0] += delta ? delta[0] : 0.0f;
handle_location[1] += delta ? delta[1] : 0.0f;
if (snap) {
handle_location[0] = 0.125f * roundf(8.0f * handle_location[0]);
handle_location[1] = 0.125f * roundf(8.0f * handle_location[1]);
}
/* Move the other handle if they are aligned. */
if (handle_type == HD_ALIGN) {
short other_handle_type = (handle_1) ? point->h2 : point->h1;
if (other_handle_type == HD_ALIGN) {
float *other_handle_location = (handle_1) ? &point->h2_loc[0] : &point->h1_loc[0];
other_handle_location[0] = 2.0f * point->x - handle_location[0];
other_handle_location[1] = 2.0f * point->y - handle_location[1];
}
}
if (!equals_v2v2(handle_location, start_position)) {
return true;
}
return false;
}
/**
* Moves a control point, accounting for clipping and snapping, and moving free handles.
*
* \param snap: Whether to snap the point to the grid
* \param delta: The *relative* change of the point's location.
* \return Whether the point moved from its start position.
* \note Requires #BKE_curveprofile_update call after.
*/
bool BKE_curveprofile_move_point(struct CurveProfile *profile,
struct CurveProfilePoint *point,
const bool snap,
const float delta[2])
{
/* Don't move the final point. */
if (point == &profile->path[profile->path_len - 1]) {
return false;
}
/* Don't move the first point. */
if (point == profile->path) {
return false;
}
float origx = point->x;
float origy = point->y;
point->x += delta[0];
point->y += delta[1];
if (snap) {
point->x = 0.125f * roundf(8.0f * point->x);
point->y = 0.125f * roundf(8.0f * point->y);
}
/* Clip here instead to test clipping here to stop handles from moving too. */
if (profile->flag & PROF_USE_CLIP) {
point->x = max_ff(point->x, profile->clip_rect.xmin);
point->x = min_ff(point->x, profile->clip_rect.xmax);
point->y = max_ff(point->y, profile->clip_rect.ymin);
point->y = min_ff(point->y, profile->clip_rect.ymax);
}
/* Also move free handles even when they aren't selected. */
if (ELEM(point->h1, HD_FREE, HD_ALIGN)) {
point->h1_loc[0] += point->x - origx;
point->h1_loc[1] += point->y - origy;
}
if (ELEM(point->h2, HD_FREE, HD_ALIGN)) {
point->h2_loc[0] += point->x - origx;
point->h2_loc[1] += point->y - origy;
}
if (point->x != origx || point->y != origy) {
return true;
}
return false;
}
/**
* Removes a specific point from the path of control points.
* \note Requires #BKE_curveprofile_update call after.
*/
bool BKE_curveprofile_remove_point(CurveProfile *profile, CurveProfilePoint *point)
{
/* Must have 2 points minimum. */
if (profile->path_len <= 2) {
return false;
}
/* Input point must be within the array. */
if (!(point > profile->path && point < profile->path + profile->path_len)) {
return false;
}
CurveProfilePoint *new_path = MEM_mallocN(sizeof(CurveProfilePoint) * profile->path_len,
"profile path");
int i_delete = (int)(point - profile->path);
BLI_assert(i_delete > 0);
/* Copy the before and after the deleted point. */
memcpy(new_path, profile->path, sizeof(CurveProfilePoint) * i_delete);
memcpy(new_path + i_delete,
profile->path + i_delete + 1,
sizeof(CurveProfilePoint) * (profile->path_len - i_delete - 1));
MEM_freeN(profile->path);
profile->path = new_path;
profile->path_len -= 1;
return true;
}
/**
* Removes every point in the widget with the supplied flag set, except for the first and last.
*
* \param flag: #CurveProfilePoint.flag.
*
* \note Requires #BKE_curveprofile_update call after.
*/
void BKE_curveprofile_remove_by_flag(CurveProfile *profile, const short flag)
{
/* Copy every point without the flag into the new path. */
CurveProfilePoint *new_path = MEM_mallocN(sizeof(CurveProfilePoint) * profile->path_len,
"profile path");
/* Build the new list without any of the points with the flag. Keep the first and last points. */
int i_new = 1;
int i_old = 1;
int n_removed = 0;
new_path[0] = profile->path[0];
for (; i_old < profile->path_len - 1; i_old++) {
if (!(profile->path[i_old].flag & flag)) {
new_path[i_new] = profile->path[i_old];
i_new++;
}
else {
n_removed++;
}
}
new_path[i_new] = profile->path[i_old];
MEM_freeN(profile->path);
profile->path = new_path;
profile->path_len -= n_removed;
}
/**
* Shorthand helper function for setting location and interpolation of a point.
*/
static void point_init(CurveProfilePoint *point, float x, float y, short flag, char h1, char h2)
{
point->x = x;
point->y = y;
point->flag = flag;
point->h1 = h1;
point->h2 = h2;
}
/**
* Adds a new point at the specified location. The choice for which points to place the new vertex
* between is made by checking which control point line segment is closest to the new point and
* placing the new vertex in between that segment's points.
*
* \note Requires #BKE_curveprofile_update call after.
*/
CurveProfilePoint *BKE_curveprofile_insert(CurveProfile *profile, float x, float y)
{
const float new_loc[2] = {x, y};
/* Don't add more control points than the maximum size of the higher resolution table. */
if (profile->path_len == PROF_TABLE_MAX - 1) {
return NULL;
}
/* Find the index at the line segment that's closest to the new position. */
float min_distance = FLT_MAX;
int i_insert = 0;
for (int i = 0; i < profile->path_len - 1; i++) {
const float loc1[2] = {profile->path[i].x, profile->path[i].y};
const float loc2[2] = {profile->path[i + 1].x, profile->path[i + 1].y};
float distance = dist_squared_to_line_segment_v2(new_loc, loc1, loc2);
if (distance < min_distance) {
min_distance = distance;
i_insert = i + 1;
}
}
/* Insert the new point at the location we found and copy all of the old points in as well. */
profile->path_len++;
CurveProfilePoint *new_path = MEM_mallocN(sizeof(CurveProfilePoint) * profile->path_len,
"profile path");
CurveProfilePoint *new_pt = NULL;
for (int i_new = 0, i_old = 0; i_new < profile->path_len; i_new++) {
if (i_new != i_insert) {
/* Insert old points. */
new_path[i_new] = profile->path[i_old];
new_path[i_new].flag &= ~PROF_SELECT; /* Deselect old points. */
i_old++;
}
else {
/* Insert new point. */
/* Set handles of new point based on its neighbors. */
char new_handle_type = (new_path[i_new - 1].h2 == HD_VECT &&
profile->path[i_insert].h1 == HD_VECT) ?
HD_VECT :
HD_AUTO;
point_init(&new_path[i_new], x, y, PROF_SELECT, new_handle_type, new_handle_type);
new_pt = &new_path[i_new];
/* Give new point a reference to the profile. */
new_pt->profile = profile;
}
}
/* Free the old path and use the new one. */
MEM_freeN(profile->path);
profile->path = new_path;
return new_pt;
}
2019-11-25 00:55:11 +11:00
/**
* Sets the handle type of the selected control points.
* \param type_1, type_2: Handle type for the first handle. HD_VECT, HD_AUTO, HD_FREE, or HD_ALIGN.
* \note Requires #BKE_curveprofile_update call after.
2019-11-25 00:55:11 +11:00
*/
void BKE_curveprofile_selected_handle_set(CurveProfile *profile, int type_1, int type_2)
{
for (int i = 0; i < profile->path_len; i++) {
if (ELEM(profile->path[i].flag, PROF_SELECT, PROF_H1_SELECT, PROF_H2_SELECT)) {
profile->path[i].h1 = type_1;
profile->path[i].h2 = type_2;
if (type_1 == HD_ALIGN && type_2 == HD_ALIGN) {
/* Align the handles. */
BKE_curveprofile_move_handle(&profile->path[i], true, false, NULL);
}
}
}
}
static CurveProfilePoint mirror_point(const CurveProfilePoint *point)
{
CurveProfilePoint new_point = *point;
point_init(&new_point, point->y, point->x, point->flag, point->h2, point->h1);
return new_point;
}
/**
* Flips the profile across the diagonal so that its orientation is reversed.
*
* \note Requires #BKE_curveprofile_update call after.
*/
void BKE_curveprofile_reverse(CurveProfile *profile)
{
/* When there are only two points, reversing shouldn't do anything. */
if (profile->path_len == 2) {
return;
}
CurveProfilePoint *new_path = MEM_mallocN(sizeof(CurveProfilePoint) * profile->path_len,
"profile path");
/* Mirror the new points across the y = x line */
for (int i = 0; i < profile->path_len; i++) {
int i_reversed = profile->path_len - i - 1;
BLI_assert(i_reversed >= 0);
new_path[i_reversed] = mirror_point(&profile->path[i]);
new_path[i_reversed].profile = profile;
/* Mirror free handles, they can't be recalculated. */
if (ELEM(profile->path[i].h1, HD_FREE, HD_ALIGN)) {
new_path[i_reversed].h1_loc[0] = profile->path[i].h2_loc[1];
new_path[i_reversed].h1_loc[1] = profile->path[i].h2_loc[0];
}
if (ELEM(profile->path[i].h2, HD_FREE, HD_ALIGN)) {
new_path[i_reversed].h2_loc[0] = profile->path[i].h1_loc[1];
new_path[i_reversed].h2_loc[1] = profile->path[i].h1_loc[0];
}
}
/* Free the old points and use the new ones */
MEM_freeN(profile->path);
profile->path = new_path;
}
/**
* Builds a quarter circle profile with space on each side for 'support loops.'
*/
static void curveprofile_build_supports(CurveProfile *profile)
{
int n = profile->path_len;
point_init(&profile->path[0], 1.0f, 0.0f, 0, HD_VECT, HD_VECT);
point_init(&profile->path[1], 1.0f, 0.5f, 0, HD_VECT, HD_VECT);
for (int i = 1; i < n - 2; i++) {
const float x = 1.0f - (0.5f * (1.0f - cosf((float)((i / (float)(n - 3))) * M_PI_2)));
const float y = 0.5f + 0.5f * sinf((float)((i / (float)(n - 3)) * M_PI_2));
point_init(&profile->path[i], x, y, 0, HD_AUTO, HD_AUTO);
}
point_init(&profile->path[n - 2], 0.5f, 1.0f, 0, HD_VECT, HD_VECT);
point_init(&profile->path[n - 1], 0.0f, 1.0f, 0, HD_VECT, HD_VECT);
}
/**
2019-12-11 10:56:14 +11:00
* Puts the widgets control points in a step pattern.
* Uses vector handles for each point.
*/
static void curveprofile_build_steps(CurveProfile *profile)
{
int n = profile->path_len;
/* Special case for two points to avoid dividing by zero later. */
if (n == 2) {
point_init(&profile->path[0], 1.0f, 0.0f, 0, HD_VECT, HD_VECT);
point_init(&profile->path[0], 0.0f, 1.0f, 0, HD_VECT, HD_VECT);
return;
}
float n_steps_x = (n % 2 == 0) ? n : (n - 1);
float n_steps_y = (n % 2 == 0) ? (n - 2) : (n - 1);
for (int i = 0; i < n; i++) {
int step_x = (i + 1) / 2;
int step_y = i / 2;
const float x = 1.0f - ((float)(2 * step_x) / n_steps_x);
const float y = (float)(2 * step_y) / n_steps_y;
point_init(&profile->path[i], x, y, 0, HD_VECT, HD_VECT);
}
}
/**
* Reset the view to the clipping rectangle.
*/
void BKE_curveprofile_reset_view(CurveProfile *profile)
{
profile->view_rect = profile->clip_rect;
}
/**
* Resets the profile to the current preset.
*
* \note Requires #BKE_curveprofile_update call after.
*/
void BKE_curveprofile_reset(CurveProfile *profile)
{
MEM_SAFE_FREE(profile->path);
eCurveProfilePresets preset = profile->preset;
switch (preset) {
case PROF_PRESET_LINE:
profile->path_len = 2;
break;
case PROF_PRESET_SUPPORTS:
/* Use a dynamic number of control points for the widget's profile. */
if (profile->segments_len < 4) {
/* But always use enough points to at least build the support points. */
profile->path_len = 5;
}
else {
profile->path_len = profile->segments_len + 1;
}
break;
case PROF_PRESET_CORNICE:
profile->path_len = 13;
break;
case PROF_PRESET_CROWN:
profile->path_len = 11;
break;
case PROF_PRESET_STEPS:
/* Also use dynamic number of control points based on the set number of segments. */
if (profile->segments_len == 0) {
/* totsegments hasn't been set-- use the number of control points for 8 steps. */
profile->path_len = 17;
}
else {
profile->path_len = profile->segments_len + 1;
}
break;
}
profile->path = MEM_callocN(sizeof(CurveProfilePoint) * profile->path_len, "profile path");
switch (preset) {
case PROF_PRESET_LINE:
point_init(&profile->path[0], 1.0f, 0.0f, 0, HD_AUTO, HD_AUTO);
point_init(&profile->path[1], 0.0f, 1.0f, 0, HD_AUTO, HD_AUTO);
break;
case PROF_PRESET_SUPPORTS:
curveprofile_build_supports(profile);
break;
case PROF_PRESET_CORNICE:
point_init(&profile->path[0], 1.0f, 0.0f, 0, HD_VECT, HD_VECT);
point_init(&profile->path[1], 1.0f, 0.125f, 0, HD_VECT, HD_VECT);
point_init(&profile->path[2], 0.92f, 0.16f, 0, HD_AUTO, HD_AUTO);
point_init(&profile->path[3], 0.875f, 0.25f, 0, HD_VECT, HD_VECT);
point_init(&profile->path[4], 0.8f, 0.25f, 0, HD_VECT, HD_VECT);
point_init(&profile->path[5], 0.733f, 0.433f, 0, HD_AUTO, HD_AUTO);
point_init(&profile->path[6], 0.582f, 0.522f, 0, HD_AUTO, HD_AUTO);
point_init(&profile->path[7], 0.4f, 0.6f, 0, HD_AUTO, HD_AUTO);
point_init(&profile->path[8], 0.289f, 0.727f, 0, HD_AUTO, HD_AUTO);
point_init(&profile->path[9], 0.25f, 0.925f, 0, HD_VECT, HD_VECT);
point_init(&profile->path[10], 0.175f, 0.925f, 0, HD_VECT, HD_VECT);
point_init(&profile->path[11], 0.175f, 1.0f, 0, HD_VECT, HD_VECT);
point_init(&profile->path[12], 0.0f, 1.0f, 0, HD_VECT, HD_VECT);
break;
case PROF_PRESET_CROWN:
point_init(&profile->path[0], 1.0f, 0.0f, 0, HD_VECT, HD_VECT);
point_init(&profile->path[1], 1.0f, 0.25f, 0, HD_VECT, HD_VECT);
point_init(&profile->path[2], 0.75f, 0.25f, 0, HD_VECT, HD_VECT);
point_init(&profile->path[3], 0.75f, 0.325f, 0, HD_VECT, HD_VECT);
point_init(&profile->path[4], 0.925f, 0.4f, 0, HD_AUTO, HD_AUTO);
point_init(&profile->path[5], 0.975f, 0.5f, 0, HD_AUTO, HD_AUTO);
point_init(&profile->path[6], 0.94f, 0.65f, 0, HD_AUTO, HD_AUTO);
point_init(&profile->path[7], 0.85f, 0.75f, 0, HD_AUTO, HD_AUTO);
point_init(&profile->path[8], 0.75f, 0.875f, 0, HD_AUTO, HD_AUTO);
point_init(&profile->path[9], 0.7f, 1.0f, 0, HD_VECT, HD_VECT);
point_init(&profile->path[10], 0.0f, 1.0f, 0, HD_VECT, HD_VECT);
break;
case PROF_PRESET_STEPS:
curveprofile_build_steps(profile);
break;
}
profile->flag &= ~PROF_DIRTY_PRESET;
/* Ensure each point has a reference to the profile. */
for (int i = 0; i < profile->path_len; i++) {
profile->path[i].profile = profile;
}
MEM_SAFE_FREE(profile->table);
profile->table = NULL;
}
/**
* Helper for 'curve_profile_create' samples.
* Returns whether both handles that make up the edge are vector handles.
*/
static bool is_curved_edge(CurveProfilePoint *path, int i)
{
return (path[i].h2 != HD_VECT || path[i + 1].h1 != HD_VECT);
}
/**
* Used to set bezier handle locations in the sample creation process. Reduced copy of
* #calchandleNurb_intern code in curve.c, mostly changed by removing the third dimension.
*/
static void point_calculate_handle(CurveProfilePoint *point,
const CurveProfilePoint *prev,
const CurveProfilePoint *next)
{
if (point->h1 == HD_FREE && point->h2 == HD_FREE) {
return;
}
float *point_loc = &point->x;
float pt[2];
const float *prev_loc, *next_loc;
if (prev == NULL) {
next_loc = &next->x;
pt[0] = 2.0f * point_loc[0] - next_loc[0];
pt[1] = 2.0f * point_loc[1] - next_loc[1];
prev_loc = pt;
}
else {
prev_loc = &prev->x;
}
if (next == NULL) {
prev_loc = &prev->x;
pt[0] = 2.0f * point_loc[0] - prev_loc[0];
pt[1] = 2.0f * point_loc[1] - prev_loc[1];
next_loc = pt;
}
else {
next_loc = &next->x;
}
float dvec_a[2], dvec_b[2];
sub_v2_v2v2(dvec_a, point_loc, prev_loc);
sub_v2_v2v2(dvec_b, next_loc, point_loc);
float len_a = len_v2(dvec_a);
float len_b = len_v2(dvec_b);
if (len_a == 0.0f) {
len_a = 1.0f;
}
if (len_b == 0.0f) {
len_b = 1.0f;
}
if (point->h1 == HD_AUTO || point->h2 == HD_AUTO) {
float tvec[2];
tvec[0] = dvec_b[0] / len_b + dvec_a[0] / len_a;
tvec[1] = dvec_b[1] / len_b + dvec_a[1] / len_a;
float len = len_v2(tvec) * 2.5614f;
if (len != 0.0f) {
if (point->h1 == HD_AUTO) {
len_a /= len;
madd_v2_v2v2fl(point->h1_loc, point_loc, tvec, -len_a);
}
if (point->h2 == HD_AUTO) {
len_b /= len;
madd_v2_v2v2fl(point->h2_loc, point_loc, tvec, len_b);
}
}
}
if (point->h1 == HD_VECT) {
madd_v2_v2v2fl(point->h1_loc, point_loc, dvec_a, -1.0f / 3.0f);
}
if (point->h2 == HD_VECT) {
madd_v2_v2v2fl(point->h2_loc, point_loc, dvec_b, 1.0f / 3.0f);
}
}
static void calculate_path_handles(CurveProfilePoint *path, int path_len)
{
point_calculate_handle(&path[0], NULL, &path[1]);
for (int i = 1; i < path_len - 1; i++) {
point_calculate_handle(&path[i], &path[i - 1], &path[i + 1]);
}
point_calculate_handle(&path[path_len - 1], &path[path_len - 2], NULL);
}
/**
* Helper function for 'BKE_curveprofile_create_samples.' Calculates the angle between the
* handles on the inside of the edge starting at index i. A larger angle means the edge is
* more curved.
* \param i_edge: The start index of the edge to calculate the angle for.
*/
static float bezt_edge_handle_angle(const CurveProfilePoint *path, int i_edge)
{
/* Find the direction of the handles that define this edge along the direction of the path. */
float start_handle_direction[2], end_handle_direction[2];
/* Handle 2 - point location. */
sub_v2_v2v2(start_handle_direction, path[i_edge].h2_loc, &path[i_edge].x);
/* Point location - handle 1. */
sub_v2_v2v2(end_handle_direction, &path[i_edge + 1].x, path[i_edge + 1].h1_loc);
return angle_v2v2(start_handle_direction, end_handle_direction);
}
/** Struct to sort curvature of control point edges. */
typedef struct {
/** The index of the corresponding profile point. */
int point_index;
/** The curvature of the edge with the above index. */
float point_curvature;
} CurvatureSortPoint;
/**
* Helper function for 'BKE_curveprofile_create_samples' for sorting edges based on curvature.
*/
static int sort_points_curvature(const void *in_a, const void *in_b)
{
const CurvatureSortPoint *a = (const CurvatureSortPoint *)in_a;
const CurvatureSortPoint *b = (const CurvatureSortPoint *)in_b;
if (a->point_curvature > b->point_curvature) {
return 0;
}
return 1;
}
/**
* Used for sampling curves along the profile's path. Any points more than the number of
* user-defined points will be evenly distributed among the curved edges.
* Then the remainders will be distributed to the most curved edges.
*
* \param n_segments: The number of segments to sample along the path. Ideally it is higher than
* the number of points used to define the profile (profile->path_len).
* \param sample_straight_edges: Whether to sample points between vector handle control points.
* If this is true and there are only vector edges the straight edges will still be sampled.
* \param r_samples: Return array of points to put the sampled positions. Must have length
* n_segments. Fill the array with the sampled locations and if the point corresponds to a
* control point, its handle type.
*/
void BKE_curveprofile_create_samples(CurveProfile *profile,
int n_segments,
bool sample_straight_edges,
CurveProfilePoint *r_samples)
{
CurveProfilePoint *path = profile->path;
int totpoints = profile->path_len;
BLI_assert(n_segments > 0);
int totedges = totpoints - 1;
calculate_path_handles(path, totpoints);
/* Create a list of edge indices with the most curved at the start, least curved at the end. */
CurvatureSortPoint *curve_sorted = MEM_callocN(sizeof(CurvatureSortPoint) * totedges,
"curve sorted");
for (int i = 0; i < totedges; i++) {
curve_sorted[i].point_index = i;
/* Calculate the curvature of each edge once for use when sorting for curvature. */
curve_sorted[i].point_curvature = bezt_edge_handle_angle(path, i);
}
qsort(curve_sorted, totedges, sizeof(CurvatureSortPoint), sort_points_curvature);
/* Assign the number of sampled points for each edge. */
int16_t *n_samples = MEM_callocN(sizeof(int16_t) * totedges, "samples numbers");
int n_added = 0;
int n_left;
if (n_segments >= totedges) {
if (sample_straight_edges) {
/* Assign an even number to each edge if its possible, then add the remainder of sampled
* points starting with the most curved edges. */
int n_common = n_segments / totedges;
n_left = n_segments % totedges;
/* Assign the points that fill fit evenly to the edges. */
if (n_common > 0) {
BLI_assert(n_common < INT16_MAX);
for (int i = 0; i < totedges; i++) {
n_samples[i] = n_common;
n_added += n_common;
}
}
}
else {
/* Count the number of curved edges */
int n_curved_edges = 0;
for (int i = 0; i < totedges; i++) {
if (is_curved_edge(path, i)) {
n_curved_edges++;
}
}
/* Just sample all of the edges if there are no curved edges. */
n_curved_edges = (n_curved_edges == 0) ? totedges : n_curved_edges;
/* Give all of the curved edges the same number of points and straight edges one point. */
n_left = n_segments - (totedges - n_curved_edges); /* Left after 1 for each straight edge. */
int n_common = n_left / n_curved_edges; /* Number assigned to all curved edges */
if (n_common > 0) {
for (int i = 0; i < totedges; i++) {
/* Add the common number if it's a curved edge or if edges are curved. */
if (is_curved_edge(path, i) || n_curved_edges == totedges) {
BLI_assert(n_common + n_samples[i] < INT16_MAX);
n_samples[i] += n_common;
n_added += n_common;
}
else {
n_samples[i] = 1;
n_added++;
}
}
}
n_left -= n_common * n_curved_edges;
}
}
else {
/* Not enough segments to give one to each edge, so just give them to the most curved edges. */
n_left = n_segments;
}
/* Assign the remainder of the points that couldn't be spread out evenly. */
BLI_assert(n_left < totedges);
for (int i = 0; i < n_left; i++) {
BLI_assert(n_samples[curve_sorted[i].point_index] < INT16_MAX);
n_samples[curve_sorted[i].point_index]++;
n_added++;
}
BLI_assert(n_added == n_segments); /* n_added is just used for this assert, could remove it. */
/* Sample the points and add them to the locations table. */
for (int i_sample = 0, i = 0; i < totedges; i++) {
if (n_samples[i] > 0) {
/* Carry over the handle types from the control point to its first corresponding sample. */
r_samples[i_sample].h1 = path[i].h1;
r_samples[i_sample].h2 = path[i].h2;
/* All extra sample points for this control point get "auto" handles. */
for (int j = i_sample + 1; j < i_sample + n_samples[i]; j++) {
r_samples[j].flag = 0;
r_samples[j].h1 = HD_AUTO;
r_samples[j].h2 = HD_AUTO;
BLI_assert(j < n_segments);
}
/* Sample from the bezier points. X then Y values. */
BKE_curve_forward_diff_bezier(path[i].x,
path[i].h2_loc[0],
path[i + 1].h1_loc[0],
path[i + 1].x,
&r_samples[i_sample].x,
n_samples[i],
sizeof(CurveProfilePoint));
BKE_curve_forward_diff_bezier(path[i].y,
path[i].h2_loc[1],
path[i + 1].h1_loc[1],
path[i + 1].y,
&r_samples[i_sample].y,
n_samples[i],
sizeof(CurveProfilePoint));
}
i_sample += n_samples[i]; /* Add the next set of points after the ones we just added. */
BLI_assert(i_sample <= n_segments);
}
MEM_freeN(curve_sorted);
MEM_freeN(n_samples);
}
/**
* Creates a higher resolution table by sampling the curved points.
* This table is used for display and evenly spaced evaluation.
*/
static void curveprofile_make_table(CurveProfile *profile)
{
int n_samples = PROF_TABLE_LEN(profile->path_len);
CurveProfilePoint *new_table = MEM_callocN(sizeof(CurveProfilePoint) * (n_samples + 1),
__func__);
BKE_curveprofile_create_samples(profile, n_samples - 1, false, new_table);
/* Manually add last point at the end of the profile */
new_table[n_samples - 1].x = 0.0f;
new_table[n_samples - 1].y = 1.0f;
MEM_SAFE_FREE(profile->table);
profile->table = new_table;
}
/**
* Creates the table of points used for displaying a preview of the sampled segment locations on
* the widget itself.
*/
static void curveprofile_make_segments_table(CurveProfile *profile)
{
int n_samples = profile->segments_len;
if (n_samples <= 0) {
return;
}
CurveProfilePoint *new_table = MEM_callocN(sizeof(CurveProfilePoint) * (n_samples + 1),
__func__);
if (profile->flag & PROF_SAMPLE_EVEN_LENGTHS) {
/* Even length sampling incompatible with only straight edge sampling for now. */
BKE_curveprofile_create_samples_even_spacing(profile, n_samples, new_table);
}
else {
BKE_curveprofile_create_samples(
profile, n_samples, profile->flag & PROF_SAMPLE_STRAIGHT_EDGES, new_table);
}
MEM_SAFE_FREE(profile->segments);
profile->segments = new_table;
}
/**
* Sets the default settings and clip range for the profile widget.
* Does not generate either table.
*/
void BKE_curveprofile_set_defaults(CurveProfile *profile)
{
profile->flag = PROF_USE_CLIP;
BLI_rctf_init(&profile->view_rect, 0.0f, 1.0f, 0.0f, 1.0f);
profile->clip_rect = profile->view_rect;
profile->path_len = 2;
profile->path = MEM_callocN(2 * sizeof(CurveProfilePoint), "path points");
profile->path[0].x = 1.0f;
profile->path[0].y = 0.0f;
profile->path[0].profile = profile;
profile->path[1].x = 1.0f;
profile->path[1].y = 1.0f;
profile->path[1].profile = profile;
profile->changed_timestamp = 0;
}
/**
* Returns a pointer to a newly allocated curve profile, using the given preset.
*/
struct CurveProfile *BKE_curveprofile_add(eCurveProfilePresets preset)
{
CurveProfile *profile = MEM_callocN(sizeof(CurveProfile), "curve profile");
BKE_curveprofile_set_defaults(profile);
profile->preset = preset;
BKE_curveprofile_reset(profile);
curveprofile_make_table(profile);
return profile;
}
/**
* Should be called after the widget is changed. Does profile and remove double checks and more
* importantly, recreates the display / evaluation and segments tables.
* \param update_flags: Bitfield with fields defined in header file. Controls removing doubles and
* clipping.
*/
void BKE_curveprofile_update(CurveProfile *profile, const int update_flags)
{
CurveProfilePoint *points = profile->path;
rctf *clipr = &profile->clip_rect;
profile->changed_timestamp++;
/* Clamp with the clipping rect in case something got past. */
if (profile->flag & PROF_USE_CLIP) {
/* Move points inside the clip rectangle. */
if (update_flags & PROF_UPDATE_CLIP) {
for (int i = 0; i < profile->path_len; i++) {
points[i].x = clamp_f(points[i].x, clipr->xmin, clipr->xmax);
points[i].y = clamp_f(points[i].y, clipr->ymin, clipr->ymax);
/* Extra sanity assert to make sure the points have the right profile pointer. */
BLI_assert(points[i].profile == profile);
}
}
/* Ensure zoom-level respects clipping. */
if (BLI_rctf_size_x(&profile->view_rect) > BLI_rctf_size_x(&profile->clip_rect)) {
profile->view_rect.xmin = profile->clip_rect.xmin;
profile->view_rect.xmax = profile->clip_rect.xmax;
}
if (BLI_rctf_size_y(&profile->view_rect) > BLI_rctf_size_y(&profile->clip_rect)) {
profile->view_rect.ymin = profile->clip_rect.ymin;
profile->view_rect.ymax = profile->clip_rect.ymax;
}
}
/* Remove doubles with a threshold set at 1% of default range. */
float thresh = pow2f(0.01f * BLI_rctf_size_x(clipr));
if (update_flags & PROF_UPDATE_REMOVE_DOUBLES && profile->path_len > 2) {
for (int i = 0; i < profile->path_len - 1; i++) {
if (len_squared_v2v2(&points[i].x, &points[i + 1].x) < thresh) {
if (i == 0) {
BKE_curveprofile_remove_point(profile, &points[1]);
}
else {
BKE_curveprofile_remove_point(profile, &points[i]);
}
break; /* Assumes 1 deletion per update call is ok. */
}
}
}
/* Create the high resolution table for drawing and some evaluation functions. */
curveprofile_make_table(profile);
/* Store a table of samples for the segment locations for a preview and the table's user. */
if (profile->segments_len > 0) {
curveprofile_make_segments_table(profile);
}
}
/**
* Refreshes the higher resolution table sampled from the input points. A call to this or
* #BKE_curveprofile_update is needed before evaluation functions that use the table.
* Also sets the number of segments used for the display preview of the locations
* of the sampled points.
*/
void BKE_curveprofile_init(CurveProfile *profile, short segments_len)
{
if (segments_len != profile->segments_len) {
profile->flag |= PROF_DIRTY_PRESET;
}
profile->segments_len = segments_len;
/* Calculate the higher resolution / segments tables for display and evaluation. */
BKE_curveprofile_update(profile, PROF_UPDATE_NONE);
}
/**
2020-03-24 10:27:12 +11:00
* Gives the distance to the next point in the widgets sampled table, in other words the length
* of the \a 'i' edge of the table.
*
* \note Requires #BKE_curveprofile_init or #BKE_curveprofile_update call before to fill table.
*/
static float curveprofile_distance_to_next_table_point(const CurveProfile *profile, int i)
{
BLI_assert(i < PROF_TABLE_LEN(profile->path_len));
return len_v2v2(&profile->table[i].x, &profile->table[i + 1].x);
}
/**
* Calculates the total length of the profile from the curves sampled in the table.
*
* \note Requires #BKE_curveprofile_init or #BKE_curveprofile_update call before to fill table.
*/
float BKE_curveprofile_total_length(const CurveProfile *profile)
{
float total_length = 0;
for (int i = 0; i < PROF_TABLE_LEN(profile->path_len) - 1; i++) {
total_length += len_v2v2(&profile->table[i].x, &profile->table[i + 1].x);
}
return total_length;
}
/**
* Samples evenly spaced positions along the curve profile's table (generated from path). Fills
* an entire table at once for a speedup if all of the results are going to be used anyway.
*
* \note Requires #BKE_curveprofile_init or #BKE_curveprofile_update call before to fill table.
* \note Working, but would conflict with "Sample Straight Edges" option, so this is unused for
* now.
*/
void BKE_curveprofile_create_samples_even_spacing(CurveProfile *profile,
int n_segments,
CurveProfilePoint *r_samples)
{
const float total_length = BKE_curveprofile_total_length(profile);
const float segment_length = total_length / n_segments;
float distance_to_next_table_point = curveprofile_distance_to_next_table_point(profile, 0);
float distance_to_previous_table_point = 0.0f;
int i_table = 0;
/* Set the location for the first point. */
r_samples[0].x = profile->table[0].x;
r_samples[0].y = profile->table[0].y;
/* Travel along the path, recording the locations of segments as we pass them. */
float segment_left = segment_length;
for (int i = 1; i < n_segments; i++) {
/* Travel over all of the points that fit inside this segment. */
while (distance_to_next_table_point < segment_left) {
segment_left -= distance_to_next_table_point;
i_table++;
distance_to_next_table_point = curveprofile_distance_to_next_table_point(profile, i_table);
distance_to_previous_table_point = 0.0f;
}
/* We're at the last table point that fits inside the current segment, use interpolation. */
float factor = (distance_to_previous_table_point + segment_left) /
(distance_to_previous_table_point + distance_to_next_table_point);
r_samples[i].x = interpf(profile->table[i_table + 1].x, profile->table[i_table].x, factor);
r_samples[i].y = interpf(profile->table[i_table + 1].y, profile->table[i_table].y, factor);
BLI_assert(factor <= 1.0f && factor >= 0.0f);
#ifdef DEBUG_CURVEPROFILE_EVALUATE
printf("segment_left: %.3f\n", segment_left);
printf("i_table: %d\n", i_table);
printf("distance_to_previous_table_point: %.3f\n", distance_to_previous_table_point);
printf("distance_to_next_table_point: %.3f\n", distance_to_next_table_point);
printf("Interpolating with factor %.3f from (%.3f, %.3f) to (%.3f, %.3f)\n\n",
factor,
profile->table[i_table].x,
profile->table[i_table].y,
profile->table[i_table + 1].x,
profile->table[i_table + 1].y);
#endif
/* We sampled in between this table point and the next, so the next travel step is smaller. */
distance_to_next_table_point -= segment_left;
distance_to_previous_table_point += segment_left;
segment_left = segment_length;
}
}
/**
* Does a single evaluation along the profile's path.
* Travels down (length_portion * path) length and returns the position at that point.
*
* \param length_portion: The portion (0 to 1) of the path's full length to sample at.
* \note Requires #BKE_curveprofile_init or #BKE_curveprofile_update call before to fill table.
*/
void BKE_curveprofile_evaluate_length_portion(const CurveProfile *profile,
float length_portion,
float *x_out,
float *y_out)
{
const float total_length = BKE_curveprofile_total_length(profile);
const float requested_length = length_portion * total_length;
/* Find the last point along the path with a lower length portion than the input. */
int i = 0;
float length_travelled = 0.0f;
while (length_travelled < requested_length) {
/* Check if we reached the last point before the final one. */
if (i == PROF_TABLE_LEN(profile->path_len) - 2) {
break;
}
float new_length = curveprofile_distance_to_next_table_point(profile, i);
if (length_travelled + new_length >= requested_length) {
break;
}
length_travelled += new_length;
i++;
}
/* Now travel the remaining distance of length portion down the path to the next point and
* find the location where we stop. */
float distance_to_next_point = curveprofile_distance_to_next_table_point(profile, i);
float lerp_factor = (requested_length - length_travelled) / distance_to_next_point;
#ifdef DEBUG_CURVEPROFILE_EVALUATE
printf("CURVEPROFILE EVALUATE\n");
printf(" length portion input: %f\n", (double)length_portion);
printf(" requested path length: %f\n", (double)requested_length);
printf(" distance to next point: %f\n", (double)distance_to_next_point);
printf(" length travelled: %f\n", (double)length_travelled);
printf(" lerp-factor: %f\n", (double)lerp_factor);
printf(" ith point (%f, %f)\n", (double)profile->path[i].x, (double)profile->path[i].y);
printf(" next point(%f, %f)\n", (double)profile->path[i + 1].x, (double)profile->path[i + 1].y);
#endif
*x_out = interpf(profile->table[i].x, profile->table[i + 1].x, lerp_factor);
*y_out = interpf(profile->table[i].y, profile->table[i + 1].y, lerp_factor);
}
void BKE_curveprofile_blend_write(struct BlendWriter *writer, const struct CurveProfile *profile)
{
BLO_write_struct(writer, CurveProfile, profile);
BLO_write_struct_array(writer, CurveProfilePoint, profile->path_len, profile->path);
}
/* Expects that the curve profile itself has been read already. */
void BKE_curveprofile_blend_read(struct BlendDataReader *reader, struct CurveProfile *profile)
{
BLO_read_data_address(reader, &profile->path);
profile->table = NULL;
profile->segments = NULL;
/* Reset the points' pointers to the profile. */
for (int i = 0; i < profile->path_len; i++) {
profile->path[i].profile = profile;
}
BKE_curveprofile_init(profile, profile->segments_len);
}