This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/render/intern/raytrace/rayobject.cpp

532 lines
13 KiB
C++
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2009 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
* Contributor(s): André Pinto.
*
* ***** END GPL LICENSE BLOCK *****
*/
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
2011-02-27 19:31:27 +00:00
/** \file blender/render/intern/raytrace/rayobject.cpp
* \ingroup render
*/
#include <assert.h>
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "DNA_material_types.h"
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
#include "rayintersection.h"
#include "rayobject.h"
#include "raycounter.h"
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
#include "render_types.h"
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* RayFace
2012-03-09 18:28:30 +00:00
*
* note we force always inline here, because compiler refuses to otherwise
* because function is too long. Since this is code that is called billions
* of times we really do want to inline. */
MALWAYS_INLINE RayObject* rayface_from_coords(RayFace *rayface, void *ob, void *face,
float *v1, float *v2, float *v3, float *v4)
{
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
rayface->ob = ob;
rayface->face = face;
copy_v3_v3(rayface->v1, v1);
copy_v3_v3(rayface->v2, v2);
copy_v3_v3(rayface->v3, v3);
if (v4) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
copy_v3_v3(rayface->v4, v4);
rayface->quad = 1;
}
else {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
rayface->quad = 0;
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
return RE_rayobject_unalignRayFace(rayface);
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
MALWAYS_INLINE void rayface_from_vlak(RayFace *rayface, ObjectInstanceRen *obi, VlakRen *vlr)
{
rayface_from_coords(rayface, obi, vlr, vlr->v1->co, vlr->v2->co, vlr->v3->co, vlr->v4 ? vlr->v4->co : NULL);
if (obi->transform_primitives) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
mul_m4_v3(obi->mat, rayface->v1);
mul_m4_v3(obi->mat, rayface->v2);
mul_m4_v3(obi->mat, rayface->v3);
if (RE_rayface_isQuad(rayface))
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
mul_m4_v3(obi->mat, rayface->v4);
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
RayObject* RE_rayface_from_vlak(RayFace *rayface, ObjectInstanceRen *obi, VlakRen *vlr)
{
return rayface_from_coords(rayface, obi, vlr, vlr->v1->co, vlr->v2->co, vlr->v3->co, vlr->v4 ? vlr->v4->co : 0);
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* VlakPrimitive */
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
RayObject* RE_vlakprimitive_from_vlak(VlakPrimitive *face, struct ObjectInstanceRen *obi, struct VlakRen *vlr)
{
face->ob = obi;
face->face = vlr;
return RE_rayobject_unalignVlakPrimitive(face);
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* Checks for ignoring faces or materials */
MALWAYS_INLINE int vlr_check_intersect(Isect *is, ObjectInstanceRen *obi, VlakRen *vlr)
{
/* for baking selected to active non-traceable materials might still
* be in the raytree */
if (!(vlr->flag & R_TRACEBLE))
return 0;
/* I know... cpu cycle waste, might do smarter once */
if (is->mode==RE_RAY_MIRROR)
return !(vlr->mat->mode & MA_ONLYCAST);
else
return (is->lay & obi->lay);
}
MALWAYS_INLINE int vlr_check_intersect_solid(Isect *UNUSED(is), ObjectInstanceRen* UNUSED(obi), VlakRen *vlr)
{
/* solid material types only */
if (vlr->mat->material_type == MA_TYPE_SURFACE)
return 1;
else
return 0;
}
MALWAYS_INLINE int vlr_check_bake(Isect *is, ObjectInstanceRen* obi, VlakRen *UNUSED(vlr))
{
return (obi->obr->ob != is->userdata) && (obi->obr->ob->flag & SELECT);
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* Ray Triangle/Quad Intersection */
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
MALWAYS_INLINE int isec_tri_quad(float start[3], float dir[3], RayFace *face, float uv[2], float *lambda)
{
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
float co1[3], co2[3], co3[3], co4[3];
float t0[3], t1[3], x[3], r[3], m[3], u, v, divdet, det1, l;
int quad;
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
quad= RE_rayface_isQuad(face);
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
copy_v3_v3(co1, face->v1);
copy_v3_v3(co2, face->v2);
copy_v3_v3(co3, face->v3);
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
copy_v3_v3(r, dir);
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* intersect triangle */
sub_v3_v3v3(t0, co3, co2);
sub_v3_v3v3(t1, co3, co1);
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
cross_v3_v3v3(x, r, t1);
divdet= dot_v3v3(t0, x);
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
sub_v3_v3v3(m, start, co3);
det1= dot_v3v3(m, x);
if (divdet != 0.0f) {
divdet= 1.0f/divdet;
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
v= det1*divdet;
if (v < RE_RAYTRACE_EPSILON && v > -(1.0f+RE_RAYTRACE_EPSILON)) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
float cros[3];
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
cross_v3_v3v3(cros, m, t0);
u= divdet*dot_v3v3(cros, r);
if (u < RE_RAYTRACE_EPSILON && (v + u) > -(1.0f+RE_RAYTRACE_EPSILON)) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
l= divdet*dot_v3v3(cros, t1);
/* check if intersection is within ray length */
if (l > -RE_RAYTRACE_EPSILON && l < *lambda) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
uv[0]= u;
uv[1]= v;
*lambda= l;
return 1;
}
}
}
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* intersect second triangle in quad */
if (quad) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
copy_v3_v3(co4, face->v4);
sub_v3_v3v3(t0, co3, co4);
divdet= dot_v3v3(t0, x);
if (divdet != 0.0f) {
divdet= 1.0f/divdet;
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
v = det1*divdet;
if (v < RE_RAYTRACE_EPSILON && v > -(1.0f+RE_RAYTRACE_EPSILON)) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
float cros[3];
cross_v3_v3v3(cros, m, t0);
u= divdet*dot_v3v3(cros, r);
if (u < RE_RAYTRACE_EPSILON && (v + u) > -(1.0f+RE_RAYTRACE_EPSILON)) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
l= divdet*dot_v3v3(cros, t1);
if (l >- RE_RAYTRACE_EPSILON && l < *lambda) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
uv[0]= u;
uv[1]= -(1.0f + v + u);
*lambda= l;
return 2;
}
}
}
}
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
return 0;
}
/* Simpler yes/no Ray Triangle/Quad Intersection */
MALWAYS_INLINE int isec_tri_quad_neighbour(float start[3], float dir[3], RayFace *face)
{
float co1[3], co2[3], co3[3], co4[3];
float t0[3], t1[3], x[3], r[3], m[3], u, v, divdet, det1;
int quad;
quad= RE_rayface_isQuad(face);
copy_v3_v3(co1, face->v1);
copy_v3_v3(co2, face->v2);
copy_v3_v3(co3, face->v3);
negate_v3_v3(r, dir); /* note, different than above function */
/* intersect triangle */
sub_v3_v3v3(t0, co3, co2);
sub_v3_v3v3(t1, co3, co1);
cross_v3_v3v3(x, r, t1);
divdet= dot_v3v3(t0, x);
sub_v3_v3v3(m, start, co3);
det1= dot_v3v3(m, x);
if (divdet != 0.0f) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
divdet= 1.0f/divdet;
v= det1*divdet;
if (v < RE_RAYTRACE_EPSILON && v > -(1.0f+RE_RAYTRACE_EPSILON)) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
float cros[3];
cross_v3_v3v3(cros, m, t0);
u= divdet*dot_v3v3(cros, r);
if (u < RE_RAYTRACE_EPSILON && (v + u) > -(1.0f+RE_RAYTRACE_EPSILON))
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
return 1;
}
}
/* intersect second triangle in quad */
if (quad) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
copy_v3_v3(co4, face->v4);
sub_v3_v3v3(t0, co3, co4);
divdet= dot_v3v3(t0, x);
if (divdet != 0.0f) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
divdet= 1.0f/divdet;
v = det1*divdet;
if (v < RE_RAYTRACE_EPSILON && v > -(1.0f+RE_RAYTRACE_EPSILON)) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
float cros[3];
cross_v3_v3v3(cros, m, t0);
u= divdet*dot_v3v3(cros, r);
if (u < RE_RAYTRACE_EPSILON && (v + u) > -(1.0f+RE_RAYTRACE_EPSILON))
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
return 2;
}
}
}
return 0;
}
2012-03-01 12:20:18 +00:00
/* RayFace intersection with checks and neighbor verifaction included,
2012-03-09 18:28:30 +00:00
* Isect is modified if the face is hit. */
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
MALWAYS_INLINE int intersect_rayface(RayObject *hit_obj, RayFace *face, Isect *is)
{
float dist, uv[2];
int ok= 0;
/* avoid self-intersection */
if (is->orig.ob == face->ob && is->orig.face == face->face)
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
return 0;
/* check if we should intersect this face */
if (is->check == RE_CHECK_VLR_RENDER) {
if (vlr_check_intersect(is, (ObjectInstanceRen*)face->ob, (VlakRen*)face->face) == 0)
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
return 0;
}
else if (is->check == RE_CHECK_VLR_NON_SOLID_MATERIAL) {
if (vlr_check_intersect(is, (ObjectInstanceRen*)face->ob, (VlakRen*)face->face) == 0)
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
return 0;
if (vlr_check_intersect_solid(is, (ObjectInstanceRen*)face->ob, (VlakRen*)face->face) == 0)
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
return 0;
}
else if (is->check == RE_CHECK_VLR_BAKE) {
if (vlr_check_bake(is, (ObjectInstanceRen*)face->ob, (VlakRen*)face->face) == 0)
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
return 0;
}
/* ray counter */
RE_RC_COUNT(is->raycounter->faces.test);
dist= is->dist;
ok= isec_tri_quad(is->start, is->dir, face, uv, &dist);
if (ok) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* when a shadow ray leaves a face, it can be little outside the edges
2012-03-09 18:28:30 +00:00
* of it, causing intersection to be detected in its neighbor face */
if (is->skip & RE_SKIP_VLR_NEIGHBOUR) {
if (dist < 0.1f && is->orig.ob == face->ob) {
VlakRen * a = (VlakRen*)is->orig.face;
VlakRen * b = (VlakRen*)face->face;
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* so there's a shared edge or vertex, let's intersect ray with
2012-03-09 18:28:30 +00:00
* face itself, if that's true we can safely return 1, otherwise
* we assume the intersection is invalid, 0 */
if (a->v1==b->v1 || a->v2==b->v1 || a->v3==b->v1 || a->v4==b->v1 ||
a->v1==b->v2 || a->v2==b->v2 || a->v3==b->v2 || a->v4==b->v2 ||
a->v1==b->v3 || a->v2==b->v3 || a->v3==b->v3 || a->v4==b->v3 ||
(b->v4 && (a->v1==b->v4 || a->v2==b->v4 || a->v3==b->v4 || a->v4==b->v4)))
{
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* create RayFace from original face, transformed if necessary */
RayFace origface;
ObjectInstanceRen *ob= (ObjectInstanceRen*)is->orig.ob;
rayface_from_vlak(&origface, ob, (VlakRen*)is->orig.face);
if (!isec_tri_quad_neighbour(is->start, is->dir, &origface)) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
return 0;
}
}
}
}
RE_RC_COUNT(is->raycounter->faces.hit);
is->isect= ok; // which half of the quad
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
is->dist= dist;
is->u= uv[0]; is->v= uv[1];
is->hit.ob = face->ob;
is->hit.face = face->face;
#ifdef RT_USE_LAST_HIT
is->last_hit = hit_obj;
#endif
return 1;
}
return 0;
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* Intersection */
int RE_rayobject_raycast(RayObject *r, Isect *isec)
{
int i;
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
RE_RC_COUNT(isec->raycounter->raycast.test);
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* setup vars used on raycast */
for (i=0; i<3; i++) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
isec->idot_axis[i] = 1.0f / isec->dir[i];
isec->bv_index[2*i] = isec->idot_axis[i] < 0.0 ? 1 : 0;
isec->bv_index[2*i+1] = 1 - isec->bv_index[2*i];
isec->bv_index[2*i] = i+3*isec->bv_index[2*i];
isec->bv_index[2*i+1] = i+3*isec->bv_index[2*i+1];
}
#ifdef RT_USE_LAST_HIT
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* last hit heuristic */
if (isec->mode==RE_RAY_SHADOW && isec->last_hit) {
RE_RC_COUNT(isec->raycounter->rayshadow_last_hit.test);
if (RE_rayobject_intersect(isec->last_hit, isec)) {
RE_RC_COUNT(isec->raycounter->raycast.hit);
RE_RC_COUNT(isec->raycounter->rayshadow_last_hit.hit);
return 1;
}
}
#endif
#ifdef RT_USE_HINT
isec->hit_hint = 0;
#endif
if (RE_rayobject_intersect(r, isec)) {
RE_RC_COUNT(isec->raycounter->raycast.hit);
#ifdef RT_USE_HINT
isec->hint = isec->hit_hint;
#endif
return 1;
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
return 0;
}
int RE_rayobject_intersect(RayObject *r, Isect *i)
{
if (RE_rayobject_isRayFace(r)) {
return intersect_rayface(r, (RayFace*) RE_rayobject_align(r), i);
}
else if (RE_rayobject_isVlakPrimitive(r)) {
//TODO optimize (useless copy to RayFace to avoid duplicate code)
VlakPrimitive *face = (VlakPrimitive*) RE_rayobject_align(r);
RayFace nface;
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
rayface_from_vlak(&nface, face->ob, face->face);
return intersect_rayface(r, &nface, i);
}
else if (RE_rayobject_isRayAPI(r)) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
r = RE_rayobject_align(r);
return r->api->raycast(r, i);
}
else {
assert(0);
2011-09-25 12:31:21 +00:00
return 0;
}
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* Building */
void RE_rayobject_add(RayObject *r, RayObject *o)
{
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
r = RE_rayobject_align(r);
return r->api->add(r, o);
}
void RE_rayobject_done(RayObject *r)
{
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
r = RE_rayobject_align(r);
r->api->done(r);
}
void RE_rayobject_free(RayObject *r)
{
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
r = RE_rayobject_align(r);
r->api->free(r);
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
float RE_rayobject_cost(RayObject *r)
{
if (RE_rayobject_isRayFace(r) || RE_rayobject_isVlakPrimitive(r)) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
return 1.0f;
}
else if (RE_rayobject_isRayAPI(r)) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
r = RE_rayobject_align(r);
return r->api->cost(r);
}
else {
assert(0);
return 1.0f;
}
}
/* Bounding Boxes */
void RE_rayobject_merge_bb(RayObject *r, float *min, float *max)
{
if (RE_rayobject_isRayFace(r)) {
RayFace *face = (RayFace*) RE_rayobject_align(r);
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
DO_MINMAX(face->v1, min, max);
DO_MINMAX(face->v2, min, max);
DO_MINMAX(face->v3, min, max);
if (RE_rayface_isQuad(face)) DO_MINMAX(face->v4, min, max);
}
else if (RE_rayobject_isVlakPrimitive(r)) {
VlakPrimitive *face = (VlakPrimitive*) RE_rayobject_align(r);
RayFace nface;
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
rayface_from_vlak(&nface, face->ob, face->face);
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
DO_MINMAX(nface.v1, min, max);
DO_MINMAX(nface.v2, min, max);
DO_MINMAX(nface.v3, min, max);
if (RE_rayface_isQuad(&nface)) DO_MINMAX(nface.v4, min, max);
}
else if (RE_rayobject_isRayAPI(r)) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
r = RE_rayobject_align(r);
r->api->bb(r, min, max);
}
2010-10-23 16:03:31 +00:00
else
assert(0);
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* Hints */
void RE_rayobject_hint_bb(RayObject *r, RayHint *hint, float *min, float *max)
{
if (RE_rayobject_isRayFace(r) || RE_rayobject_isVlakPrimitive(r)) {
return;
}
else if (RE_rayobject_isRayAPI(r)) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
r = RE_rayobject_align(r);
return r->api->hint_bb(r, hint, min, max);
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
else
assert(0);
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
/* RayObjectControl */
int RE_rayobjectcontrol_test_break(RayObjectControl *control)
{
if (control->test_break)
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
return control->test_break(control->data);
return 0;
}
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
void RE_rayobject_set_control(RayObject *r, void *data, RE_rayobjectcontrol_test_break_callback test_break)
{
if (RE_rayobject_isRayAPI(r)) {
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
r = RE_rayobject_align(r);
r->control.data = data;
r->control.test_break = test_break;
}
}