This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/image_gpu.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

941 lines
30 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup bke
2011-02-27 20:25:53 +00:00
*/
#include "MEM_guardedalloc.h"
#include "BLI_bitmap.h"
#include "BLI_boxpack_2d.h"
#include "BLI_linklist.h"
#include "BLI_listbase.h"
#include "BLI_threads.h"
Changes to Color Management After testing and feedback, I've decided to slightly modify the way color management works internally. While the previous method worked well for rendering, was a smaller transition and had some advantages over this new method, it was a bit more ambiguous, and was making things difficult for other areas such as compositing. This implementation now considers all color data (with only a couple of exceptions such as brush colors) to be stored in linear RGB color space, rather than sRGB as previously. This brings it in line with Nuke, which also operates this way, quite successfully. Color swatches, pickers, color ramp display are now gamma corrected to display gamma so you can see what you're doing, but the numbers themselves are considered linear. This makes understanding blending modes more clear (a 0.5 value on overlay will not change the result now) as well as making color swatches act more predictably in the compositor, however bringing over color values from applications like photoshop or gimp, that operate in a gamma space, will give identical results. This commit will convert over existing files saved by earlier 2.5 versions to work generally the same, though there may be some slight differences with things like textures. Now that we're set on changing other areas of shading, this won't be too disruptive overall. I've made a diagram explaining the pipeline here: http://mke3.net/blender/devel/2.5/25_linear_workflow_pipeline.png and some docs here: http://www.blender.org/development/release-logs/blender-250/color-management/
2009-12-02 07:56:34 +00:00
#include "DNA_image_types.h"
#include "DNA_userdef_types.h"
#include "IMB_colormanagement.h"
#include "IMB_imbuf.h"
#include "IMB_imbuf_types.h"
#include "BKE_global.h"
#include "BKE_image.h"
#include "BKE_main.h"
#include "GPU_capabilities.h"
#include "GPU_state.h"
#include "GPU_texture.h"
#include "PIL_time.h"
/* Prototypes. */
static void gpu_free_unused_buffers(void);
static void image_free_gpu(Image *ima, const bool immediate);
static void image_update_gputexture_ex(
Image *ima, ImageTile *tile, ImBuf *ibuf, int x, int y, int w, int h);
/* Internal structs. */
#define IMA_PARTIAL_REFRESH_TILE_SIZE 256
typedef struct ImagePartialRefresh {
struct ImagePartialRefresh *next, *prev;
int tile_x;
int tile_y;
} ImagePartialRefresh;
/* Is the alpha of the `GPUTexture` for a given image/ibuf premultiplied. */
bool BKE_image_has_gpu_texture_premultiplied_alpha(Image *image, ImBuf *ibuf)
{
if (image) {
/* Render result and compositor output are always premultiplied */
if (ELEM(image->type, IMA_TYPE_R_RESULT, IMA_TYPE_COMPOSITE)) {
return true;
}
/* Generated images use pre multiplied float buffer, but straight alpha for byte buffers. */
if (image->type == IMA_TYPE_UV_TEST && ibuf) {
return ibuf->rect_float != NULL;
}
}
if (ibuf) {
if (ibuf->rect_float) {
return image ? (image->alpha_mode != IMA_ALPHA_STRAIGHT) : false;
}
2020-11-17 12:58:26 -05:00
return image ? (image->alpha_mode == IMA_ALPHA_PREMUL) : true;
}
return false;
}
/* -------------------------------------------------------------------- */
/** \name UDIM gpu texture
* \{ */
static bool is_over_resolution_limit(int w, int h, bool limit_gl_texture_size)
{
return (w > GPU_texture_size_with_limit(w, limit_gl_texture_size) ||
h > GPU_texture_size_with_limit(h, limit_gl_texture_size));
}
static int smaller_power_of_2_limit(int num, bool limit_gl_texture_size)
{
return power_of_2_min_i(GPU_texture_size_with_limit(num, limit_gl_texture_size));
}
static GPUTexture *gpu_texture_create_tile_mapping(Image *ima, const int multiview_eye)
{
GPUTexture *tilearray = ima->gputexture[TEXTARGET_2D_ARRAY][multiview_eye];
if (tilearray == NULL) {
return 0;
}
float array_w = GPU_texture_width(tilearray);
float array_h = GPU_texture_height(tilearray);
ImageTile *last_tile = (ImageTile *)ima->tiles.last;
/* Tiles are sorted by number. */
int max_tile = last_tile->tile_number - 1001;
/* create image */
int width = max_tile + 1;
float *data = (float *)MEM_callocN(width * 8 * sizeof(float), __func__);
for (int i = 0; i < width; i++) {
data[4 * i] = -1.0f;
}
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
int i = tile->tile_number - 1001;
data[4 * i] = tile->runtime.tilearray_layer;
float *tile_info = &data[4 * width + 4 * i];
tile_info[0] = tile->runtime.tilearray_offset[0] / array_w;
tile_info[1] = tile->runtime.tilearray_offset[1] / array_h;
tile_info[2] = tile->runtime.tilearray_size[0] / array_w;
tile_info[3] = tile->runtime.tilearray_size[1] / array_h;
}
GPUTexture *tex = GPU_texture_create_1d_array(ima->id.name + 2, width, 2, 1, GPU_RGBA32F, data);
GPU_texture_mipmap_mode(tex, false, false);
MEM_freeN(data);
return tex;
}
typedef struct PackTile {
FixedSizeBoxPack boxpack;
ImageTile *tile;
float pack_score;
} PackTile;
static int compare_packtile(const void *a, const void *b)
{
const PackTile *tile_a = (const PackTile *)a;
const PackTile *tile_b = (const PackTile *)b;
return tile_a->pack_score < tile_b->pack_score;
}
static GPUTexture *gpu_texture_create_tile_array(Image *ima, ImBuf *main_ibuf)
{
const bool limit_gl_texture_size = (ima->gpuflag & IMA_GPU_MAX_RESOLUTION) == 0;
int arraywidth = 0, arrayheight = 0;
ListBase boxes = {NULL};
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
ImageUser iuser;
BKE_imageuser_default(&iuser);
iuser.tile = tile->tile_number;
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, &iuser, NULL);
if (ibuf) {
PackTile *packtile = (PackTile *)MEM_callocN(sizeof(PackTile), __func__);
packtile->tile = tile;
packtile->boxpack.w = ibuf->x;
packtile->boxpack.h = ibuf->y;
if (is_over_resolution_limit(
packtile->boxpack.w, packtile->boxpack.h, limit_gl_texture_size)) {
packtile->boxpack.w = smaller_power_of_2_limit(packtile->boxpack.w, limit_gl_texture_size);
packtile->boxpack.h = smaller_power_of_2_limit(packtile->boxpack.h, limit_gl_texture_size);
}
arraywidth = max_ii(arraywidth, packtile->boxpack.w);
arrayheight = max_ii(arrayheight, packtile->boxpack.h);
/* We sort the tiles by decreasing size, with an additional penalty term
* for high aspect ratios. This improves packing efficiency. */
float w = packtile->boxpack.w, h = packtile->boxpack.h;
packtile->pack_score = max_ff(w, h) / min_ff(w, h) * w * h;
BKE_image_release_ibuf(ima, ibuf, NULL);
BLI_addtail(&boxes, packtile);
}
}
BLI_assert(arraywidth > 0 && arrayheight > 0);
BLI_listbase_sort(&boxes, compare_packtile);
int arraylayers = 0;
/* Keep adding layers until all tiles are packed. */
while (boxes.first != NULL) {
ListBase packed = {NULL};
BLI_box_pack_2d_fixedarea(&boxes, arraywidth, arrayheight, &packed);
BLI_assert(packed.first != NULL);
LISTBASE_FOREACH (PackTile *, packtile, &packed) {
ImageTile *tile = packtile->tile;
int *tileoffset = tile->runtime.tilearray_offset;
int *tilesize = tile->runtime.tilearray_size;
tileoffset[0] = packtile->boxpack.x;
tileoffset[1] = packtile->boxpack.y;
tilesize[0] = packtile->boxpack.w;
tilesize[1] = packtile->boxpack.h;
tile->runtime.tilearray_layer = arraylayers;
}
BLI_freelistN(&packed);
arraylayers++;
}
2020-07-29 17:10:35 +02:00
const bool use_high_bitdepth = (ima->flag & IMA_HIGH_BITDEPTH);
/* Create Texture without content. */
GPUTexture *tex = IMB_touch_gpu_texture(
ima->id.name + 2, main_ibuf, arraywidth, arrayheight, arraylayers, use_high_bitdepth);
/* Upload each tile one by one. */
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
int tilelayer = tile->runtime.tilearray_layer;
int *tileoffset = tile->runtime.tilearray_offset;
int *tilesize = tile->runtime.tilearray_size;
if (tilesize[0] == 0 || tilesize[1] == 0) {
continue;
}
ImageUser iuser;
BKE_imageuser_default(&iuser);
iuser.tile = tile->tile_number;
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, &iuser, NULL);
if (ibuf) {
const bool store_premultiplied = BKE_image_has_gpu_texture_premultiplied_alpha(ima, ibuf);
IMB_update_gpu_texture_sub(tex,
ibuf,
UNPACK2(tileoffset),
tilelayer,
UNPACK2(tilesize),
use_high_bitdepth,
store_premultiplied);
}
BKE_image_release_ibuf(ima, ibuf, NULL);
}
if (GPU_mipmap_enabled()) {
GPU_texture_generate_mipmap(tex);
2020-07-29 17:10:35 +02:00
GPU_texture_mipmap_mode(tex, true, true);
if (ima) {
ima->gpuflag |= IMA_GPU_MIPMAP_COMPLETE;
}
}
2020-07-29 17:10:35 +02:00
else {
GPU_texture_mipmap_mode(tex, false, true);
}
return tex;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Regular gpu texture
* \{ */
static GPUTexture **get_image_gpu_texture_ptr(Image *ima,
eGPUTextureTarget textarget,
const int multiview_eye)
{
const bool in_range = (textarget >= 0) && (textarget < TEXTARGET_COUNT);
BLI_assert(in_range);
BLI_assert(multiview_eye == 0 || multiview_eye == 1);
if (in_range) {
return &(ima->gputexture[textarget][multiview_eye]);
}
return NULL;
}
static GPUTexture *image_gpu_texture_error_create(eGPUTextureTarget textarget)
{
fprintf(stderr, "GPUTexture: Blender Texture Not Loaded!\n");
switch (textarget) {
case TEXTARGET_2D_ARRAY:
return GPU_texture_create_error(2, true);
case TEXTARGET_TILE_MAPPING:
return GPU_texture_create_error(1, true);
case TEXTARGET_2D:
default:
return GPU_texture_create_error(2, false);
}
}
static GPUTexture *image_get_gpu_texture(Image *ima,
ImageUser *iuser,
ImBuf *ibuf,
eGPUTextureTarget textarget)
{
if (ima == NULL) {
return NULL;
}
/* Free any unused GPU textures, since we know we are in a thread with OpenGL
* context and might as well ensure we have as much space free as possible. */
gpu_free_unused_buffers();
/* Free GPU textures when requesting a different render pass/layer.
* When `iuser` isn't set (texture painting single image mode) we assume that
* the current `pass` and `layer` should be 0. */
short requested_pass = iuser ? iuser->pass : 0;
short requested_layer = iuser ? iuser->layer : 0;
short requested_view = iuser ? iuser->multi_index : 0;
const bool limit_resolution = U.glreslimit != 0 &&
((iuser && (iuser->flag & IMA_SHOW_MAX_RESOLUTION) == 0) ||
(iuser == NULL));
short requested_gpu_flags = limit_resolution ? 0 : IMA_GPU_MAX_RESOLUTION;
#define GPU_FLAGS_TO_CHECK (IMA_GPU_MAX_RESOLUTION)
/* There is room for 2 multiview textures. When a higher number is requested we should always
* target the first view slot. This is fine as multi view images aren't used together. */
if (requested_view < 2) {
requested_view = 0;
}
if (ima->gpu_pass != requested_pass || ima->gpu_layer != requested_layer ||
ima->gpu_view != requested_view ||
((ima->gpuflag & GPU_FLAGS_TO_CHECK) != requested_gpu_flags)) {
ima->gpu_pass = requested_pass;
ima->gpu_layer = requested_layer;
ima->gpu_view = requested_view;
ima->gpuflag &= ~GPU_FLAGS_TO_CHECK;
ima->gpuflag |= requested_gpu_flags | IMA_GPU_REFRESH;
Use DrawManager for Image/UV Editor This project moves the current UV/Image editor drawing to the draw manager. Why would we do this: **Performance**: Current implementation would draw each texel per time. Multiple texels could be drawn per pixel what would overwrite the previous result. You can notice this when working with large textures. Repeat image drawing made this visible by drawing for a small period of time and stop drawing the rest. Now the rendering is fast and all repeated images are drawn. **Alpha drawing**: Current implementation would draw directly in display space. Giving incorrect results when displaying alpha transparent images. This addresses {T52680}, {T74709}, {T79518} The image editor now can show emission only colors. See {D8234} for examples. **Current Limitations** Using images that are larger than supported by your GPU are resized (eg larger than 16000x16000 are resized to 8k). This leaves some blurring artifacts. It is a low priority to add support back of displaying individual pixels of huge images. There is a design task {T80113} with more detail. **Implementation overview** Introduced an Image Engine in the draw module. this engine is responsible for drawing the texture in the main area of the UV/Image editor. The overlay engine has a edit_uv overlay which is responsible to draw the UV's, shadows and overlays specifically for the UV Image editor. The background + checker pattern is drawn by the overlay_background. The patch will allow us to share overlays between the 3d viewport and UV/Image editor more easily. In most cases we just need to switch the `pos` with the `u` attribute in the vertex shader. The project can be activated in the user preferences as experimental features. In a later commit this will be reversed. Reviewed By: Clément Foucault Differential Revision: https://developer.blender.org/D8234
2020-09-11 07:59:48 +02:00
}
#undef GPU_FLAGS_TO_CHECK
Use DrawManager for Image/UV Editor This project moves the current UV/Image editor drawing to the draw manager. Why would we do this: **Performance**: Current implementation would draw each texel per time. Multiple texels could be drawn per pixel what would overwrite the previous result. You can notice this when working with large textures. Repeat image drawing made this visible by drawing for a small period of time and stop drawing the rest. Now the rendering is fast and all repeated images are drawn. **Alpha drawing**: Current implementation would draw directly in display space. Giving incorrect results when displaying alpha transparent images. This addresses {T52680}, {T74709}, {T79518} The image editor now can show emission only colors. See {D8234} for examples. **Current Limitations** Using images that are larger than supported by your GPU are resized (eg larger than 16000x16000 are resized to 8k). This leaves some blurring artifacts. It is a low priority to add support back of displaying individual pixels of huge images. There is a design task {T80113} with more detail. **Implementation overview** Introduced an Image Engine in the draw module. this engine is responsible for drawing the texture in the main area of the UV/Image editor. The overlay engine has a edit_uv overlay which is responsible to draw the UV's, shadows and overlays specifically for the UV Image editor. The background + checker pattern is drawn by the overlay_background. The patch will allow us to share overlays between the 3d viewport and UV/Image editor more easily. In most cases we just need to switch the `pos` with the `u` attribute in the vertex shader. The project can be activated in the user preferences as experimental features. In a later commit this will be reversed. Reviewed By: Clément Foucault Differential Revision: https://developer.blender.org/D8234
2020-09-11 07:59:48 +02:00
/* Check if image has been updated and tagged to be updated (full or partial). */
ImageTile *tile = BKE_image_get_tile(ima, 0);
if (((ima->gpuflag & IMA_GPU_REFRESH) != 0) ||
((ibuf == NULL || tile == NULL || !tile->ok) &&
((ima->gpuflag & IMA_GPU_PARTIAL_REFRESH) != 0))) {
image_free_gpu(ima, true);
BLI_freelistN(&ima->gpu_refresh_areas);
ima->gpuflag &= ~(IMA_GPU_REFRESH | IMA_GPU_PARTIAL_REFRESH);
}
else if (ima->gpuflag & IMA_GPU_PARTIAL_REFRESH) {
BLI_assert(ibuf);
BLI_assert(tile && tile->ok);
ImagePartialRefresh *refresh_area;
while ((refresh_area = BLI_pophead(&ima->gpu_refresh_areas))) {
const int tile_offset_x = refresh_area->tile_x * IMA_PARTIAL_REFRESH_TILE_SIZE;
const int tile_offset_y = refresh_area->tile_y * IMA_PARTIAL_REFRESH_TILE_SIZE;
const int tile_width = MIN2(IMA_PARTIAL_REFRESH_TILE_SIZE, ibuf->x - tile_offset_x);
const int tile_height = MIN2(IMA_PARTIAL_REFRESH_TILE_SIZE, ibuf->y - tile_offset_y);
image_update_gputexture_ex(
ima, tile, ibuf, tile_offset_x, tile_offset_y, tile_width, tile_height);
MEM_freeN(refresh_area);
}
ima->gpuflag &= ~IMA_GPU_PARTIAL_REFRESH;
}
/* Tag as in active use for garbage collector. */
BKE_image_tag_time(ima);
/* Test if we already have a texture. */
int current_view = iuser ? iuser->multi_index : 0;
if (current_view >= 2) {
current_view = 0;
}
Use DrawManager for Image/UV Editor This project moves the current UV/Image editor drawing to the draw manager. Why would we do this: **Performance**: Current implementation would draw each texel per time. Multiple texels could be drawn per pixel what would overwrite the previous result. You can notice this when working with large textures. Repeat image drawing made this visible by drawing for a small period of time and stop drawing the rest. Now the rendering is fast and all repeated images are drawn. **Alpha drawing**: Current implementation would draw directly in display space. Giving incorrect results when displaying alpha transparent images. This addresses {T52680}, {T74709}, {T79518} The image editor now can show emission only colors. See {D8234} for examples. **Current Limitations** Using images that are larger than supported by your GPU are resized (eg larger than 16000x16000 are resized to 8k). This leaves some blurring artifacts. It is a low priority to add support back of displaying individual pixels of huge images. There is a design task {T80113} with more detail. **Implementation overview** Introduced an Image Engine in the draw module. this engine is responsible for drawing the texture in the main area of the UV/Image editor. The overlay engine has a edit_uv overlay which is responsible to draw the UV's, shadows and overlays specifically for the UV Image editor. The background + checker pattern is drawn by the overlay_background. The patch will allow us to share overlays between the 3d viewport and UV/Image editor more easily. In most cases we just need to switch the `pos` with the `u` attribute in the vertex shader. The project can be activated in the user preferences as experimental features. In a later commit this will be reversed. Reviewed By: Clément Foucault Differential Revision: https://developer.blender.org/D8234
2020-09-11 07:59:48 +02:00
GPUTexture **tex = get_image_gpu_texture_ptr(ima, textarget, current_view);
if (*tex) {
return *tex;
}
/* Check if we have a valid image. If not, we return a dummy
2020-07-30 08:31:25 +10:00
* texture with zero bind-code so we don't keep trying. */
if (tile == NULL || tile->ok == 0) {
*tex = image_gpu_texture_error_create(textarget);
return *tex;
}
/* check if we have a valid image buffer */
ImBuf *ibuf_intern = ibuf;
if (ibuf_intern == NULL) {
ibuf_intern = BKE_image_acquire_ibuf(ima, iuser, NULL);
if (ibuf_intern == NULL) {
*tex = image_gpu_texture_error_create(textarget);
return *tex;
}
}
if (textarget == TEXTARGET_2D_ARRAY) {
*tex = gpu_texture_create_tile_array(ima, ibuf_intern);
}
else if (textarget == TEXTARGET_TILE_MAPPING) {
*tex = gpu_texture_create_tile_mapping(ima, iuser ? iuser->multiview_eye : 0);
}
else {
2020-07-29 17:10:35 +02:00
const bool use_high_bitdepth = (ima->flag & IMA_HIGH_BITDEPTH);
const bool store_premultiplied = BKE_image_has_gpu_texture_premultiplied_alpha(ima,
ibuf_intern);
const bool limit_gl_texture_size = (ima->gpuflag & IMA_GPU_MAX_RESOLUTION) == 0;
2020-07-29 17:10:35 +02:00
*tex = IMB_create_gpu_texture(ima->id.name + 2,
ibuf_intern,
use_high_bitdepth,
store_premultiplied,
limit_gl_texture_size);
2020-07-29 17:10:35 +02:00
if (*tex) {
GPU_texture_wrap_mode(*tex, true, false);
if (GPU_mipmap_enabled()) {
GPU_texture_generate_mipmap(*tex);
if (ima) {
ima->gpuflag |= IMA_GPU_MIPMAP_COMPLETE;
}
GPU_texture_mipmap_mode(*tex, true, true);
}
else {
GPU_texture_mipmap_mode(*tex, false, true);
2020-07-29 17:10:35 +02:00
}
}
}
/* if `ibuf` was given, we don't own the `ibuf_intern` */
if (ibuf == NULL) {
BKE_image_release_ibuf(ima, ibuf_intern, NULL);
}
if (*tex) {
GPU_texture_orig_size_set(*tex, ibuf_intern->x, ibuf_intern->y);
}
return *tex;
}
GPUTexture *BKE_image_get_gpu_texture(Image *image, ImageUser *iuser, ImBuf *ibuf)
{
return image_get_gpu_texture(image, iuser, ibuf, TEXTARGET_2D);
}
GPUTexture *BKE_image_get_gpu_tiles(Image *image, ImageUser *iuser, ImBuf *ibuf)
{
return image_get_gpu_texture(image, iuser, ibuf, TEXTARGET_2D_ARRAY);
}
GPUTexture *BKE_image_get_gpu_tilemap(Image *image, ImageUser *iuser, ImBuf *ibuf)
{
return image_get_gpu_texture(image, iuser, ibuf, TEXTARGET_TILE_MAPPING);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Delayed GPU texture free
*
* Image datablocks can be deleted by any thread, but there may not be any active OpenGL context.
* In that case we push them into a queue and free the buffers later.
* \{ */
static LinkNode *gpu_texture_free_queue = NULL;
static ThreadMutex gpu_texture_queue_mutex = BLI_MUTEX_INITIALIZER;
static void gpu_free_unused_buffers(void)
{
if (gpu_texture_free_queue == NULL) {
return;
}
BLI_mutex_lock(&gpu_texture_queue_mutex);
while (gpu_texture_free_queue != NULL) {
GPUTexture *tex = BLI_linklist_pop(&gpu_texture_free_queue);
GPU_texture_free(tex);
}
BLI_mutex_unlock(&gpu_texture_queue_mutex);
}
void BKE_image_free_unused_gpu_textures()
{
if (BLI_thread_is_main()) {
gpu_free_unused_buffers();
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Deletion
* \{ */
2020-07-29 17:10:35 +02:00
static void image_free_gpu(Image *ima, const bool immediate)
{
for (int eye = 0; eye < 2; eye++) {
for (int i = 0; i < TEXTARGET_COUNT; i++) {
if (ima->gputexture[i][eye] != NULL) {
if (immediate) {
GPU_texture_free(ima->gputexture[i][eye]);
}
else {
BLI_mutex_lock(&gpu_texture_queue_mutex);
BLI_linklist_prepend(&gpu_texture_free_queue, ima->gputexture[i][eye]);
BLI_mutex_unlock(&gpu_texture_queue_mutex);
}
ima->gputexture[i][eye] = NULL;
}
}
}
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
}
void BKE_image_free_gputextures(Image *ima)
{
image_free_gpu(ima, BLI_thread_is_main());
}
void BKE_image_free_all_gputextures(Main *bmain)
{
if (bmain) {
LISTBASE_FOREACH (Image *, ima, &bmain->images) {
BKE_image_free_gputextures(ima);
}
}
}
/* same as above but only free animated images */
void BKE_image_free_anim_gputextures(Main *bmain)
{
if (bmain) {
LISTBASE_FOREACH (Image *, ima, &bmain->images) {
if (BKE_image_is_animated(ima)) {
BKE_image_free_gputextures(ima);
}
}
}
}
void BKE_image_free_old_gputextures(Main *bmain)
{
static int lasttime = 0;
int ctime = (int)PIL_check_seconds_timer();
/*
* Run garbage collector once for every collecting period of time
* if textimeout is 0, that's the option to NOT run the collector
*/
if (U.textimeout == 0 || ctime % U.texcollectrate || ctime == lasttime) {
return;
}
/* of course not! */
if (G.is_rendering) {
return;
}
lasttime = ctime;
LISTBASE_FOREACH (Image *, ima, &bmain->images) {
if ((ima->flag & IMA_NOCOLLECT) == 0 && ctime - ima->lastused > U.textimeout) {
/* If it's in GL memory, deallocate and set time tag to current time
* This gives textures a "second chance" to be used before dying. */
if (BKE_image_has_opengl_texture(ima)) {
BKE_image_free_gputextures(ima);
ima->lastused = ctime;
}
/* Otherwise, just kill the buffers */
else {
BKE_image_free_buffers(ima);
}
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Paint Update
* \{ */
static ImBuf *update_do_scale(uchar *rect,
float *rect_float,
int *x,
int *y,
int *w,
int *h,
int limit_w,
int limit_h,
int full_w,
int full_h)
{
/* Partial update with scaling. */
float xratio = limit_w / (float)full_w;
float yratio = limit_h / (float)full_h;
int part_w = *w, part_h = *h;
/* Find sub coordinates in scaled image. Take ceiling because we will be
* losing 1 pixel due to rounding errors in x,y. */
*x *= xratio;
*y *= yratio;
*w = (int)ceil(xratio * (*w));
*h = (int)ceil(yratio * (*h));
/* ...but take back if we are over the limit! */
if (*x + *w > limit_w) {
(*w)--;
}
if (*y + *h > limit_h) {
(*h)--;
}
/* Scale pixels. */
ImBuf *ibuf = IMB_allocFromBuffer((uint *)rect, rect_float, part_w, part_h, 4);
IMB_scaleImBuf(ibuf, *w, *h);
return ibuf;
}
static void gpu_texture_update_scaled(GPUTexture *tex,
uchar *rect,
float *rect_float,
int full_w,
int full_h,
int x,
int y,
int layer,
const int *tile_offset,
const int *tile_size,
int w,
int h)
{
ImBuf *ibuf;
if (layer > -1) {
ibuf = update_do_scale(
rect, rect_float, &x, &y, &w, &h, tile_size[0], tile_size[1], full_w, full_h);
/* Shift to account for tile packing. */
x += tile_offset[0];
y += tile_offset[1];
}
else {
/* Partial update with scaling. */
int limit_w = GPU_texture_width(tex);
int limit_h = GPU_texture_height(tex);
ibuf = update_do_scale(rect, rect_float, &x, &y, &w, &h, limit_w, limit_h, full_w, full_h);
}
void *data = (ibuf->rect_float) ? (void *)(ibuf->rect_float) : (void *)(ibuf->rect);
eGPUDataFormat data_format = (ibuf->rect_float) ? GPU_DATA_FLOAT : GPU_DATA_UBYTE;
GPU_texture_update_sub(tex, data_format, data, x, y, layer, w, h, 1);
IMB_freeImBuf(ibuf);
}
static void gpu_texture_update_unscaled(GPUTexture *tex,
uchar *rect,
float *rect_float,
int x,
int y,
int layer,
const int tile_offset[2],
int w,
int h,
int tex_stride,
int tex_offset)
{
if (layer > -1) {
/* Shift to account for tile packing. */
x += tile_offset[0];
y += tile_offset[1];
}
void *data = (rect_float) ? (void *)(rect_float + tex_offset) : (void *)(rect + tex_offset);
eGPUDataFormat data_format = (rect_float) ? GPU_DATA_FLOAT : GPU_DATA_UBYTE;
/* Partial update without scaling. Stride and offset are used to copy only a
* subset of a possible larger buffer than what we are updating. */
GPU_unpack_row_length_set(tex_stride);
GPU_texture_update_sub(tex, data_format, data, x, y, layer, w, h, 1);
/* Restore default. */
GPU_unpack_row_length_set(0);
}
static void gpu_texture_update_from_ibuf(
GPUTexture *tex, Image *ima, ImBuf *ibuf, ImageTile *tile, int x, int y, int w, int h)
{
bool scaled;
if (tile != NULL) {
int *tilesize = tile->runtime.tilearray_size;
scaled = (ibuf->x != tilesize[0]) || (ibuf->y != tilesize[1]);
}
else {
scaled = (GPU_texture_width(tex) != ibuf->x) || (GPU_texture_height(tex) != ibuf->y);
}
if (scaled) {
/* Extra padding to account for bleed from neighboring pixels. */
const int padding = 4;
const int xmax = min_ii(x + w + padding, ibuf->x);
const int ymax = min_ii(y + h + padding, ibuf->y);
x = max_ii(x - padding, 0);
y = max_ii(y - padding, 0);
w = xmax - x;
h = ymax - y;
}
/* Get texture data pointers. */
float *rect_float = ibuf->rect_float;
uchar *rect = (uchar *)ibuf->rect;
int tex_stride = ibuf->x;
int tex_offset = ibuf->channels * (y * ibuf->x + x);
const bool store_premultiplied = BKE_image_has_gpu_texture_premultiplied_alpha(ima, ibuf);
if (rect_float == NULL) {
/* Byte pixels. */
if (!IMB_colormanagement_space_is_data(ibuf->rect_colorspace)) {
const bool compress_as_srgb = !IMB_colormanagement_space_is_scene_linear(
ibuf->rect_colorspace);
rect = (uchar *)MEM_mallocN(sizeof(uchar[4]) * w * h, __func__);
if (rect == NULL) {
return;
}
tex_stride = w;
tex_offset = 0;
/* Convert to scene linear with sRGB compression, and premultiplied for
* correct texture interpolation. */
IMB_colormanagement_imbuf_to_byte_texture(
rect, x, y, w, h, ibuf, compress_as_srgb, store_premultiplied);
}
}
else {
/* Float pixels. */
if (ibuf->channels != 4 || scaled || !store_premultiplied) {
rect_float = (float *)MEM_mallocN(sizeof(float[4]) * w * h, __func__);
if (rect_float == NULL) {
return;
}
tex_stride = w;
tex_offset = 0;
IMB_colormanagement_imbuf_to_float_texture(
rect_float, x, y, w, h, ibuf, store_premultiplied);
}
}
if (scaled) {
/* Slower update where we first have to scale the input pixels. */
if (tile != NULL) {
int *tileoffset = tile->runtime.tilearray_offset;
int *tilesize = tile->runtime.tilearray_size;
int tilelayer = tile->runtime.tilearray_layer;
gpu_texture_update_scaled(
tex, rect, rect_float, ibuf->x, ibuf->y, x, y, tilelayer, tileoffset, tilesize, w, h);
}
else {
gpu_texture_update_scaled(
tex, rect, rect_float, ibuf->x, ibuf->y, x, y, -1, NULL, NULL, w, h);
}
}
else {
/* Fast update at same resolution. */
if (tile != NULL) {
int *tileoffset = tile->runtime.tilearray_offset;
int tilelayer = tile->runtime.tilearray_layer;
gpu_texture_update_unscaled(
tex, rect, rect_float, x, y, tilelayer, tileoffset, w, h, tex_stride, tex_offset);
}
else {
gpu_texture_update_unscaled(
tex, rect, rect_float, x, y, -1, NULL, w, h, tex_stride, tex_offset);
}
}
/* Free buffers if needed. */
if (rect && rect != (uchar *)ibuf->rect) {
MEM_freeN(rect);
}
if (rect_float && rect_float != ibuf->rect_float) {
MEM_freeN(rect_float);
}
if (GPU_mipmap_enabled()) {
GPU_texture_generate_mipmap(tex);
}
else {
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
}
GPU_texture_unbind(tex);
}
static void image_update_gputexture_ex(
Image *ima, ImageTile *tile, ImBuf *ibuf, int x, int y, int w, int h)
{
GPUTexture *tex = ima->gputexture[TEXTARGET_2D][0];
/* Check if we need to update the main gputexture. */
if (tex != NULL && tile == ima->tiles.first) {
gpu_texture_update_from_ibuf(tex, ima, ibuf, NULL, x, y, w, h);
}
/* Check if we need to update the array gputexture. */
tex = ima->gputexture[TEXTARGET_2D_ARRAY][0];
if (tex != NULL) {
gpu_texture_update_from_ibuf(tex, ima, ibuf, tile, x, y, w, h);
}
}
/* Partial update of texture for texture painting. This is often much
* quicker than fully updating the texture for high resolution images. */
void BKE_image_update_gputexture(Image *ima, ImageUser *iuser, int x, int y, int w, int h)
{
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, iuser, NULL);
ImageTile *tile = BKE_image_get_tile_from_iuser(ima, iuser);
if ((ibuf == NULL) || (w == 0) || (h == 0)) {
/* Full reload of texture. */
BKE_image_free_gputextures(ima);
}
image_update_gputexture_ex(ima, tile, ibuf, x, y, w, h);
BKE_image_release_ibuf(ima, ibuf, NULL);
}
/* Mark areas on the GPUTexture that needs to be updated. The areas are marked in chunks.
* The next time the GPUTexture is used these tiles will be refreshes. This saves time
* when writing to the same place multiple times This happens for during foreground
* rendering. */
void BKE_image_update_gputexture_delayed(
struct Image *ima, struct ImBuf *ibuf, int x, int y, int w, int h)
{
/* Check for full refresh. */
if (ibuf && x == 0 && y == 0 && w == ibuf->x && h == ibuf->y) {
ima->gpuflag |= IMA_GPU_REFRESH;
}
/* Check if we can promote partial refresh to a full refresh. */
if ((ima->gpuflag & (IMA_GPU_REFRESH | IMA_GPU_PARTIAL_REFRESH)) ==
(IMA_GPU_REFRESH | IMA_GPU_PARTIAL_REFRESH)) {
ima->gpuflag &= ~IMA_GPU_PARTIAL_REFRESH;
BLI_freelistN(&ima->gpu_refresh_areas);
}
/* Image is already marked for complete refresh. */
if (ima->gpuflag & IMA_GPU_REFRESH) {
return;
}
/* Schedule the tiles that covers the requested area. */
const int start_tile_x = x / IMA_PARTIAL_REFRESH_TILE_SIZE;
const int start_tile_y = y / IMA_PARTIAL_REFRESH_TILE_SIZE;
const int end_tile_x = (x + w) / IMA_PARTIAL_REFRESH_TILE_SIZE;
const int end_tile_y = (y + h) / IMA_PARTIAL_REFRESH_TILE_SIZE;
const int num_tiles_x = (end_tile_x + 1) - (start_tile_x);
const int num_tiles_y = (end_tile_y + 1) - (start_tile_y);
const int num_tiles = num_tiles_x * num_tiles_y;
const bool allocate_on_heap = BLI_BITMAP_SIZE(num_tiles) > 16;
BLI_bitmap *requested_tiles = NULL;
if (allocate_on_heap) {
requested_tiles = BLI_BITMAP_NEW(num_tiles, __func__);
}
else {
requested_tiles = BLI_BITMAP_NEW_ALLOCA(num_tiles);
}
/* Mark the tiles that have already been requested. They don't need to be requested again. */
int num_tiles_not_scheduled = num_tiles;
LISTBASE_FOREACH (ImagePartialRefresh *, area, &ima->gpu_refresh_areas) {
if (area->tile_x < start_tile_x || area->tile_x > end_tile_x || area->tile_y < start_tile_y ||
area->tile_y > end_tile_y) {
continue;
}
int requested_tile_index = (area->tile_x - start_tile_x) +
(area->tile_y - start_tile_y) * num_tiles_x;
BLI_BITMAP_ENABLE(requested_tiles, requested_tile_index);
num_tiles_not_scheduled--;
if (num_tiles_not_scheduled == 0) {
break;
}
}
/* Schedule the tiles that aren't requested yet. */
if (num_tiles_not_scheduled) {
int tile_index = 0;
for (int tile_y = start_tile_y; tile_y <= end_tile_y; tile_y++) {
for (int tile_x = start_tile_x; tile_x <= end_tile_x; tile_x++) {
if (!BLI_BITMAP_TEST_BOOL(requested_tiles, tile_index)) {
ImagePartialRefresh *area = MEM_mallocN(sizeof(ImagePartialRefresh), __func__);
area->tile_x = tile_x;
area->tile_y = tile_y;
BLI_addtail(&ima->gpu_refresh_areas, area);
}
tile_index++;
}
}
ima->gpuflag |= IMA_GPU_PARTIAL_REFRESH;
}
if (allocate_on_heap) {
MEM_freeN(requested_tiles);
}
}
/* these two functions are called on entering and exiting texture paint mode,
2012-03-09 18:28:30 +00:00
* temporary disabling/enabling mipmapping on all images for quick texture
* updates with glTexSubImage2D. images that didn't change don't have to be
* re-uploaded to OpenGL */
void BKE_image_paint_set_mipmap(Main *bmain, bool mipmap)
{
LISTBASE_FOREACH (Image *, ima, &bmain->images) {
if (BKE_image_has_opengl_texture(ima)) {
if (ima->gpuflag & IMA_GPU_MIPMAP_COMPLETE) {
for (int eye = 0; eye < 2; eye++) {
for (int a = 0; a < TEXTARGET_COUNT; a++) {
if (ELEM(a, TEXTARGET_2D, TEXTARGET_2D_ARRAY)) {
GPUTexture *tex = ima->gputexture[a][eye];
if (tex != NULL) {
GPU_texture_mipmap_mode(tex, mipmap, true);
}
}
Add support for tiled images and the UDIM naming scheme This patch contains the work that I did during my week at the Code Quest - adding support for tiled images to Blender. With this patch, images now contain a list of tiles. By default, this just contains one tile, but if the source type is set to Tiled, the user can add additional tiles. When acquiring an ImBuf, the tile to be loaded is specified in the ImageUser. Therefore, code that is not yet aware of tiles will just access the default tile as usual. The filenames of the additional tiles are derived from the original filename according to the UDIM naming scheme - the filename contains an index that is calculated as (1001 + 10*<y coordinate of the tile> + <x coordinate of the tile>), where the x coordinate never goes above 9. Internally, the various tiles are stored in a cache just like sequences. When acquired for the first time, the code will try to load the corresponding file from disk. Alternatively, a new operator can be used to initialize the tile similar to the New Image operator. The following features are supported so far: - Automatic detection and loading of all tiles when opening the first tile (1001) - Saving all tiles - Adding and removing tiles - Filling tiles with generated images - Drawing all tiles in the Image Editor - Viewing a tiled grid even if no image is selected - Rendering tiled images in Eevee - Rendering tiled images in Cycles (in SVM mode) - Automatically skipping loading of unused tiles in Cycles - 2D texture painting (also across tiles) - 3D texture painting (also across tiles, only limitation: individual faces can not cross tile borders) - Assigning custom labels to individual tiles (drawn in the Image Editor instead of the ID) - Different resolutions between tiles There still are some missing features that will be added later (see T72390): - Workbench engine support - Packing/Unpacking support - Baking support - Cycles OSL support - many other Blender features that rely on images Thanks to Brecht for the review and to all who tested the intermediate versions! Differential Revision: https://developer.blender.org/D3509
2019-12-12 16:06:08 +01:00
}
}
}
2019-04-22 09:32:37 +10:00
else {
BKE_image_free_gputextures(ima);
2019-04-22 09:32:37 +10:00
}
}
else {
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
}
}
}
2020-07-30 08:31:25 +10:00
/** \} */