This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/transform/transform.c

4821 lines
106 KiB
C
Raw Normal View History

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <float.h>
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifndef WIN32
#include <unistd.h>
#else
#include <io.h>
#endif
#include "MEM_guardedalloc.h"
#include "DNA_anim_types.h"
#include "DNA_armature_types.h"
#include "DNA_action_types.h" /* for some special action-editor settings */
#include "DNA_constraint_types.h"
#include "DNA_ipo_types.h" /* some silly ipo flag */
#include "DNA_listBase.h"
#include "DNA_meshdata_types.h"
#include "DNA_mesh_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h" /* PET modes */
#include "DNA_screen_types.h" /* area dimensions */
#include "DNA_texture_types.h"
#include "DNA_userdef_types.h"
#include "DNA_view3d_types.h"
#include "DNA_space_types.h"
#include "DNA_windowmanager_types.h"
#include "RNA_access.h"
//#include "BIF_editview.h" /* arrows_move_cursor */
#include "BIF_gl.h"
#include "BIF_glutil.h"
//#include "BIF_mywindow.h"
//#include "BIF_resources.h"
//#include "BIF_screen.h"
//#include "BIF_space.h" /* undo */
//#include "BIF_toets.h" /* persptoetsen */
//#include "BIF_mywindow.h" /* warp_pointer */
//#include "BIF_toolbox.h" /* notice */
//#include "BIF_editmesh.h"
//#include "BIF_editsima.h"
//#include "BIF_editparticle.h"
#include "BKE_action.h"
#include "BKE_nla.h"
//#include "BKE_bad_level_calls.h"/* popmenu and error */
#include "BKE_bmesh.h"
#include "BKE_context.h"
#include "BKE_constraint.h"
#include "BKE_global.h"
#include "BKE_particle.h"
#include "BKE_pointcache.h"
#include "BKE_utildefines.h"
#include "BKE_context.h"
//#include "BSE_view.h"
#include "ED_image.h"
#include "ED_screen.h"
#include "ED_space_api.h"
#include "ED_markers.h"
#include "ED_util.h"
#include "ED_view3d.h"
#include "UI_view2d.h"
#include "WM_types.h"
#include "WM_api.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "BLI_editVert.h"
#include "PIL_time.h" /* sleep */
#include "UI_resources.h"
//#include "blendef.h"
//
//#include "mydevice.h"
#include "transform.h"
/* ************************** SPACE DEPENDANT CODE **************************** */
void setTransformViewMatrices(TransInfo *t)
{
if(t->spacetype==SPACE_VIEW3D && t->ar->regiontype == RGN_TYPE_WINDOW) {
RegionView3D *rv3d = t->ar->regiondata;
Mat4CpyMat4(t->viewmat, rv3d->viewmat);
Mat4CpyMat4(t->viewinv, rv3d->viewinv);
Mat4CpyMat4(t->persmat, rv3d->persmat);
Mat4CpyMat4(t->persinv, rv3d->persinv);
t->persp = rv3d->persp;
}
else {
Mat4One(t->viewmat);
Mat4One(t->viewinv);
Mat4One(t->persmat);
Mat4One(t->persinv);
t->persp = V3D_ORTHO;
}
calculateCenter2D(t);
}
void convertViewVec(TransInfo *t, float *vec, short dx, short dy)
{
if (t->spacetype==SPACE_VIEW3D) {
if (t->ar->regiontype == RGN_TYPE_WINDOW)
{
window_to_3d_delta(t->ar, vec, dx, dy);
}
}
else if(t->spacetype==SPACE_IMAGE) {
View2D *v2d = t->view;
float divx, divy, aspx, aspy;
ED_space_image_uv_aspect(t->sa->spacedata.first, &aspx, &aspy);
divx= v2d->mask.xmax-v2d->mask.xmin;
divy= v2d->mask.ymax-v2d->mask.ymin;
vec[0]= aspx*(v2d->cur.xmax-v2d->cur.xmin)*(dx)/divx;
vec[1]= aspy*(v2d->cur.ymax-v2d->cur.ymin)*(dy)/divy;
vec[2]= 0.0f;
}
else if(ELEM(t->spacetype, SPACE_IPO, SPACE_NLA)) {
View2D *v2d = t->view;
float divx, divy;
divx= v2d->mask.xmax-v2d->mask.xmin;
divy= v2d->mask.ymax-v2d->mask.ymin;
vec[0]= (v2d->cur.xmax-v2d->cur.xmin)*(dx) / (divx);
vec[1]= (v2d->cur.ymax-v2d->cur.ymin)*(dy) / (divy);
vec[2]= 0.0f;
}
else if(t->spacetype==SPACE_NODE) {
View2D *v2d = &t->ar->v2d;
float divx, divy;
divx= v2d->mask.xmax-v2d->mask.xmin;
divy= v2d->mask.ymax-v2d->mask.ymin;
vec[0]= (v2d->cur.xmax-v2d->cur.xmin)*(dx)/divx;
vec[1]= (v2d->cur.ymax-v2d->cur.ymin)*(dy)/divy;
vec[2]= 0.0f;
}
else if(t->spacetype==SPACE_SEQ) {
View2D *v2d = &t->ar->v2d;
float divx, divy;
divx= v2d->mask.xmax-v2d->mask.xmin;
divy= v2d->mask.ymax-v2d->mask.ymin;
vec[0]= (v2d->cur.xmax-v2d->cur.xmin)*(dx)/divx;
vec[1]= (v2d->cur.ymax-v2d->cur.ymin)*(dy)/divy;
vec[2]= 0.0f;
}
}
void projectIntView(TransInfo *t, float *vec, int *adr)
{
if (t->spacetype==SPACE_VIEW3D) {
if(t->ar->regiontype == RGN_TYPE_WINDOW)
project_int_noclip(t->ar, vec, adr);
}
else if(t->spacetype==SPACE_IMAGE) {
float aspx, aspy, v[2];
ED_space_image_uv_aspect(t->sa->spacedata.first, &aspx, &aspy);
v[0]= vec[0]/aspx;
v[1]= vec[1]/aspy;
UI_view2d_to_region_no_clip(t->view, v[0], v[1], adr, adr+1);
}
else if(ELEM(t->spacetype, SPACE_IPO, SPACE_NLA)) {
int out[2] = {0, 0};
UI_view2d_view_to_region((View2D *)t->view, vec[0], vec[1], out, out+1);
adr[0]= out[0];
adr[1]= out[1];
}
else if(t->spacetype==SPACE_SEQ) { /* XXX not tested yet, but should work */
int out[2] = {0, 0};
UI_view2d_view_to_region((View2D *)t->view, vec[0], vec[1], out, out+1);
adr[0]= out[0];
adr[1]= out[1];
}
}
void projectFloatView(TransInfo *t, float *vec, float *adr)
{
if (t->spacetype==SPACE_VIEW3D) {
if(t->ar->regiontype == RGN_TYPE_WINDOW)
project_float_noclip(t->ar, vec, adr);
}
else if(t->spacetype==SPACE_IMAGE) {
int a[2];
projectIntView(t, vec, a);
adr[0]= a[0];
adr[1]= a[1];
}
else if(ELEM(t->spacetype, SPACE_IPO, SPACE_NLA)) {
int a[2];
projectIntView(t, vec, a);
adr[0]= a[0];
adr[1]= a[1];
}
}
void applyAspectRatio(TransInfo *t, float *vec)
{
SpaceImage *sima= t->sa->spacedata.first;
if ((t->spacetype==SPACE_IMAGE) && (t->mode==TFM_TRANSLATION)) {
float aspx, aspy;
if((sima->flag & SI_COORDFLOATS)==0) {
int width, height;
ED_space_image_size(sima, &width, &height);
vec[0] *= width;
vec[1] *= height;
}
ED_space_image_uv_aspect(sima, &aspx, &aspy);
vec[0] /= aspx;
vec[1] /= aspy;
}
}
void removeAspectRatio(TransInfo *t, float *vec)
{
SpaceImage *sima= t->sa->spacedata.first;
if ((t->spacetype==SPACE_IMAGE) && (t->mode==TFM_TRANSLATION)) {
float aspx, aspy;
if((sima->flag & SI_COORDFLOATS)==0) {
int width, height;
ED_space_image_size(sima, &width, &height);
vec[0] /= width;
vec[1] /= height;
}
ED_space_image_uv_aspect(sima, &aspx, &aspy);
vec[0] *= aspx;
vec[1] *= aspy;
}
}
static void viewRedrawForce(bContext *C, TransInfo *t)
{
if (t->spacetype == SPACE_VIEW3D)
{
/* Do we need more refined tags? */
WM_event_add_notifier(C, NC_OBJECT|ND_TRANSFORM, NULL);
}
else if (t->spacetype == SPACE_ACTION) {
//SpaceAction *saction= (SpaceAction *)t->sa->spacedata.first;
WM_event_add_notifier(C, NC_ANIMATION|ND_KEYFRAME_EDIT, NULL);
}
else if (t->spacetype == SPACE_IPO) {
//SpaceIpo *sipo= (SpaceIpo *)t->sa->spacedata.first;
WM_event_add_notifier(C, NC_ANIMATION|ND_KEYFRAME_EDIT, NULL);
}
else if (t->spacetype == SPACE_NLA) {
WM_event_add_notifier(C, NC_ANIMATION|ND_KEYFRAME_EDIT, NULL);
}
else if(t->spacetype == SPACE_NODE)
{
//ED_area_tag_redraw(t->sa);
WM_event_add_notifier(C, NC_SCENE|ND_NODES, NULL);
}
else if(t->spacetype == SPACE_SEQ)
{
WM_event_add_notifier(C, NC_SCENE|ND_SEQUENCER, NULL);
}
else if (t->spacetype==SPACE_IMAGE) {
// XXX how to deal with lock?
#if 0
SpaceImage *sima= (SpaceImage*)t->sa->spacedata.first;
if(sima->lock) force_draw_plus(SPACE_VIEW3D, 0);
else force_draw(0);
#endif
WM_event_add_notifier(C, NC_OBJECT|ND_GEOM_DATA, t->obedit);
}
}
static void viewRedrawPost(TransInfo *t)
{
ED_area_headerprint(t->sa, NULL);
#if 0 // TRANSFORM_FIX_ME
if(t->spacetype==SPACE_VIEW3D) {
allqueue(REDRAWBUTSOBJECT, 0);
allqueue(REDRAWVIEW3D, 0);
}
else if(t->spacetype==SPACE_IMAGE) {
allqueue(REDRAWIMAGE, 0);
allqueue(REDRAWVIEW3D, 0);
}
else if(ELEM3(t->spacetype, SPACE_ACTION, SPACE_NLA, SPACE_IPO)) {
allqueue(REDRAWVIEW3D, 0);
allqueue(REDRAWACTION, 0);
allqueue(REDRAWNLA, 0);
allqueue(REDRAWIPO, 0);
allqueue(REDRAWTIME, 0);
allqueue(REDRAWBUTSOBJECT, 0);
}
scrarea_queue_headredraw(curarea);
#endif
}
/* ************************** TRANSFORMATIONS **************************** */
void BIF_selectOrientation() {
#if 0 // TRANSFORM_FIX_ME
short val;
char *str_menu = BIF_menustringTransformOrientation("Orientation");
val= pupmenu(str_menu);
MEM_freeN(str_menu);
if(val >= 0) {
G.vd->twmode = val;
}
#endif
}
static void view_editmove(unsigned short event)
{
#if 0 // TRANSFORM_FIX_ME
int refresh = 0;
/* Regular: Zoom in */
/* Shift: Scroll up */
/* Ctrl: Scroll right */
/* Alt-Shift: Rotate up */
/* Alt-Ctrl: Rotate right */
/* only work in 3D window for now
* In the end, will have to send to event to a 2D window handler instead
*/
if (Trans.flag & T_2D_EDIT)
return;
switch(event) {
case WHEELUPMOUSE:
if( G.qual & LR_SHIFTKEY ) {
if( G.qual & LR_ALTKEY ) {
G.qual &= ~LR_SHIFTKEY;
persptoetsen(PAD2);
G.qual |= LR_SHIFTKEY;
} else {
persptoetsen(PAD2);
}
} else if( G.qual & LR_CTRLKEY ) {
if( G.qual & LR_ALTKEY ) {
G.qual &= ~LR_CTRLKEY;
persptoetsen(PAD4);
G.qual |= LR_CTRLKEY;
} else {
persptoetsen(PAD4);
}
} else if(U.uiflag & USER_WHEELZOOMDIR)
persptoetsen(PADMINUS);
else
persptoetsen(PADPLUSKEY);
refresh = 1;
break;
case WHEELDOWNMOUSE:
if( G.qual & LR_SHIFTKEY ) {
if( G.qual & LR_ALTKEY ) {
G.qual &= ~LR_SHIFTKEY;
persptoetsen(PAD8);
G.qual |= LR_SHIFTKEY;
} else {
persptoetsen(PAD8);
}
} else if( G.qual & LR_CTRLKEY ) {
if( G.qual & LR_ALTKEY ) {
G.qual &= ~LR_CTRLKEY;
persptoetsen(PAD6);
G.qual |= LR_CTRLKEY;
} else {
persptoetsen(PAD6);
}
} else if(U.uiflag & USER_WHEELZOOMDIR)
persptoetsen(PADPLUSKEY);
else
persptoetsen(PADMINUS);
refresh = 1;
break;
}
if (refresh)
setTransformViewMatrices(&Trans);
#endif
}
#if 0
static char *transform_to_undostr(TransInfo *t)
{
switch (t->mode) {
case TFM_TRANSLATION:
return "Translate";
case TFM_ROTATION:
return "Rotate";
case TFM_RESIZE:
return "Scale";
case TFM_TOSPHERE:
return "To Sphere";
case TFM_SHEAR:
return "Shear";
case TFM_WARP:
return "Warp";
case TFM_SHRINKFATTEN:
return "Shrink/Fatten";
case TFM_TILT:
return "Tilt";
case TFM_TRACKBALL:
return "Trackball";
case TFM_PUSHPULL:
return "Push/Pull";
case TFM_BEVEL:
return "Bevel";
case TFM_BWEIGHT:
return "Bevel Weight";
case TFM_CREASE:
return "Crease";
case TFM_BONESIZE:
return "Bone Width";
case TFM_BONE_ENVELOPE:
return "Bone Envelope";
case TFM_TIME_TRANSLATE:
return "Translate Anim. Data";
case TFM_TIME_SCALE:
return "Scale Anim. Data";
case TFM_TIME_SLIDE:
return "Time Slide";
case TFM_BAKE_TIME:
return "Key Time";
case TFM_MIRROR:
return "Mirror";
}
return "Transform";
}
#endif
/* ************************************************* */
void transformEvent(TransInfo *t, wmEvent *event)
{
float mati[3][3] = {{1.0f, 0.0f, 0.0f}, {0.0f, 1.0f, 0.0f}, {0.0f, 0.0f, 1.0f}};
char cmode = constraintModeToChar(t);
t->redraw |= handleMouseInput(t, &t->mouse, event);
if (event->type == MOUSEMOVE)
{
t->mval[0] = event->x - t->ar->winrct.xmin;
t->mval[1] = event->y - t->ar->winrct.ymin;
t->redraw = 1;
applyMouseInput(t, &t->mouse, t->mval, t->values);
}
if (event->val) {
switch (event->type){
/* enforce redraw of transform when modifiers are used */
case LEFTCTRLKEY:
case RIGHTCTRLKEY:
t->modifiers |= MOD_SNAP_GEARS;
t->redraw = 1;
break;
case LEFTSHIFTKEY:
case RIGHTSHIFTKEY:
t->modifiers |= MOD_CONSTRAINT_PLANE;
t->redraw = 1;
break;
case SPACEKEY:
if ((t->spacetype==SPACE_VIEW3D) && event->alt) {
#if 0 // TRANSFORM_FIX_ME
short mval[2];
getmouseco_sc(mval);
BIF_selectOrientation();
calc_manipulator_stats(curarea);
Mat3CpyMat4(t->spacemtx, G.vd->twmat);
warp_pointer(mval[0], mval[1]);
#endif
}
else {
t->state = TRANS_CONFIRM;
}
break;
case MIDDLEMOUSE:
if ((t->flag & T_NO_CONSTRAINT)==0) {
/* exception for switching to dolly, or trackball, in camera view */
if (t->flag & T_CAMERA) {
if (t->mode==TFM_TRANSLATION)
setLocalConstraint(t, (CON_AXIS2), "along local Z");
else if (t->mode==TFM_ROTATION) {
restoreTransObjects(t);
initTrackball(t);
}
}
else {
t->modifiers |= MOD_CONSTRAINT_SELECT;
if (t->con.mode & CON_APPLY) {
stopConstraint(t);
}
else {
if (event->shift) {
initSelectConstraint(t, t->spacemtx);
}
else {
/* bit hackish... but it prevents mmb select to print the orientation from menu */
strcpy(t->spacename, "global");
initSelectConstraint(t, mati);
}
postSelectConstraint(t);
}
}
t->redraw = 1;
}
break;
case ESCKEY:
case RIGHTMOUSE:
printf("cancelled\n");
t->state = TRANS_CANCEL;
break;
case LEFTMOUSE:
case PADENTER:
case RETKEY:
t->state = TRANS_CONFIRM;
break;
case GKEY:
/* only switch when... */
if( ELEM3(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL) ) {
resetTransRestrictions(t);
restoreTransObjects(t);
initTranslation(t);
2009-05-14 19:08:15 +00:00
initSnapping(t, NULL); // need to reinit after mode change
t->redraw = 1;
}
break;
case SKEY:
/* only switch when... */
if( ELEM3(t->mode, TFM_ROTATION, TFM_TRANSLATION, TFM_TRACKBALL) ) {
resetTransRestrictions(t);
restoreTransObjects(t);
initResize(t);
2009-05-14 19:08:15 +00:00
initSnapping(t, NULL); // need to reinit after mode change
t->redraw = 1;
}
break;
case RKEY:
/* only switch when... */
if( ELEM4(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL, TFM_TRANSLATION) ) {
resetTransRestrictions(t);
if (t->mode == TFM_ROTATION) {
restoreTransObjects(t);
initTrackball(t);
}
else {
restoreTransObjects(t);
initRotation(t);
}
2009-05-14 19:08:15 +00:00
initSnapping(t, NULL); // need to reinit after mode change
t->redraw = 1;
}
break;
case CKEY:
if (event->alt) {
t->flag ^= T_PROP_CONNECTED;
sort_trans_data_dist(t);
calculatePropRatio(t);
t->redraw= 1;
}
else {
stopConstraint(t);
t->redraw = 1;
}
break;
case XKEY:
if ((t->flag & T_NO_CONSTRAINT)==0) {
if (cmode == 'X') {
if (t->flag & T_2D_EDIT) {
stopConstraint(t);
}
else {
if (t->con.mode & CON_USER) {
stopConstraint(t);
}
else {
if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0)
setUserConstraint(t, (CON_AXIS0), "along %s X");
else if (t->modifiers & MOD_CONSTRAINT_PLANE)
setUserConstraint(t, (CON_AXIS1|CON_AXIS2), "locking %s X");
}
}
}
else {
if (t->flag & T_2D_EDIT) {
setConstraint(t, mati, (CON_AXIS0), "along X axis");
}
else {
if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0)
setConstraint(t, mati, (CON_AXIS0), "along global X");
else if (t->modifiers & MOD_CONSTRAINT_PLANE)
setConstraint(t, mati, (CON_AXIS1|CON_AXIS2), "locking global X");
}
}
t->redraw = 1;
}
break;
case YKEY:
if ((t->flag & T_NO_CONSTRAINT)==0) {
if (cmode == 'Y') {
if (t->flag & T_2D_EDIT) {
stopConstraint(t);
}
else {
if (t->con.mode & CON_USER) {
stopConstraint(t);
}
else {
if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0)
setUserConstraint(t, (CON_AXIS1), "along %s Y");
else if (t->modifiers & MOD_CONSTRAINT_PLANE)
setUserConstraint(t, (CON_AXIS0|CON_AXIS2), "locking %s Y");
}
}
}
else {
if (t->flag & T_2D_EDIT) {
setConstraint(t, mati, (CON_AXIS1), "along Y axis");
}
else {
if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0)
setConstraint(t, mati, (CON_AXIS1), "along global Y");
else if (t->modifiers & MOD_CONSTRAINT_PLANE)
setConstraint(t, mati, (CON_AXIS0|CON_AXIS2), "locking global Y");
}
}
t->redraw = 1;
}
break;
case ZKEY:
if ((t->flag & T_NO_CONSTRAINT)==0) {
if (cmode == 'Z') {
if (t->con.mode & CON_USER) {
stopConstraint(t);
}
else {
if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0)
setUserConstraint(t, (CON_AXIS2), "along %s Z");
else if ((t->modifiers & MOD_CONSTRAINT_PLANE) && ((t->flag & T_2D_EDIT)==0))
setUserConstraint(t, (CON_AXIS0|CON_AXIS1), "locking %s Z");
}
}
else if ((t->flag & T_2D_EDIT)==0) {
if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0)
setConstraint(t, mati, (CON_AXIS2), "along global Z");
else if (t->modifiers & MOD_CONSTRAINT_PLANE)
setConstraint(t, mati, (CON_AXIS0|CON_AXIS1), "locking global Z");
}
t->redraw = 1;
}
break;
case OKEY:
if (t->flag & T_PROP_EDIT && event->shift) {
t->prop_mode = (t->prop_mode + 1) % 6;
calculatePropRatio(t);
t->redraw = 1;
}
break;
case PADPLUSKEY:
if(event->alt && t->flag & T_PROP_EDIT) {
t->prop_size *= 1.1f;
calculatePropRatio(t);
}
t->redraw= 1;
break;
case PAGEUPKEY:
case WHEELDOWNMOUSE:
if (t->flag & T_AUTOIK) {
transform_autoik_update(t, 1);
}
else if(t->flag & T_PROP_EDIT) {
t->prop_size*= 1.1f;
calculatePropRatio(t);
}
else view_editmove(event->type);
t->redraw= 1;
break;
case PADMINUS:
if(event->alt && t->flag & T_PROP_EDIT) {
t->prop_size*= 0.90909090f;
calculatePropRatio(t);
}
t->redraw= 1;
break;
case PAGEDOWNKEY:
case WHEELUPMOUSE:
if (t->flag & T_AUTOIK) {
transform_autoik_update(t, -1);
}
else if (t->flag & T_PROP_EDIT) {
t->prop_size*= 0.90909090f;
calculatePropRatio(t);
}
else view_editmove(event->type);
t->redraw= 1;
break;
// case NDOFMOTION:
// viewmoveNDOF(1);
// break;
}
// Numerical input events
t->redraw |= handleNumInput(&(t->num), event);
// NDof input events
switch(handleNDofInput(&(t->ndof), event))
{
case NDOF_CONFIRM:
if ((t->options & CTX_NDOF) == 0)
{
/* Confirm on normal transform only */
t->state = TRANS_CONFIRM;
}
break;
case NDOF_CANCEL:
if (t->options & CTX_NDOF)
{
/* Cancel on pure NDOF transform */
t->state = TRANS_CANCEL;
}
else
{
/* Otherwise, just redraw, NDof input was cancelled */
t->redraw = 1;
}
break;
case NDOF_NOMOVE:
if (t->options & CTX_NDOF)
{
/* Confirm on pure NDOF transform */
t->state = TRANS_CONFIRM;
}
break;
case NDOF_REFRESH:
t->redraw = 1;
break;
}
// Snapping events
t->redraw |= handleSnapping(t, event);
//arrows_move_cursor(event->type);
}
else {
switch (event->type){
case LEFTSHIFTKEY:
case RIGHTSHIFTKEY:
t->modifiers &= ~MOD_CONSTRAINT_PLANE;
t->redraw = 1;
break;
case LEFTCTRLKEY:
case RIGHTCTRLKEY:
t->modifiers &= ~MOD_SNAP_GEARS;
/* no redraw on release modifier keys! this makes sure you can assign the 'grid' still
after releasing modifer key */
//t->redraw = 1;
break;
case MIDDLEMOUSE:
if ((t->flag & T_NO_CONSTRAINT)==0) {
t->modifiers &= ~MOD_CONSTRAINT_SELECT;
postSelectConstraint(t);
t->redraw = 1;
}
break;
case LEFTMOUSE:
case RIGHTMOUSE:
if(WM_modal_tweak_exit(event, t->event_type))
// if (t->options & CTX_TWEAK)
t->state = TRANS_CONFIRM;
break;
}
}
// Per transform event, if present
if (t->handleEvent)
t->redraw |= t->handleEvent(t, event);
}
int calculateTransformCenter(bContext *C, wmEvent *event, int centerMode, float *vec)
{
TransInfo *t = MEM_callocN(sizeof(TransInfo), "TransInfo data");
int success = 1;
t->state = TRANS_RUNNING;
t->options = CTX_NONE;
t->mode = TFM_DUMMY;
initTransInfo(C, t, NULL, event); // internal data, mouse, vectors
createTransData(C, t); // make TransData structs from selection
t->around = centerMode; // override userdefined mode
if (t->total == 0) {
success = 0;
}
else {
success = 1;
calculateCenter(t);
// Copy center from constraint center. Transform center can be local
VECCOPY(vec, t->con.center);
}
postTrans(t);
/* aftertrans does insert ipos and action channels, and clears base flags, doesnt read transdata */
special_aftertrans_update(t);
MEM_freeN(t);
return success;
}
typedef enum {
UP,
DOWN,
LEFT,
RIGHT
} ArrowDirection;
static void drawArrow(ArrowDirection d, short offset, short length, short size)
{
switch(d)
{
case LEFT:
offset = -offset;
length = -length;
size = -size;
case RIGHT:
glBegin(GL_LINES);
glVertex2s( offset, 0);
glVertex2s( offset + length, 0);
glVertex2s( offset + length, 0);
glVertex2s( offset + length - size, -size);
glVertex2s( offset + length, 0);
glVertex2s( offset + length - size, size);
glEnd();
break;
case DOWN:
offset = -offset;
length = -length;
size = -size;
case UP:
glBegin(GL_LINES);
glVertex2s( 0, offset);
glVertex2s( 0, offset + length);
glVertex2s( 0, offset + length);
glVertex2s(-size, offset + length - size);
glVertex2s( 0, offset + length);
glVertex2s( size, offset + length - size);
glEnd();
break;
}
}
static void drawArrowHead(ArrowDirection d, short size)
{
switch(d)
{
case LEFT:
size = -size;
case RIGHT:
glBegin(GL_LINES);
glVertex2s( 0, 0);
glVertex2s( -size, -size);
glVertex2s( 0, 0);
glVertex2s( -size, size);
glEnd();
break;
case DOWN:
size = -size;
case UP:
glBegin(GL_LINES);
glVertex2s( 0, 0);
glVertex2s(-size, -size);
glVertex2s( 0, 0);
glVertex2s( size, -size);
glEnd();
break;
}
}
static void drawArc(float size, float angle_start, float angle_end, int segments)
{
float delta = (angle_end - angle_start) / segments;
float angle;
glBegin(GL_LINE_STRIP);
for( angle = angle_start; angle < angle_end; angle += delta)
{
glVertex2f( cosf(angle) * size, sinf(angle) * size);
}
glVertex2f( cosf(angle_end) * size, sinf(angle_end) * size);
glEnd();
}
void drawHelpline(const struct bContext *C, TransInfo *t)
{
if (t->helpline != HLP_NONE && !(t->flag & T_USES_MANIPULATOR))
{
float vecrot[3], cent[2];
VECCOPY(vecrot, t->center);
if(t->flag & T_EDIT) {
Object *ob= t->obedit;
if(ob) Mat4MulVecfl(ob->obmat, vecrot);
}
else if(t->flag & T_POSE) {
Object *ob=t->poseobj;
if(ob) Mat4MulVecfl(ob->obmat, vecrot);
}
projectFloatView(t, vecrot, cent); // no overflow in extreme cases
glDisable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
ED_region_pixelspace(t->ar);
switch(t->helpline)
{
case HLP_SPRING:
UI_ThemeColor(TH_WIRE);
setlinestyle(3);
glBegin(GL_LINE_STRIP);
glVertex2sv(t->mval);
glVertex2fv(cent);
glEnd();
glTranslatef(t->mval[0], t->mval[1], 0);
glRotatef(-180 / M_PI * atan2f(cent[0] - t->mval[0], cent[1] - t->mval[1]), 0, 0, 1);
setlinestyle(0);
glLineWidth(3.0);
drawArrow(UP, 5, 10, 5);
drawArrow(DOWN, 5, 10, 5);
glLineWidth(1.0);
break;
case HLP_HARROW:
UI_ThemeColor(TH_WIRE);
glTranslatef(t->mval[0], t->mval[1], 0);
glLineWidth(3.0);
drawArrow(RIGHT, 5, 10, 5);
drawArrow(LEFT, 5, 10, 5);
glLineWidth(1.0);
break;
case HLP_VARROW:
UI_ThemeColor(TH_WIRE);
glTranslatef(t->mval[0], t->mval[1], 0);
glLineWidth(3.0);
glBegin(GL_LINES);
drawArrow(UP, 5, 10, 5);
drawArrow(DOWN, 5, 10, 5);
glLineWidth(1.0);
break;
case HLP_ANGLE:
{
float dx = t->mval[0] - cent[0], dy = t->mval[1] - cent[1];
float angle = atan2f(dy, dx);
float dist = sqrtf(dx*dx + dy*dy);
float delta_angle = MIN2(15 / dist, M_PI/4);
float spacing_angle = MIN2(5 / dist, M_PI/12);
UI_ThemeColor(TH_WIRE);
setlinestyle(3);
glBegin(GL_LINE_STRIP);
glVertex2sv(t->mval);
glVertex2fv(cent);
glEnd();
glTranslatef(cent[0], cent[1], 0);
setlinestyle(0);
glLineWidth(3.0);
drawArc(dist, angle - delta_angle, angle - spacing_angle, 10);
drawArc(dist, angle + spacing_angle, angle + delta_angle, 10);
glPushMatrix();
glTranslatef(cosf(angle - delta_angle) * dist, sinf(angle - delta_angle) * dist, 0);
glRotatef(180 / M_PI * (angle - delta_angle), 0, 0, 1);
drawArrowHead(DOWN, 5);
glPopMatrix();
glTranslatef(cosf(angle + delta_angle) * dist, sinf(angle + delta_angle) * dist, 0);
glRotatef(180 / M_PI * (angle + delta_angle), 0, 0, 1);
drawArrowHead(UP, 5);
glLineWidth(1.0);
break;
}
case HLP_TRACKBALL:
{
char col[3], col2[3];
UI_GetThemeColor3ubv(TH_GRID, col);
glTranslatef(t->mval[0], t->mval[1], 0);
glLineWidth(3.0);
UI_make_axis_color(col, col2, 'x');
glColor3ubv((GLubyte *)col2);
drawArrow(RIGHT, 5, 10, 5);
drawArrow(LEFT, 5, 10, 5);
UI_make_axis_color(col, col2, 'y');
glColor3ubv((GLubyte *)col2);
drawArrow(UP, 5, 10, 5);
drawArrow(DOWN, 5, 10, 5);
glLineWidth(1.0);
break;
}
}
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
glEnable(GL_DEPTH_TEST);
}
}
void drawTransform(const struct bContext *C, struct ARegion *ar, void *arg)
{
TransInfo *t = arg;
drawConstraint(C, t);
drawPropCircle(C, t);
drawSnapping(C, t);
drawHelpline(C, t);
}
void saveTransform(bContext *C, TransInfo *t, wmOperator *op)
{
ToolSettings *ts = CTX_data_tool_settings(C);
int constraint_axis[3] = {0, 0, 0};
int proportional = 0;
if (t->flag & T_AUTOVALUES)
{
RNA_float_set_array(op->ptr, "value", t->auto_values);
}
else
{
RNA_float_set_array(op->ptr, "value", t->values);
}
/* XXX convert stupid flag to enum */
switch(t->flag & (T_PROP_EDIT|T_PROP_CONNECTED))
{
case (T_PROP_EDIT|T_PROP_CONNECTED):
proportional = 2;
break;
case T_PROP_EDIT:
proportional = 1;
break;
default:
proportional = 0;
}
if (RNA_struct_find_property(op->ptr, "proportional"))
{
RNA_enum_set(op->ptr, "proportional", proportional);
RNA_enum_set(op->ptr, "proportional_editing_falloff", t->prop_mode);
RNA_float_set(op->ptr, "proportional_size", t->prop_size);
}
if (RNA_struct_find_property(op->ptr, "mirror"))
{
RNA_boolean_set(op->ptr, "mirror", t->flag & T_MIRROR);
}
if (RNA_struct_find_property(op->ptr, "constraint_axis"))
{
RNA_int_set(op->ptr, "constraint_orientation", t->current_orientation);
if (t->con.mode & CON_APPLY)
{
if (t->con.mode & CON_AXIS0) {
constraint_axis[0] = 1;
}
if (t->con.mode & CON_AXIS1) {
constraint_axis[1] = 1;
}
if (t->con.mode & CON_AXIS2) {
constraint_axis[2] = 1;
}
}
RNA_boolean_set_array(op->ptr, "constraint_axis", constraint_axis);
}
// XXX If modal, save settings back in scene
if (t->flag & T_MODAL)
{
ts->prop_mode = t->prop_mode;
ts->proportional = proportional;
if(t->spacetype == SPACE_VIEW3D)
{
View3D *v3d = t->view;
v3d->twmode = t->current_orientation;
}
}
}
int initTransform(bContext *C, TransInfo *t, wmOperator *op, wmEvent *event, int mode)
{
int options = 0;
/* added initialize, for external calls to set stuff in TransInfo, like undo string */
t->state = TRANS_RUNNING;
t->options = options;
t->mode = mode;
if (!initTransInfo(C, t, op, event)) // internal data, mouse, vectors
{
return 0;
}
if(t->spacetype == SPACE_VIEW3D)
{
//calc_manipulator_stats(curarea);
initTransformOrientation(C, t);
t->draw_handle = ED_region_draw_cb_activate(t->ar->type, drawTransform, t, REGION_DRAW_POST);
}
else if(t->spacetype == SPACE_IMAGE) {
Mat3One(t->spacemtx);
t->draw_handle = ED_region_draw_cb_activate(t->ar->type, drawTransform, t, REGION_DRAW_POST);
}
else
Mat3One(t->spacemtx);
createTransData(C, t); // make TransData structs from selection
if (t->total == 0) {
postTrans(t);
return 0;
}
initSnapping(t, op); // Initialize snapping data AFTER mode flags
/* EVIL! posemode code can switch translation to rotate when 1 bone is selected. will be removed (ton) */
/* EVIL2: we gave as argument also texture space context bit... was cleared */
/* EVIL3: extend mode for animation editors also switches modes... but is best way to avoid duplicate code */
mode = t->mode;
calculatePropRatio(t);
calculateCenter(t);
initMouseInput(t, &t->mouse, t->center2d, t->imval);
switch (mode) {
case TFM_TRANSLATION:
initTranslation(t);
break;
case TFM_ROTATION:
initRotation(t);
break;
case TFM_RESIZE:
initResize(t);
break;
case TFM_TOSPHERE:
initToSphere(t);
break;
case TFM_SHEAR:
initShear(t);
break;
case TFM_WARP:
initWarp(t);
break;
case TFM_SHRINKFATTEN:
initShrinkFatten(t);
break;
case TFM_TILT:
initTilt(t);
break;
case TFM_CURVE_SHRINKFATTEN:
initCurveShrinkFatten(t);
break;
case TFM_TRACKBALL:
initTrackball(t);
break;
case TFM_PUSHPULL:
initPushPull(t);
break;
case TFM_CREASE:
initCrease(t);
break;
case TFM_BONESIZE:
{ /* used for both B-Bone width (bonesize) as for deform-dist (envelope) */
bArmature *arm= t->poseobj->data;
if(arm->drawtype==ARM_ENVELOPE)
initBoneEnvelope(t);
else
initBoneSize(t);
}
break;
case TFM_BONE_ENVELOPE:
initBoneEnvelope(t);
break;
case TFM_BONE_ROLL:
initBoneRoll(t);
break;
case TFM_TIME_TRANSLATE:
initTimeTranslate(t);
break;
case TFM_TIME_SLIDE:
initTimeSlide(t);
break;
case TFM_TIME_SCALE:
initTimeScale(t);
break;
case TFM_TIME_EXTEND:
/* now that transdata has been made, do like for TFM_TIME_TRANSLATE (for most Animation
* Editors because they have only 1D transforms for time values) or TFM_TRANSLATION
* (for Graph/NLA Editors only since they uses 'standard' transforms to get 2D movement)
* depending on which editor this was called from
*/
if ELEM(t->spacetype, SPACE_IPO, SPACE_NLA)
initTranslation(t);
else
initTimeTranslate(t);
break;
case TFM_BAKE_TIME:
initBakeTime(t);
break;
case TFM_MIRROR:
initMirror(t);
break;
case TFM_BEVEL:
initBevel(t);
break;
case TFM_BWEIGHT:
initBevelWeight(t);
break;
case TFM_ALIGN:
initAlign(t);
break;
}
/* overwrite initial values if operator supplied a non-null vector */
if (RNA_property_is_set(op->ptr, "value"))
{
float values[4];
RNA_float_get_array(op->ptr, "value", values);
QUATCOPY(t->values, values);
QUATCOPY(t->auto_values, values);
t->flag |= T_AUTOVALUES;
}
/* Constraint init from operator */
if (RNA_struct_find_property(op->ptr, "constraint_axis") && RNA_property_is_set(op->ptr, "constraint_axis"))
{
int constraint_axis[3];
RNA_boolean_get_array(op->ptr, "constraint_axis", constraint_axis);
if (constraint_axis[0] || constraint_axis[1] || constraint_axis[2])
{
t->con.mode |= CON_APPLY;
if (constraint_axis[0]) {
t->con.mode |= CON_AXIS0;
}
if (constraint_axis[1]) {
t->con.mode |= CON_AXIS1;
}
if (constraint_axis[2]) {
t->con.mode |= CON_AXIS2;
}
setUserConstraint(t, t->con.mode, "%s");
}
}
return 1;
}
void transformApply(bContext *C, TransInfo *t)
{
if (t->redraw)
{
if (t->modifiers & MOD_CONSTRAINT_SELECT)
t->con.mode |= CON_SELECT;
selectConstraint(t);
if (t->transform) {
t->transform(t, t->mval); // calls recalcData()
viewRedrawForce(C, t);
}
t->redraw = 0;
}
/* If auto confirm is on, break after one pass */
if (t->options & CTX_AUTOCONFIRM)
{
t->state = TRANS_CONFIRM;
}
if (BKE_ptcache_get_continue_physics())
{
// TRANSFORM_FIX_ME
//do_screenhandlers(G.curscreen);
t->redraw = 1;
}
}
int transformEnd(bContext *C, TransInfo *t)
{
int exit_code = OPERATOR_RUNNING_MODAL;
if (t->state != TRANS_RUNNING)
{
/* handle restoring objects */
if(t->state == TRANS_CANCEL)
{
exit_code = OPERATOR_CANCELLED;
restoreTransObjects(t); // calls recalcData()
}
else
{
exit_code = OPERATOR_FINISHED;
}
/* free data */
postTrans(t);
/* aftertrans does insert keyframes, and clears base flags, doesnt read transdata */
special_aftertrans_update(t);
/* send events out for redraws */
viewRedrawPost(t);
/* Undo as last, certainly after special_trans_update! */
if(t->state == TRANS_CANCEL) {
// if(t->undostr) ED_undo_push(C, t->undostr);
}
else {
// if(t->undostr) ED_undo_push(C, t->undostr);
// else ED_undo_push(C, transform_to_undostr(t));
}
t->undostr= NULL;
viewRedrawForce(C, t);
}
return exit_code;
}
/* ************************** Manipulator init and main **************************** */
void initManipulator(int mode)
{
printf("init manipulator mode %d\n", mode);
#if 0 // TRANSFORM_FIX_ME
Trans.state = TRANS_RUNNING;
Trans.options = CTX_NONE;
Trans.mode = mode;
/* automatic switch to scaling bone envelopes */
if(mode==TFM_RESIZE && t->obedit && t->obedit->type==OB_ARMATURE) {
bArmature *arm= t->obedit->data;
if(arm->drawtype==ARM_ENVELOPE)
mode= TFM_BONE_ENVELOPE;
}
initTrans(&Trans); // internal data, mouse, vectors
G.moving |= G_TRANSFORM_MANIP; // signal to draw manipuls while transform
createTransData(&Trans); // make TransData structs from selection
if (Trans.total == 0)
return;
initSnapping(&Trans); // Initialize snapping data AFTER mode flags
/* EVIL! posemode code can switch translation to rotate when 1 bone is selected. will be removed (ton) */
/* EVIL2: we gave as argument also texture space context bit... was cleared */
mode = Trans.mode;
calculatePropRatio(&Trans);
calculateCenter(&Trans);
switch (mode) {
case TFM_TRANSLATION:
initTranslation(&Trans);
break;
case TFM_ROTATION:
initRotation(&Trans);
break;
case TFM_RESIZE:
initResize(&Trans);
break;
case TFM_TRACKBALL:
initTrackball(&Trans);
break;
}
Trans.flag |= T_USES_MANIPULATOR;
#endif
}
void ManipulatorTransform()
{
#if 0 // TRANSFORM_FIX_ME
int mouse_moved = 0;
short pmval[2] = {0, 0}, mval[2], val;
unsigned short event;
if (Trans.total == 0)
return;
Trans.redraw = 1; /* initial draw */
while (Trans.state == TRANS_RUNNING) {
getmouseco_areawin(mval);
if (mval[0] != pmval[0] || mval[1] != pmval[1]) {
Trans.redraw = 1;
}
if (Trans.redraw) {
pmval[0] = mval[0];
pmval[1] = mval[1];
//selectConstraint(&Trans); needed?
if (Trans.transform) {
Trans.transform(&Trans, mval);
}
Trans.redraw = 0;
}
/* essential for idling subloop */
if( qtest()==0) PIL_sleep_ms(2);
while( qtest() ) {
event= extern_qread(&val);
switch (event){
case MOUSEX:
case MOUSEY:
mouse_moved = 1;
break;
/* enforce redraw of transform when modifiers are used */
case LEFTCTRLKEY:
case RIGHTCTRLKEY:
if(val) Trans.redraw = 1;
break;
case LEFTSHIFTKEY:
case RIGHTSHIFTKEY:
/* shift is modifier for higher resolution transform, works nice to store this mouse position */
if(val) {
getmouseco_areawin(Trans.shiftmval);
Trans.flag |= T_SHIFT_MOD;
Trans.redraw = 1;
}
else Trans.flag &= ~T_SHIFT_MOD;
break;
case ESCKEY:
case RIGHTMOUSE:
Trans.state = TRANS_CANCEL;
break;
case LEFTMOUSE:
if(mouse_moved==0 && val==0) break;
// else we pass on event to next, which cancels
case SPACEKEY:
case PADENTER:
case RETKEY:
Trans.state = TRANS_CONFIRM;
break;
// case NDOFMOTION:
// viewmoveNDOF(1);
// break;
}
if(val) {
switch(event) {
case PADPLUSKEY:
if(G.qual & LR_ALTKEY && Trans.flag & T_PROP_EDIT) {
Trans.propsize*= 1.1f;
calculatePropRatio(&Trans);
}
Trans.redraw= 1;
break;
case PAGEUPKEY:
case WHEELDOWNMOUSE:
if (Trans.flag & T_AUTOIK) {
transform_autoik_update(&Trans, 1);
}
else if(Trans.flag & T_PROP_EDIT) {
Trans.propsize*= 1.1f;
calculatePropRatio(&Trans);
}
else view_editmove(event);
Trans.redraw= 1;
break;
case PADMINUS:
if(G.qual & LR_ALTKEY && Trans.flag & T_PROP_EDIT) {
Trans.propsize*= 0.90909090f;
calculatePropRatio(&Trans);
}
Trans.redraw= 1;
break;
case PAGEDOWNKEY:
case WHEELUPMOUSE:
if (Trans.flag & T_AUTOIK) {
transform_autoik_update(&Trans, -1);
}
else if (Trans.flag & T_PROP_EDIT) {
Trans.propsize*= 0.90909090f;
calculatePropRatio(&Trans);
}
else view_editmove(event);
Trans.redraw= 1;
break;
}
// Numerical input events
Trans.redraw |= handleNumInput(&(Trans.num), event);
}
}
}
if(Trans.state == TRANS_CANCEL) {
restoreTransObjects(&Trans);
}
/* free data, reset vars */
postTrans(&Trans);
/* aftertrans does insert ipos and action channels, and clears base flags */
special_aftertrans_update(&Trans);
/* send events out for redraws */
viewRedrawPost(&Trans);
if(Trans.state != TRANS_CANCEL) {
BIF_undo_push(transform_to_undostr(&Trans));
}
#endif
}
/* ************************** TRANSFORM LOCKS **************************** */
static void protectedTransBits(short protectflag, float *vec)
{
if(protectflag & OB_LOCK_LOCX)
vec[0]= 0.0f;
if(protectflag & OB_LOCK_LOCY)
vec[1]= 0.0f;
if(protectflag & OB_LOCK_LOCZ)
vec[2]= 0.0f;
}
static void protectedSizeBits(short protectflag, float *size)
{
if(protectflag & OB_LOCK_SCALEX)
size[0]= 1.0f;
if(protectflag & OB_LOCK_SCALEY)
size[1]= 1.0f;
if(protectflag & OB_LOCK_SCALEZ)
size[2]= 1.0f;
}
static void protectedRotateBits(short protectflag, float *eul, float *oldeul)
{
if(protectflag & OB_LOCK_ROTX)
eul[0]= oldeul[0];
if(protectflag & OB_LOCK_ROTY)
eul[1]= oldeul[1];
if(protectflag & OB_LOCK_ROTZ)
eul[2]= oldeul[2];
}
static void protectedQuaternionBits(short protectflag, float *quat, float *oldquat)
{
/* quaternions get limited with euler... */
/* this function only does the delta rotation */
if(protectflag) {
float eul[3], oldeul[3], quat1[4];
QUATCOPY(quat1, quat);
QuatToEul(quat, eul);
QuatToEul(oldquat, oldeul);
if(protectflag & OB_LOCK_ROTX)
eul[0]= oldeul[0];
if(protectflag & OB_LOCK_ROTY)
eul[1]= oldeul[1];
if(protectflag & OB_LOCK_ROTZ)
eul[2]= oldeul[2];
EulToQuat(eul, quat);
/* quaternions flip w sign to accumulate rotations correctly */
if( (quat1[0]<0.0f && quat[0]>0.0f) || (quat1[0]>0.0f && quat[0]<0.0f) ) {
QuatMulf(quat, -1.0f);
}
}
}
/* ******************* TRANSFORM LIMITS ********************** */
static void constraintTransLim(TransInfo *t, TransData *td)
{
if (td->con) {
bConstraintTypeInfo *cti= get_constraint_typeinfo(CONSTRAINT_TYPE_LOCLIMIT);
bConstraintOb cob;
bConstraint *con;
/* Make a temporary bConstraintOb for using these limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
memset(&cob, 0, sizeof(bConstraintOb));
Mat4One(cob.matrix);
if (td->tdi) {
TransDataIpokey *tdi= td->tdi;
cob.matrix[3][0]= tdi->locx[0];
cob.matrix[3][1]= tdi->locy[0];
cob.matrix[3][2]= tdi->locz[0];
}
else {
VECCOPY(cob.matrix[3], td->loc);
}
/* Evaluate valid constraints */
for (con= td->con; con; con= con->next) {
float tmat[4][4];
/* only consider constraint if enabled */
if (con->flag & CONSTRAINT_DISABLE) continue;
if (con->enforce == 0.0f) continue;
/* only use it if it's tagged for this purpose (and the right type) */
if (con->type == CONSTRAINT_TYPE_LOCLIMIT) {
bLocLimitConstraint *data= con->data;
if ((data->flag2 & LIMIT_TRANSFORM)==0)
continue;
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
Mat4CpyMat4(tmat, cob.matrix);
Mat4MulMat34(cob.matrix, td->mtx, tmat);
}
else if (con->ownspace != CONSTRAINT_SPACE_LOCAL) {
/* skip... incompatable spacetype */
continue;
}
/* do constraint */
cti->evaluate_constraint(con, &cob, NULL);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
Mat4CpyMat4(tmat, cob.matrix);
Mat4MulMat34(cob.matrix, td->smtx, tmat);
}
}
}
/* copy results from cob->matrix */
if (td->tdi) {
TransDataIpokey *tdi= td->tdi;
tdi->locx[0]= cob.matrix[3][0];
tdi->locy[0]= cob.matrix[3][1];
tdi->locz[0]= cob.matrix[3][2];
}
else {
VECCOPY(td->loc, cob.matrix[3]);
}
}
}
static void constraintRotLim(TransInfo *t, TransData *td)
{
if (td->con) {
bConstraintTypeInfo *cti= get_constraint_typeinfo(CONSTRAINT_TYPE_ROTLIMIT);
bConstraintOb cob;
bConstraint *con;
/* Make a temporary bConstraintOb for using these limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
memset(&cob, 0, sizeof(bConstraintOb));
if (td->flag & TD_USEQUAT) {
/* quats */
if (td->ext)
QuatToMat4(td->ext->quat, cob.matrix);
else
return;
}
else if (td->tdi) {
/* ipo-keys eulers */
TransDataIpokey *tdi= td->tdi;
float eul[3];
eul[0]= tdi->rotx[0];
eul[1]= tdi->roty[0];
eul[2]= tdi->rotz[0];
EulToMat4(eul, cob.matrix);
}
else {
/* eulers */
if (td->ext)
EulToMat4(td->ext->rot, cob.matrix);
else
return;
}
/* Evaluate valid constraints */
for (con= td->con; con; con= con->next) {
/* only consider constraint if enabled */
if (con->flag & CONSTRAINT_DISABLE) continue;
if (con->enforce == 0.0f) continue;
/* we're only interested in Limit-Rotation constraints */
if (con->type == CONSTRAINT_TYPE_ROTLIMIT) {
bRotLimitConstraint *data= con->data;
float tmat[4][4];
/* only use it if it's tagged for this purpose */
if ((data->flag2 & LIMIT_TRANSFORM)==0)
continue;
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
Mat4CpyMat4(tmat, cob.matrix);
Mat4MulMat34(cob.matrix, td->mtx, tmat);
}
else if (con->ownspace != CONSTRAINT_SPACE_LOCAL) {
/* skip... incompatable spacetype */
continue;
}
/* do constraint */
cti->evaluate_constraint(con, &cob, NULL);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
Mat4CpyMat4(tmat, cob.matrix);
Mat4MulMat34(cob.matrix, td->smtx, tmat);
}
}
}
/* copy results from cob->matrix */
if (td->flag & TD_USEQUAT) {
/* quats */
Mat4ToQuat(cob.matrix, td->ext->quat);
}
else if (td->tdi) {
/* ipo-keys eulers */
TransDataIpokey *tdi= td->tdi;
float eul[3];
Mat4ToEul(cob.matrix, eul);
tdi->rotx[0]= eul[0];
tdi->roty[0]= eul[1];
tdi->rotz[0]= eul[2];
}
else {
/* eulers */
Mat4ToEul(cob.matrix, td->ext->rot);
}
}
}
static void constraintSizeLim(TransInfo *t, TransData *td)
{
if (td->con && td->ext) {
bConstraintTypeInfo *cti= get_constraint_typeinfo(CONSTRAINT_TYPE_SIZELIMIT);
bConstraintOb cob;
bConstraint *con;
/* Make a temporary bConstraintOb for using these limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
memset(&cob, 0, sizeof(bConstraintOb));
if (td->tdi) {
TransDataIpokey *tdi= td->tdi;
float size[3];
size[0]= tdi->sizex[0];
size[1]= tdi->sizey[0];
size[2]= tdi->sizez[0];
SizeToMat4(size, cob.matrix);
}
else if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) {
/* scale val and reset size */
return; // TODO: fix this case
}
else {
/* Reset val if SINGLESIZE but using a constraint */
if (td->flag & TD_SINGLESIZE)
return;
SizeToMat4(td->ext->size, cob.matrix);
}
/* Evaluate valid constraints */
for (con= td->con; con; con= con->next) {
/* only consider constraint if enabled */
if (con->flag & CONSTRAINT_DISABLE) continue;
if (con->enforce == 0.0f) continue;
/* we're only interested in Limit-Scale constraints */
if (con->type == CONSTRAINT_TYPE_SIZELIMIT) {
bSizeLimitConstraint *data= con->data;
float tmat[4][4];
/* only use it if it's tagged for this purpose */
if ((data->flag2 & LIMIT_TRANSFORM)==0)
continue;
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
Mat4CpyMat4(tmat, cob.matrix);
Mat4MulMat34(cob.matrix, td->mtx, tmat);
}
else if (con->ownspace != CONSTRAINT_SPACE_LOCAL) {
/* skip... incompatable spacetype */
continue;
}
/* do constraint */
cti->evaluate_constraint(con, &cob, NULL);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
Mat4CpyMat4(tmat, cob.matrix);
Mat4MulMat34(cob.matrix, td->smtx, tmat);
}
}
}
/* copy results from cob->matrix */
if (td->tdi) {
TransDataIpokey *tdi= td->tdi;
float size[3];
Mat4ToSize(cob.matrix, size);
tdi->sizex[0]= size[0];
tdi->sizey[0]= size[1];
tdi->sizez[0]= size[2];
}
else if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) {
/* scale val and reset size */
return; // TODO: fix this case
}
else {
/* Reset val if SINGLESIZE but using a constraint */
if (td->flag & TD_SINGLESIZE)
return;
Mat4ToSize(cob.matrix, td->ext->size);
}
}
}
/* ************************** WARP *************************** */
void initWarp(TransInfo *t)
{
float max[3], min[3];
int i;
t->mode = TFM_WARP;
t->transform = Warp;
t->handleEvent = handleEventWarp;
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_RATIO);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 5.0f;
t->snap[2] = 1.0f;
t->flag |= T_NO_CONSTRAINT;
/* we need min/max in view space */
for(i = 0; i < t->total; i++) {
float center[3];
VECCOPY(center, t->data[i].center);
Mat3MulVecfl(t->data[i].mtx, center);
Mat4MulVecfl(t->viewmat, center);
VecSubf(center, center, t->viewmat[3]);
if (i)
MinMax3(min, max, center);
else {
VECCOPY(max, center);
VECCOPY(min, center);
}
}
t->center[0]= (min[0]+max[0])/2.0f;
t->center[1]= (min[1]+max[1])/2.0f;
t->center[2]= (min[2]+max[2])/2.0f;
if (max[0] == min[0]) max[0] += 0.1; /* not optimal, but flipping is better than invalid garbage (i.e. division by zero!) */
t->val= (max[0]-min[0])/2.0f; /* t->val is X dimension projected boundbox */
}
int handleEventWarp(TransInfo *t, wmEvent *event)
{
int status = 0;
if (event->type == MIDDLEMOUSE && event->val)
{
// Use customData pointer to signal warp direction
if (t->customData == 0)
t->customData = (void*)1;
else
t->customData = 0;
status = 1;
}
return status;
}
int Warp(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float vec[3], circumfac, dist, phi0, co, si, *curs, cursor[3], gcursor[3];
int i;
char str[50];
curs= give_cursor(t->scene, t->view);
/*
* gcursor is the one used for helpline.
* It has to be in the same space as the drawing loop
* (that means it needs to be in the object's space when in edit mode and
* in global space in object mode)
*
* cursor is used for calculations.
* It needs to be in view space, but we need to take object's offset
* into account if in Edit mode.
*/
VECCOPY(cursor, curs);
VECCOPY(gcursor, cursor);
if (t->flag & T_EDIT) {
VecSubf(cursor, cursor, t->obedit->obmat[3]);
VecSubf(gcursor, gcursor, t->obedit->obmat[3]);
Mat3MulVecfl(t->data->smtx, gcursor);
}
Mat4MulVecfl(t->viewmat, cursor);
VecSubf(cursor, cursor, t->viewmat[3]);
/* amount of degrees for warp */
circumfac = 360.0f * t->values[0];
if (t->customData) /* non-null value indicates reversed input */
{
circumfac *= -1;
}
snapGrid(t, &circumfac);
applyNumInput(&t->num, &circumfac);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Warp: %s", c);
}
else {
/* default header print */
sprintf(str, "Warp: %.3f", circumfac);
}
circumfac*= (float)(-M_PI/360.0);
for(i = 0; i < t->total; i++, td++) {
float loc[3];
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
/* translate point to center, rotate in such a way that outline==distance */
VECCOPY(vec, td->iloc);
Mat3MulVecfl(td->mtx, vec);
Mat4MulVecfl(t->viewmat, vec);
VecSubf(vec, vec, t->viewmat[3]);
dist= vec[0]-cursor[0];
/* t->val is X dimension projected boundbox */
phi0= (circumfac*dist/t->val);
vec[1]= (vec[1]-cursor[1]);
co= (float)cos(phi0);
si= (float)sin(phi0);
loc[0]= -si*vec[1]+cursor[0];
loc[1]= co*vec[1]+cursor[1];
loc[2]= vec[2];
Mat4MulVecfl(t->viewinv, loc);
VecSubf(loc, loc, t->viewinv[3]);
Mat3MulVecfl(td->smtx, loc);
VecSubf(loc, loc, td->iloc);
VecMulf(loc, td->factor);
VecAddf(td->loc, td->iloc, loc);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** SHEAR *************************** */
void initShear(TransInfo *t)
{
t->mode = TFM_SHEAR;
t->transform = Shear;
t->handleEvent = handleEventShear;
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_ABSOLUTE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->flag |= T_NO_CONSTRAINT;
}
int handleEventShear(TransInfo *t, wmEvent *event)
{
int status = 0;
if (event->type == MIDDLEMOUSE && event->val)
{
// Use customData pointer to signal Shear direction
if (t->customData == 0)
{
initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE);
t->customData = (void*)1;
}
else
{
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_ABSOLUTE);
t->customData = 0;
}
status = 1;
}
return status;
}
int Shear(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float vec[3];
float smat[3][3], tmat[3][3], totmat[3][3], persmat[3][3], persinv[3][3];
float value;
int i;
char str[50];
Mat3CpyMat4(persmat, t->viewmat);
Mat3Inv(persinv, persmat);
value = 0.05f * t->values[0];
snapGrid(t, &value);
applyNumInput(&t->num, &value);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Shear: %s %s", c, t->proptext);
}
else {
/* default header print */
sprintf(str, "Shear: %.3f %s", value, t->proptext);
}
Mat3One(smat);
// Custom data signals shear direction
if (t->customData == 0)
smat[1][0] = value;
else
smat[0][1] = value;
Mat3MulMat3(tmat, smat, persmat);
Mat3MulMat3(totmat, persinv, tmat);
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (t->obedit) {
float mat3[3][3];
Mat3MulMat3(mat3, totmat, td->mtx);
Mat3MulMat3(tmat, td->smtx, mat3);
}
else {
Mat3CpyMat3(tmat, totmat);
}
VecSubf(vec, td->center, t->center);
Mat3MulVecfl(tmat, vec);
VecAddf(vec, vec, t->center);
VecSubf(vec, vec, td->center);
VecMulf(vec, td->factor);
VecAddf(td->loc, td->iloc, vec);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** RESIZE *************************** */
void initResize(TransInfo *t)
{
t->mode = TFM_RESIZE;
t->transform = Resize;
initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP);
t->flag |= T_NULL_ONE;
t->num.flag |= NUM_NULL_ONE;
t->num.flag |= NUM_AFFECT_ALL;
if (!t->obedit) {
t->flag |= T_NO_ZERO;
t->num.flag |= NUM_NO_ZERO;
}
t->idx_max = 2;
t->num.idx_max = 2;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
}
static void headerResize(TransInfo *t, float vec[3], char *str) {
char tvec[60];
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
sprintf(&tvec[0], "%.4f", vec[0]);
sprintf(&tvec[20], "%.4f", vec[1]);
sprintf(&tvec[40], "%.4f", vec[2]);
}
if (t->con.mode & CON_APPLY) {
switch(t->num.idx_max) {
case 0:
sprintf(str, "Scale: %s%s %s", &tvec[0], t->con.text, t->proptext);
break;
case 1:
sprintf(str, "Scale: %s : %s%s %s", &tvec[0], &tvec[20], t->con.text, t->proptext);
break;
case 2:
sprintf(str, "Scale: %s : %s : %s%s %s", &tvec[0], &tvec[20], &tvec[40], t->con.text, t->proptext);
}
}
else {
if (t->flag & T_2D_EDIT)
sprintf(str, "Scale X: %s Y: %s%s %s", &tvec[0], &tvec[20], t->con.text, t->proptext);
else
sprintf(str, "Scale X: %s Y: %s Z: %s%s %s", &tvec[0], &tvec[20], &tvec[40], t->con.text, t->proptext);
}
}
#define SIGN(a) (a<-FLT_EPSILON?1:a>FLT_EPSILON?2:3)
#define VECSIGNFLIP(a, b) ((SIGN(a[0]) & SIGN(b[0]))==0 || (SIGN(a[1]) & SIGN(b[1]))==0 || (SIGN(a[2]) & SIGN(b[2]))==0)
/* smat is reference matrix, only scaled */
static void TransMat3ToSize( float mat[][3], float smat[][3], float *size)
{
float vec[3];
VecCopyf(vec, mat[0]);
size[0]= Normalize(vec);
VecCopyf(vec, mat[1]);
size[1]= Normalize(vec);
VecCopyf(vec, mat[2]);
size[2]= Normalize(vec);
/* first tried with dotproduct... but the sign flip is crucial */
if( VECSIGNFLIP(mat[0], smat[0]) ) size[0]= -size[0];
if( VECSIGNFLIP(mat[1], smat[1]) ) size[1]= -size[1];
if( VECSIGNFLIP(mat[2], smat[2]) ) size[2]= -size[2];
}
static void ElementResize(TransInfo *t, TransData *td, float mat[3][3]) {
float tmat[3][3], smat[3][3], center[3];
float vec[3];
if (t->flag & T_EDIT) {
Mat3MulMat3(smat, mat, td->mtx);
Mat3MulMat3(tmat, td->smtx, smat);
}
else {
Mat3CpyMat3(tmat, mat);
}
if (t->con.applySize) {
t->con.applySize(t, td, tmat);
}
/* local constraint shouldn't alter center */
if (t->around == V3D_LOCAL) {
if (t->flag & T_OBJECT) {
VECCOPY(center, td->center);
}
else if (t->flag & T_EDIT) {
if(t->around==V3D_LOCAL && (t->settings->selectmode & SCE_SELECT_FACE)) {
VECCOPY(center, td->center);
}
else {
VECCOPY(center, t->center);
}
}
else {
VECCOPY(center, t->center);
}
}
else {
VECCOPY(center, t->center);
}
if (td->ext) {
float fsize[3];
if (t->flag & (T_OBJECT|T_TEXTURE|T_POSE)) {
float obsizemat[3][3];
// Reorient the size mat to fit the oriented object.
Mat3MulMat3(obsizemat, tmat, td->axismtx);
//printmatrix3("obsizemat", obsizemat);
TransMat3ToSize(obsizemat, td->axismtx, fsize);
//printvecf("fsize", fsize);
}
else {
Mat3ToSize(tmat, fsize);
}
protectedSizeBits(td->protectflag, fsize);
if ((t->flag & T_V3D_ALIGN)==0) { // align mode doesn't resize objects itself
/* handle ipokeys? */
if(td->tdi) {
TransDataIpokey *tdi= td->tdi;
/* calculate delta size (equal for size and dsize) */
vec[0]= (tdi->oldsize[0])*(fsize[0] -1.0f) * td->factor;
vec[1]= (tdi->oldsize[1])*(fsize[1] -1.0f) * td->factor;
vec[2]= (tdi->oldsize[2])*(fsize[2] -1.0f) * td->factor;
add_tdi_poin(tdi->sizex, tdi->oldsize, vec[0]);
add_tdi_poin(tdi->sizey, tdi->oldsize+1, vec[1]);
add_tdi_poin(tdi->sizez, tdi->oldsize+2, vec[2]);
}
else if((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)){
/* scale val and reset size */
*td->val = td->ival * fsize[0] * td->factor;
td->ext->size[0] = td->ext->isize[0];
td->ext->size[1] = td->ext->isize[1];
td->ext->size[2] = td->ext->isize[2];
}
else {
/* Reset val if SINGLESIZE but using a constraint */
if (td->flag & TD_SINGLESIZE)
*td->val = td->ival;
td->ext->size[0] = td->ext->isize[0] * (fsize[0]) * td->factor;
td->ext->size[1] = td->ext->isize[1] * (fsize[1]) * td->factor;
td->ext->size[2] = td->ext->isize[2] * (fsize[2]) * td->factor;
}
}
constraintSizeLim(t, td);
}
/* For individual element center, Editmode need to use iloc */
if (t->flag & T_POINTS)
VecSubf(vec, td->iloc, center);
else
VecSubf(vec, td->center, center);
Mat3MulVecfl(tmat, vec);
VecAddf(vec, vec, center);
if (t->flag & T_POINTS)
VecSubf(vec, vec, td->iloc);
else
VecSubf(vec, vec, td->center);
VecMulf(vec, td->factor);
if (t->flag & (T_OBJECT|T_POSE)) {
Mat3MulVecfl(td->smtx, vec);
}
protectedTransBits(td->protectflag, vec);
if(td->tdi) {
TransDataIpokey *tdi= td->tdi;
add_tdi_poin(tdi->locx, tdi->oldloc, vec[0]);
add_tdi_poin(tdi->locy, tdi->oldloc+1, vec[1]);
add_tdi_poin(tdi->locz, tdi->oldloc+2, vec[2]);
}
else VecAddf(td->loc, td->iloc, vec);
constraintTransLim(t, td);
}
int Resize(TransInfo *t, short mval[2])
{
TransData *td;
float size[3], mat[3][3];
float ratio;
int i;
char str[200];
/* for manipulator, center handle, the scaling can't be done relative to center */
if( (t->flag & T_USES_MANIPULATOR) && t->con.mode==0)
{
ratio = 1.0f - ((t->imval[0] - mval[0]) + (t->imval[1] - mval[1]))/100.0f;
}
else
{
ratio = t->values[0];
}
size[0] = size[1] = size[2] = ratio;
snapGrid(t, size);
if (hasNumInput(&t->num)) {
applyNumInput(&t->num, size);
constraintNumInput(t, size);
}
applySnapping(t, size);
if (t->flag & T_AUTOVALUES)
{
VECCOPY(size, t->auto_values);
}
VECCOPY(t->values, size);
SizeToMat3(size, mat);
if (t->con.applySize) {
t->con.applySize(t, NULL, mat);
}
Mat3CpyMat3(t->mat, mat); // used in manipulator
headerResize(t, size, str);
for(i = 0, td=t->data; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
ElementResize(t, td, mat);
}
/* evil hack - redo resize if cliping needed */
if (t->flag & T_CLIP_UV && clipUVTransform(t, size, 1)) {
SizeToMat3(size, mat);
if (t->con.applySize)
t->con.applySize(t, NULL, mat);
for(i = 0, td=t->data; i < t->total; i++, td++)
ElementResize(t, td, mat);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** TOSPHERE *************************** */
void initToSphere(TransInfo *t)
{
TransData *td = t->data;
int i;
t->mode = TFM_TOSPHERE;
t->transform = ToSphere;
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_RATIO);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.flag |= NUM_NULL_ONE | NUM_NO_NEGATIVE;
t->flag |= T_NO_CONSTRAINT;
// Calculate average radius
for(i = 0 ; i < t->total; i++, td++) {
t->val += VecLenf(t->center, td->iloc);
}
t->val /= (float)t->total;
}
int ToSphere(TransInfo *t, short mval[2])
{
float vec[3];
float ratio, radius;
int i;
char str[64];
TransData *td = t->data;
ratio = t->values[0];
snapGrid(t, &ratio);
applyNumInput(&t->num, &ratio);
if (ratio < 0)
ratio = 0.0f;
else if (ratio > 1)
ratio = 1.0f;
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "To Sphere: %s %s", c, t->proptext);
}
else {
/* default header print */
sprintf(str, "To Sphere: %.4f %s", ratio, t->proptext);
}
for(i = 0 ; i < t->total; i++, td++) {
float tratio;
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
VecSubf(vec, td->iloc, t->center);
radius = Normalize(vec);
tratio = ratio * td->factor;
VecMulf(vec, radius * (1.0f - tratio) + t->val * tratio);
VecAddf(td->loc, t->center, vec);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** ROTATION *************************** */
void initRotation(TransInfo *t)
{
t->mode = TFM_ROTATION;
t->transform = Rotation;
initMouseInputMode(t, &t->mouse, INPUT_ANGLE);
t->ndof.axis = 16;
/* Scale down and flip input for rotation */
t->ndof.factor[0] = -0.2f;
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = (float)((5.0/180)*M_PI);
t->snap[2] = t->snap[1] * 0.2f;
if (t->flag & T_2D_EDIT)
t->flag |= T_NO_CONSTRAINT;
}
static void ElementRotation(TransInfo *t, TransData *td, float mat[3][3], short around) {
float vec[3], totmat[3][3], smat[3][3];
float eul[3], fmat[3][3], quat[4];
float *center = t->center;
/* local constraint shouldn't alter center */
if (around == V3D_LOCAL) {
if (t->flag & (T_OBJECT|T_POSE)) {
center = td->center;
}
else {
/* !TODO! Make this if not rely on G */
if(around==V3D_LOCAL && (t->settings->selectmode & SCE_SELECT_FACE)) {
center = td->center;
}
}
}
if (t->flag & T_POINTS) {
Mat3MulMat3(totmat, mat, td->mtx);
Mat3MulMat3(smat, td->smtx, totmat);
VecSubf(vec, td->iloc, center);
Mat3MulVecfl(smat, vec);
VecAddf(td->loc, vec, center);
VecSubf(vec,td->loc,td->iloc);
protectedTransBits(td->protectflag, vec);
VecAddf(td->loc, td->iloc, vec);
if(td->flag & TD_USEQUAT) {
Mat3MulSerie(fmat, td->mtx, mat, td->smtx, 0, 0, 0, 0, 0);
Mat3ToQuat(fmat, quat); // Actual transform
if(td->ext->quat){
QuatMul(td->ext->quat, quat, td->ext->iquat);
/* is there a reason not to have this here? -jahka */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
}
}
/**
* HACK WARNING
*
* This is some VERY ugly special case to deal with pose mode.
*
* The problem is that mtx and smtx include each bone orientation.
*
* That is needed to rotate each bone properly, HOWEVER, to calculate
* the translation component, we only need the actual armature object's
* matrix (and inverse). That is not all though. Once the proper translation
* has been computed, it has to be converted back into the bone's space.
*/
else if (t->flag & T_POSE) {
float pmtx[3][3], imtx[3][3];
// Extract and invert armature object matrix
Mat3CpyMat4(pmtx, t->poseobj->obmat);
Mat3Inv(imtx, pmtx);
if ((td->flag & TD_NO_LOC) == 0)
{
VecSubf(vec, td->center, center);
Mat3MulVecfl(pmtx, vec); // To Global space
Mat3MulVecfl(mat, vec); // Applying rotation
Mat3MulVecfl(imtx, vec); // To Local space
VecAddf(vec, vec, center);
/* vec now is the location where the object has to be */
VecSubf(vec, vec, td->center); // Translation needed from the initial location
Mat3MulVecfl(pmtx, vec); // To Global space
Mat3MulVecfl(td->smtx, vec);// To Pose space
protectedTransBits(td->protectflag, vec);
VecAddf(td->loc, td->iloc, vec);
constraintTransLim(t, td);
}
/* rotation */
if ((t->flag & T_V3D_ALIGN)==0) { // align mode doesn't rotate objects itself
/* euler or quaternion? */
if (td->flag & TD_USEQUAT) {
Mat3MulSerie(fmat, td->mtx, mat, td->smtx, 0, 0, 0, 0, 0);
Mat3ToQuat(fmat, quat); // Actual transform
QuatMul(td->ext->quat, quat, td->ext->iquat);
/* this function works on end result */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
else {
float eulmat[3][3];
Mat3MulMat3(totmat, mat, td->mtx);
Mat3MulMat3(smat, td->smtx, totmat);
/* calculate the total rotatation in eulers */
VECCOPY(eul, td->ext->irot);
EulToMat3(eul, eulmat);
/* mat = transform, obmat = bone rotation */
Mat3MulMat3(fmat, smat, eulmat);
Mat3ToCompatibleEul(fmat, eul, td->ext->rot);
/* and apply (to end result only) */
protectedRotateBits(td->protectflag, eul, td->ext->irot);
VECCOPY(td->ext->rot, eul);
}
constraintRotLim(t, td);
}
}
else {
if ((td->flag & TD_NO_LOC) == 0)
{
/* translation */
VecSubf(vec, td->center, center);
Mat3MulVecfl(mat, vec);
VecAddf(vec, vec, center);
/* vec now is the location where the object has to be */
VecSubf(vec, vec, td->center);
Mat3MulVecfl(td->smtx, vec);
protectedTransBits(td->protectflag, vec);
if(td->tdi) {
TransDataIpokey *tdi= td->tdi;
add_tdi_poin(tdi->locx, tdi->oldloc, vec[0]);
add_tdi_poin(tdi->locy, tdi->oldloc+1, vec[1]);
add_tdi_poin(tdi->locz, tdi->oldloc+2, vec[2]);
}
else VecAddf(td->loc, td->iloc, vec);
}
constraintTransLim(t, td);
/* rotation */
if ((t->flag & T_V3D_ALIGN)==0) { // align mode doesn't rotate objects itself
/* euler or quaternion? */
if (td->flag & TD_USEQUAT) {
Mat3MulSerie(fmat, td->mtx, mat, td->smtx, 0, 0, 0, 0, 0);
Mat3ToQuat(fmat, quat); // Actual transform
QuatMul(td->ext->quat, quat, td->ext->iquat);
/* this function works on end result */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
else {
float obmat[3][3];
/* are there ipo keys? */
if(td->tdi) {
TransDataIpokey *tdi= td->tdi;
float current_rot[3];
float rot[3];
/* current IPO value for compatible euler */
current_rot[0] = (tdi->rotx) ? tdi->rotx[0] : 0.0f;
current_rot[1] = (tdi->roty) ? tdi->roty[0] : 0.0f;
current_rot[2] = (tdi->rotz) ? tdi->rotz[0] : 0.0f;
VecMulf(current_rot, (float)(M_PI_2 / 9.0));
/* calculate the total rotatation in eulers */
VecAddf(eul, td->ext->irot, td->ext->drot);
EulToMat3(eul, obmat);
/* mat = transform, obmat = object rotation */
Mat3MulMat3(fmat, mat, obmat);
Mat3ToCompatibleEul(fmat, eul, current_rot);
/* correct back for delta rot */
if(tdi->flag & TOB_IPODROT) {
VecSubf(rot, eul, td->ext->irot);
}
else {
VecSubf(rot, eul, td->ext->drot);
}
VecMulf(rot, (float)(9.0/M_PI_2));
VecSubf(rot, rot, tdi->oldrot);
protectedRotateBits(td->protectflag, rot, tdi->oldrot);
add_tdi_poin(tdi->rotx, tdi->oldrot, rot[0]);
add_tdi_poin(tdi->roty, tdi->oldrot+1, rot[1]);
add_tdi_poin(tdi->rotz, tdi->oldrot+2, rot[2]);
}
else {
Mat3MulMat3(totmat, mat, td->mtx);
Mat3MulMat3(smat, td->smtx, totmat);
/* calculate the total rotatation in eulers */
VecAddf(eul, td->ext->irot, td->ext->drot); /* we have to correct for delta rot */
EulToMat3(eul, obmat);
/* mat = transform, obmat = object rotation */
Mat3MulMat3(fmat, smat, obmat);
Mat3ToCompatibleEul(fmat, eul, td->ext->rot);
/* correct back for delta rot */
VecSubf(eul, eul, td->ext->drot);
/* and apply */
protectedRotateBits(td->protectflag, eul, td->ext->irot);
VECCOPY(td->ext->rot, eul);
}
}
constraintRotLim(t, td);
}
}
}
static void applyRotation(TransInfo *t, float angle, float axis[3])
{
TransData *td = t->data;
float mat[3][3];
int i;
VecRotToMat3(axis, angle, mat);
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (t->con.applyRot) {
t->con.applyRot(t, td, axis, NULL);
VecRotToMat3(axis, angle * td->factor, mat);
}
else if (t->flag & T_PROP_EDIT) {
VecRotToMat3(axis, angle * td->factor, mat);
}
ElementRotation(t, td, mat, t->around);
}
}
int Rotation(TransInfo *t, short mval[2])
{
char str[64];
float final;
float axis[3];
float mat[3][3];
VECCOPY(axis, t->viewinv[2]);
VecMulf(axis, -1.0f);
Normalize(axis);
final = t->values[0];
applyNDofInput(&t->ndof, &final);
snapGrid(t, &final);
if (t->con.applyRot) {
t->con.applyRot(t, NULL, axis, &final);
}
applySnapping(t, &final);
if (hasNumInput(&t->num)) {
char c[20];
applyNumInput(&t->num, &final);
outputNumInput(&(t->num), c);
sprintf(str, "Rot: %s %s %s", &c[0], t->con.text, t->proptext);
/* Clamp between -180 and 180 */
while (final >= 180.0)
final -= 360.0;
while (final <= -180.0)
final += 360.0;
final *= (float)(M_PI / 180.0);
}
else {
sprintf(str, "Rot: %.2f%s %s", 180.0*final/M_PI, t->con.text, t->proptext);
}
VecRotToMat3(axis, final, mat);
// TRANSFORM_FIX_ME
// t->values[0] = final; // used in manipulator
// Mat3CpyMat3(t->mat, mat); // used in manipulator
applyRotation(t, final, axis);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** TRACKBALL *************************** */
void initTrackball(TransInfo *t)
{
t->mode = TFM_TRACKBALL;
t->transform = Trackball;
initMouseInputMode(t, &t->mouse, INPUT_TRACKBALL);
t->ndof.axis = 40;
/* Scale down input for rotation */
t->ndof.factor[0] = 0.2f;
t->ndof.factor[1] = 0.2f;
t->idx_max = 1;
t->num.idx_max = 1;
t->snap[0] = 0.0f;
t->snap[1] = (float)((5.0/180)*M_PI);
t->snap[2] = t->snap[1] * 0.2f;
t->flag |= T_NO_CONSTRAINT;
}
static void applyTrackball(TransInfo *t, float axis1[3], float axis2[3], float angles[2])
{
TransData *td = t->data;
float mat[3][3], smat[3][3], totmat[3][3];
int i;
VecRotToMat3(axis1, angles[0], smat);
VecRotToMat3(axis2, angles[1], totmat);
Mat3MulMat3(mat, smat, totmat);
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (t->flag & T_PROP_EDIT) {
VecRotToMat3(axis1, td->factor * angles[0], smat);
VecRotToMat3(axis2, td->factor * angles[1], totmat);
Mat3MulMat3(mat, smat, totmat);
}
ElementRotation(t, td, mat, t->around);
}
}
int Trackball(TransInfo *t, short mval[2])
{
char str[128];
float axis1[3], axis2[3];
float mat[3][3], totmat[3][3], smat[3][3];
float phi[2];
VECCOPY(axis1, t->persinv[0]);
VECCOPY(axis2, t->persinv[1]);
Normalize(axis1);
Normalize(axis2);
phi[0] = t->values[0];
phi[1] = t->values[1];
applyNDofInput(&t->ndof, phi);
snapGrid(t, phi);
if (hasNumInput(&t->num)) {
char c[40];
applyNumInput(&t->num, phi);
outputNumInput(&(t->num), c);
sprintf(str, "Trackball: %s %s %s", &c[0], &c[20], t->proptext);
phi[0] *= (float)(M_PI / 180.0);
phi[1] *= (float)(M_PI / 180.0);
}
else {
sprintf(str, "Trackball: %.2f %.2f %s", 180.0*phi[0]/M_PI, 180.0*phi[1]/M_PI, t->proptext);
}
VecRotToMat3(axis1, phi[0], smat);
VecRotToMat3(axis2, phi[1], totmat);
Mat3MulMat3(mat, smat, totmat);
// TRANSFORM_FIX_ME
//Mat3CpyMat3(t->mat, mat); // used in manipulator
applyTrackball(t, axis1, axis2, phi);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** TRANSLATION *************************** */
void initTranslation(TransInfo *t)
{
t->mode = TFM_TRANSLATION;
t->transform = Translation;
initMouseInputMode(t, &t->mouse, INPUT_VECTOR);
t->idx_max = (t->flag & T_2D_EDIT)? 1: 2;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
t->ndof.axis = (t->flag & T_2D_EDIT)? 1|2: 1|2|4;
if(t->spacetype == SPACE_VIEW3D) {
View3D *v3d = t->view;
t->snap[0] = 0.0f;
t->snap[1] = v3d->gridview * 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
}
else if(t->spacetype == SPACE_IMAGE) {
t->snap[0] = 0.0f;
t->snap[1] = 0.125f;
t->snap[2] = 0.0625f;
}
else {
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
}
}
static void headerTranslation(TransInfo *t, float vec[3], char *str) {
char tvec[60];
char distvec[20];
char autoik[20];
float dist;
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
dist = VecLength(t->num.val);
}
else {
float dvec[3];
VECCOPY(dvec, vec);
applyAspectRatio(t, dvec);
dist = VecLength(vec);
sprintf(&tvec[0], "%.4f", dvec[0]);
sprintf(&tvec[20], "%.4f", dvec[1]);
sprintf(&tvec[40], "%.4f", dvec[2]);
}
if( dist > 1e10 || dist < -1e10 ) /* prevent string buffer overflow */
sprintf(distvec, "%.4e", dist);
else
sprintf(distvec, "%.4f", dist);
if(t->flag & T_AUTOIK) {
short chainlen= t->settings->autoik_chainlen;
if(chainlen)
sprintf(autoik, "AutoIK-Len: %d", chainlen);
else
strcpy(autoik, "");
}
else
strcpy(autoik, "");
if (t->con.mode & CON_APPLY) {
switch(t->num.idx_max) {
case 0:
sprintf(str, "D: %s (%s)%s %s %s", &tvec[0], distvec, t->con.text, t->proptext, &autoik[0]);
break;
case 1:
sprintf(str, "D: %s D: %s (%s)%s %s %s", &tvec[0], &tvec[20], distvec, t->con.text, t->proptext, &autoik[0]);
break;
case 2:
sprintf(str, "D: %s D: %s D: %s (%s)%s %s %s", &tvec[0], &tvec[20], &tvec[40], distvec, t->con.text, t->proptext, &autoik[0]);
}
}
else {
if(t->flag & T_2D_EDIT)
sprintf(str, "Dx: %s Dy: %s (%s)%s %s", &tvec[0], &tvec[20], distvec, t->con.text, t->proptext);
else
sprintf(str, "Dx: %s Dy: %s Dz: %s (%s)%s %s %s", &tvec[0], &tvec[20], &tvec[40], distvec, t->con.text, t->proptext, &autoik[0]);
}
}
static void applyTranslation(TransInfo *t, float vec[3]) {
TransData *td = t->data;
float tvec[3];
int i;
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
/* handle snapping rotation before doing the translation */
if (usingSnappingNormal(t))
{
if (validSnappingNormal(t))
{
float *original_normal = td->axismtx[2];
float axis[3];
float quat[4];
float mat[3][3];
float angle;
Crossf(axis, original_normal, t->tsnap.snapNormal);
angle = saacos(Inpf(original_normal, t->tsnap.snapNormal));
AxisAngleToQuat(quat, axis, angle);
QuatToMat3(quat, mat);
ElementRotation(t, td, mat, V3D_LOCAL);
}
else
{
float mat[3][3];
Mat3One(mat);
ElementRotation(t, td, mat, V3D_LOCAL);
}
}
if (t->con.applyVec) {
float pvec[3];
t->con.applyVec(t, td, vec, tvec, pvec);
}
else {
VECCOPY(tvec, vec);
}
Mat3MulVecfl(td->smtx, tvec);
VecMulf(tvec, td->factor);
protectedTransBits(td->protectflag, tvec);
/* transdata ipokey */
if(td->tdi) {
TransDataIpokey *tdi= td->tdi;
add_tdi_poin(tdi->locx, tdi->oldloc, tvec[0]);
add_tdi_poin(tdi->locy, tdi->oldloc+1, tvec[1]);
add_tdi_poin(tdi->locz, tdi->oldloc+2, tvec[2]);
}
else VecAddf(td->loc, td->iloc, tvec);
constraintTransLim(t, td);
}
}
/* uses t->vec to store actual translation in */
int Translation(TransInfo *t, short mval[2])
{
float tvec[3];
char str[250];
if (t->con.mode & CON_APPLY) {
float pvec[3] = {0.0f, 0.0f, 0.0f};
applySnapping(t, t->values);
t->con.applyVec(t, NULL, t->values, tvec, pvec);
VECCOPY(t->values, tvec);
headerTranslation(t, pvec, str);
}
else {
applyNDofInput(&t->ndof, t->values);
snapGrid(t, t->values);
applyNumInput(&t->num, t->values);
if (hasNumInput(&t->num))
{
removeAspectRatio(t, t->values);
}
applySnapping(t, t->values);
headerTranslation(t, t->values, str);
}
applyTranslation(t, t->values);
/* evil hack - redo translation if clipping needed */
if (t->flag & T_CLIP_UV && clipUVTransform(t, t->values, 0))
applyTranslation(t, t->values);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** SHRINK/FATTEN *************************** */
void initShrinkFatten(TransInfo *t)
{
// If not in mesh edit mode, fallback to Resize
if (t->obedit==NULL || t->obedit->type != OB_MESH) {
initResize(t);
}
else {
t->mode = TFM_SHRINKFATTEN;
t->transform = ShrinkFatten;
initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
t->flag |= T_NO_CONSTRAINT;
}
}
int ShrinkFatten(TransInfo *t, short mval[2])
{
float vec[3];
float distance;
int i;
char str[64];
TransData *td = t->data;
distance = -t->values[0];
snapGrid(t, &distance);
applyNumInput(&t->num, &distance);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Shrink/Fatten: %s %s", c, t->proptext);
}
else {
/* default header print */
sprintf(str, "Shrink/Fatten: %.4f %s", distance, t->proptext);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
VECCOPY(vec, td->axismtx[2]);
VecMulf(vec, distance);
VecMulf(vec, td->factor);
VecAddf(td->loc, td->iloc, vec);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** TILT *************************** */
void initTilt(TransInfo *t)
{
t->mode = TFM_TILT;
t->transform = Tilt;
initMouseInputMode(t, &t->mouse, INPUT_ANGLE);
t->ndof.axis = 16;
/* Scale down and flip input for rotation */
t->ndof.factor[0] = -0.2f;
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = (float)((5.0/180)*M_PI);
t->snap[2] = t->snap[1] * 0.2f;
t->flag |= T_NO_CONSTRAINT;
}
int Tilt(TransInfo *t, short mval[2])
{
TransData *td = t->data;
int i;
char str[50];
float final;
final = t->values[0];
applyNDofInput(&t->ndof, &final);
snapGrid(t, &final);
if (hasNumInput(&t->num)) {
char c[20];
applyNumInput(&t->num, &final);
outputNumInput(&(t->num), c);
sprintf(str, "Tilt: %s %s", &c[0], t->proptext);
final *= (float)(M_PI / 180.0);
}
else {
sprintf(str, "Tilt: %.2f %s", 180.0*final/M_PI, t->proptext);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
*td->val = td->ival + final * td->factor;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ******************** Curve Shrink/Fatten *************** */
void initCurveShrinkFatten(TransInfo *t)
{
t->mode = TFM_CURVE_SHRINKFATTEN;
t->transform = CurveShrinkFatten;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->flag |= T_NO_CONSTRAINT;
}
int CurveShrinkFatten(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float ratio;
int i;
char str[50];
ratio = t->values[0];
snapGrid(t, &ratio);
applyNumInput(&t->num, &ratio);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Shrink/Fatten: %s", c);
}
else {
sprintf(str, "Shrink/Fatten: %3f", ratio);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if(td->val) {
//*td->val= ratio;
*td->val= td->ival*ratio;
if (*td->val <= 0.0f) *td->val = 0.0001f;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** PUSH/PULL *************************** */
void initPushPull(TransInfo *t)
{
t->mode = TFM_PUSHPULL;
t->transform = PushPull;
initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE);
t->ndof.axis = 4;
/* Flip direction */
t->ndof.factor[0] = -1.0f;
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
}
int PushPull(TransInfo *t, short mval[2])
{
float vec[3], axis[3];
float distance;
int i;
char str[128];
TransData *td = t->data;
distance = t->values[0];
applyNDofInput(&t->ndof, &distance);
snapGrid(t, &distance);
applyNumInput(&t->num, &distance);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Push/Pull: %s%s %s", c, t->con.text, t->proptext);
}
else {
/* default header print */
sprintf(str, "Push/Pull: %.4f%s %s", distance, t->con.text, t->proptext);
}
if (t->con.applyRot && t->con.mode & CON_APPLY) {
t->con.applyRot(t, NULL, axis, NULL);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
VecSubf(vec, t->center, td->center);
if (t->con.applyRot && t->con.mode & CON_APPLY) {
t->con.applyRot(t, td, axis, NULL);
if (isLockConstraint(t)) {
float dvec[3];
Projf(dvec, vec, axis);
VecSubf(vec, vec, dvec);
}
else {
Projf(vec, vec, axis);
}
}
Normalize(vec);
VecMulf(vec, distance);
VecMulf(vec, td->factor);
VecAddf(td->loc, td->iloc, vec);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** BEVEL **************************** */
void initBevel(TransInfo *t)
{
t->transform = Bevel;
t->handleEvent = handleEventBevel;
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_ABSOLUTE);
t->mode = TFM_BEVEL;
t->flag |= T_NO_CONSTRAINT;
t->num.flag |= NUM_NO_NEGATIVE;
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
/* DON'T KNOW WHY THIS IS NEEDED */
if (G.editBMesh->imval[0] == 0 && G.editBMesh->imval[1] == 0) {
/* save the initial mouse co */
G.editBMesh->imval[0] = t->imval[0];
G.editBMesh->imval[1] = t->imval[1];
}
else {
/* restore the mouse co from a previous call to initTransform() */
t->imval[0] = G.editBMesh->imval[0];
t->imval[1] = G.editBMesh->imval[1];
}
}
int handleEventBevel(TransInfo *t, wmEvent *event)
{
if (event->val) {
if(!G.editBMesh) return 0;
switch (event->type) {
case MIDDLEMOUSE:
G.editBMesh->options ^= BME_BEVEL_VERT;
t->state = TRANS_CANCEL;
return 1;
//case PADPLUSKEY:
// G.editBMesh->options ^= BME_BEVEL_RES;
// G.editBMesh->res += 1;
// if (G.editBMesh->res > 4) {
// G.editBMesh->res = 4;
// }
// t->state = TRANS_CANCEL;
// return 1;
//case PADMINUS:
// G.editBMesh->options ^= BME_BEVEL_RES;
// G.editBMesh->res -= 1;
// if (G.editBMesh->res < 0) {
// G.editBMesh->res = 0;
// }
// t->state = TRANS_CANCEL;
// return 1;
default:
return 0;
}
}
return 0;
}
int Bevel(TransInfo *t, short mval[2])
{
float distance,d;
int i;
char str[128];
char *mode;
TransData *td = t->data;
mode = (G.editBMesh->options & BME_BEVEL_VERT) ? "verts only" : "normal";
distance = t->values[0] / 4; /* 4 just seemed a nice value to me, nothing special */
distance = fabs(distance);
snapGrid(t, &distance);
applyNumInput(&t->num, &distance);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Bevel - Dist: %s, Mode: %s (MMB to toggle))", c, mode);
}
else {
/* default header print */
sprintf(str, "Bevel - Dist: %.4f, Mode: %s (MMB to toggle))", distance, mode);
}
if (distance < 0) distance = -distance;
for(i = 0 ; i < t->total; i++, td++) {
if (td->axismtx[1][0] > 0 && distance > td->axismtx[1][0]) {
d = td->axismtx[1][0];
}
else {
d = distance;
}
VECADDFAC(td->loc,td->center,td->axismtx[0],(*td->val)*d);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** BEVEL WEIGHT *************************** */
void initBevelWeight(TransInfo *t)
{
t->mode = TFM_BWEIGHT;
t->transform = BevelWeight;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->flag |= T_NO_CONSTRAINT;
}
int BevelWeight(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float weight;
int i;
char str[50];
weight = t->values[0];
weight -= 1.0f;
if (weight > 1.0f) weight = 1.0f;
snapGrid(t, &weight);
applyNumInput(&t->num, &weight);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
if (weight >= 0.0f)
sprintf(str, "Bevel Weight: +%s %s", c, t->proptext);
else
sprintf(str, "Bevel Weight: %s %s", c, t->proptext);
}
else {
/* default header print */
if (weight >= 0.0f)
sprintf(str, "Bevel Weight: +%.3f %s", weight, t->proptext);
else
sprintf(str, "Bevel Weight: %.3f %s", weight, t->proptext);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->val) {
*td->val = td->ival + weight * td->factor;
if (*td->val < 0.0f) *td->val = 0.0f;
if (*td->val > 1.0f) *td->val = 1.0f;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** CREASE *************************** */
void initCrease(TransInfo *t)
{
t->mode = TFM_CREASE;
t->transform = Crease;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->flag |= T_NO_CONSTRAINT;
}
int Crease(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float crease;
int i;
char str[50];
crease = t->values[0];
crease -= 1.0f;
if (crease > 1.0f) crease = 1.0f;
snapGrid(t, &crease);
applyNumInput(&t->num, &crease);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
if (crease >= 0.0f)
sprintf(str, "Crease: +%s %s", c, t->proptext);
else
sprintf(str, "Crease: %s %s", c, t->proptext);
}
else {
/* default header print */
if (crease >= 0.0f)
sprintf(str, "Crease: +%.3f %s", crease, t->proptext);
else
sprintf(str, "Crease: %.3f %s", crease, t->proptext);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
*td->val = td->ival + crease * td->factor;
if (*td->val < 0.0f) *td->val = 0.0f;
if (*td->val > 1.0f) *td->val = 1.0f;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ******************** EditBone (B-bone) width scaling *************** */
void initBoneSize(TransInfo *t)
{
t->mode = TFM_BONESIZE;
t->transform = BoneSize;
initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP);
t->idx_max = 2;
t->num.idx_max = 2;
t->num.flag |= NUM_NULL_ONE;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
}
static void headerBoneSize(TransInfo *t, float vec[3], char *str) {
char tvec[60];
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
sprintf(&tvec[0], "%.4f", vec[0]);
sprintf(&tvec[20], "%.4f", vec[1]);
sprintf(&tvec[40], "%.4f", vec[2]);
}
/* hmm... perhaps the y-axis values don't need to be shown? */
if (t->con.mode & CON_APPLY) {
if (t->num.idx_max == 0)
sprintf(str, "ScaleB: %s%s %s", &tvec[0], t->con.text, t->proptext);
else
sprintf(str, "ScaleB: %s : %s : %s%s %s", &tvec[0], &tvec[20], &tvec[40], t->con.text, t->proptext);
}
else {
sprintf(str, "ScaleB X: %s Y: %s Z: %s%s %s", &tvec[0], &tvec[20], &tvec[40], t->con.text, t->proptext);
}
}
static void ElementBoneSize(TransInfo *t, TransData *td, float mat[3][3])
{
float tmat[3][3], smat[3][3], oldy;
float sizemat[3][3];
Mat3MulMat3(smat, mat, td->mtx);
Mat3MulMat3(tmat, td->smtx, smat);
if (t->con.applySize) {
t->con.applySize(t, td, tmat);
}
/* we've tucked the scale in loc */
oldy= td->iloc[1];
SizeToMat3(td->iloc, sizemat);
Mat3MulMat3(tmat, tmat, sizemat);
Mat3ToSize(tmat, td->loc);
td->loc[1]= oldy;
}
int BoneSize(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float size[3], mat[3][3];
float ratio;
int i;
char str[60];
// TRANSFORM_FIX_ME MOVE TO MOUSE INPUT
/* for manipulator, center handle, the scaling can't be done relative to center */
if( (t->flag & T_USES_MANIPULATOR) && t->con.mode==0)
{
ratio = 1.0f - ((t->imval[0] - mval[0]) + (t->imval[1] - mval[1]))/100.0f;
}
else
{
ratio = t->values[0];
}
size[0] = size[1] = size[2] = ratio;
snapGrid(t, size);
if (hasNumInput(&t->num)) {
applyNumInput(&t->num, size);
constraintNumInput(t, size);
}
SizeToMat3(size, mat);
if (t->con.applySize) {
t->con.applySize(t, NULL, mat);
}
Mat3CpyMat3(t->mat, mat); // used in manipulator
headerBoneSize(t, size, str);
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
ElementBoneSize(t, td, mat);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ******************** EditBone envelope *************** */
void initBoneEnvelope(TransInfo *t)
{
t->mode = TFM_BONE_ENVELOPE;
t->transform = BoneEnvelope;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->flag |= T_NO_CONSTRAINT;
}
int BoneEnvelope(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float ratio;
int i;
char str[50];
ratio = t->values[0];
snapGrid(t, &ratio);
applyNumInput(&t->num, &ratio);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Envelope: %s", c);
}
else {
sprintf(str, "Envelope: %3f", ratio);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
/* if the old/original value was 0.0f, then just use ratio */
if (td->ival)
*td->val= td->ival*ratio;
else
*td->val= ratio;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ******************** EditBone roll *************** */
void initBoneRoll(TransInfo *t)
{
t->mode = TFM_BONE_ROLL;
t->transform = BoneRoll;
initMouseInputMode(t, &t->mouse, INPUT_ANGLE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = (float)((5.0/180)*M_PI);
t->snap[2] = t->snap[1] * 0.2f;
t->flag |= T_NO_CONSTRAINT;
}
int BoneRoll(TransInfo *t, short mval[2])
{
TransData *td = t->data;
int i;
char str[50];
float final;
final = t->values[0];
snapGrid(t, &final);
if (hasNumInput(&t->num)) {
char c[20];
applyNumInput(&t->num, &final);
outputNumInput(&(t->num), c);
sprintf(str, "Roll: %s", &c[0]);
final *= (float)(M_PI / 180.0);
}
else {
sprintf(str, "Roll: %.2f", 180.0*final/M_PI);
}
/* set roll values */
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
*(td->val) = td->ival - final;
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** BAKE TIME ******************* */
void initBakeTime(TransInfo *t)
{
t->transform = BakeTime;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
}
int BakeTime(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float time;
int i;
char str[50];
float fac = 0.1f;
if(t->mouse.precision) {
/* calculate ratio for shiftkey pos, and for total, and blend these for precision */
time= (float)(t->center2d[0] - t->mouse.precision_mval[0]) * fac;
time+= 0.1f*((float)(t->center2d[0]*fac - mval[0]) -time);
}
else {
time = (float)(t->center2d[0] - mval[0])*fac;
}
snapGrid(t, &time);
applyNumInput(&t->num, &time);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
if (time >= 0.0f)
sprintf(str, "Time: +%s %s", c, t->proptext);
else
sprintf(str, "Time: %s %s", c, t->proptext);
}
else {
/* default header print */
if (time >= 0.0f)
sprintf(str, "Time: +%.3f %s", time, t->proptext);
else
sprintf(str, "Time: %.3f %s", time, t->proptext);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
*td->val = td->ival + time * td->factor;
if (td->ext->size && *td->val < *td->ext->size) *td->val = *td->ext->size;
if (td->ext->quat && *td->val > *td->ext->quat) *td->val = *td->ext->quat;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** MIRROR *************************** */
void initMirror(TransInfo *t)
{
t->transform = Mirror;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
t->flag |= T_NULL_ONE;
if (!t->obedit) {
t->flag |= T_NO_ZERO;
}
}
int Mirror(TransInfo *t, short mval[2])
{
TransData *td;
float size[3], mat[3][3];
int i;
char str[200];
/*
* OPTIMISATION:
* This still recalcs transformation on mouse move
* while it should only recalc on constraint change
* */
/* if an axis has been selected */
if (t->con.mode & CON_APPLY) {
size[0] = size[1] = size[2] = -1;
SizeToMat3(size, mat);
if (t->con.applySize) {
t->con.applySize(t, NULL, mat);
}
sprintf(str, "Mirror%s", t->con.text);
for(i = 0, td=t->data; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
ElementResize(t, td, mat);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
else
{
size[0] = size[1] = size[2] = 1;
SizeToMat3(size, mat);
for(i = 0, td=t->data; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
ElementResize(t, td, mat);
}
recalcData(t);
ED_area_headerprint(t->sa, "Select a mirror axis (X, Y, Z)");
}
return 1;
}
/* ************************** ALIGN *************************** */
void initAlign(TransInfo *t)
{
t->flag |= T_NO_CONSTRAINT;
t->transform = Align;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
}
int Align(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float center[3];
int i;
/* saving original center */
VECCOPY(center, t->center);
for(i = 0 ; i < t->total; i++, td++)
{
float mat[3][3], invmat[3][3];
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
/* around local centers */
if (t->flag & (T_OBJECT|T_POSE)) {
VECCOPY(t->center, td->center);
}
else {
if(t->settings->selectmode & SCE_SELECT_FACE) {
VECCOPY(t->center, td->center);
}
}
Mat3Inv(invmat, td->axismtx);
Mat3MulMat3(mat, t->spacemtx, invmat);
ElementRotation(t, td, mat, t->around);
}
/* restoring original center */
VECCOPY(t->center, center);
recalcData(t);
ED_area_headerprint(t->sa, "Align");
return 1;
}
/* ************************** ANIM EDITORS - TRANSFORM TOOLS *************************** */
/* ---------------- Special Helpers for Various Settings ------------- */
/* This function returns the snapping 'mode' for Animation Editors only
* We cannot use the standard snapping due to NLA-strip scaling complexities.
*/
// XXX these modifier checks should be keymappable
static short getAnimEdit_SnapMode(TransInfo *t)
{
short autosnap= SACTSNAP_OFF;
/* currently, some of these are only for the action editor */
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction= (SpaceAction *)t->sa->spacedata.first;
if (saction)
autosnap= saction->autosnap;
}
else if (t->spacetype == SPACE_IPO) {
SpaceIpo *sipo= (SpaceIpo *)t->sa->spacedata.first;
if (sipo)
autosnap= sipo->autosnap;
}
else if (t->spacetype == SPACE_NLA) {
SpaceNla *snla= (SpaceNla *)t->sa->spacedata.first;
if (snla)
autosnap= snla->autosnap;
}
else {
// TRANSFORM_FIX_ME This needs to use proper defines for t->modifiers
// // FIXME: this still toggles the modes...
// if (ctrl)
// autosnap= SACTSNAP_STEP;
// else if (shift)
// autosnap= SACTSNAP_FRAME;
// else if (alt)
// autosnap= SACTSNAP_MARKER;
// else
autosnap= SACTSNAP_OFF;
}
return autosnap;
}
/* This function is used for testing if an Animation Editor is displaying
* its data in frames or seconds (and the data needing to be edited as such).
* Returns 1 if in seconds, 0 if in frames
*/
static short getAnimEdit_DrawTime(TransInfo *t)
{
short drawtime;
/* currently, some of these are only for the action editor */
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction= (SpaceAction *)t->sa->spacedata.first;
drawtime = (saction->flag & SACTION_DRAWTIME)? 1 : 0;
}
else if (t->spacetype == SPACE_NLA) {
SpaceNla *snla= (SpaceNla *)t->sa->spacedata.first;
drawtime = (snla->flag & SNLA_DRAWTIME)? 1 : 0;
}
else {
drawtime = 0;
}
return drawtime;
}
/* This function is used by Animation Editor specific transform functions to do
* the Snap Keyframe to Nearest Frame/Marker
*/
static void doAnimEdit_SnapFrame(TransInfo *t, TransData *td, AnimData *adt, short autosnap)
{
/* snap key to nearest frame? */
if (autosnap == SACTSNAP_FRAME) {
const Scene *scene= t->scene;
const short doTime= getAnimEdit_DrawTime(t);
const double secf= FPS;
double val;
/* convert frame to nla-action time (if needed) */
if (adt)
val= BKE_nla_tweakedit_remap(adt, *(td->val), NLATIME_CONVERT_MAP);
else
val= *(td->val);
/* do the snapping to nearest frame/second */
if (doTime)
val= (float)( floor((val/secf) + 0.5f) * secf );
else
val= (float)( floor(val+0.5f) );
/* convert frame out of nla-action time */
if (adt)
*(td->val)= BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP);
else
*(td->val)= val;
}
/* snap key to nearest marker? */
else if (autosnap == SACTSNAP_MARKER) {
float val;
/* convert frame to nla-action time (if needed) */
if (adt)
val= BKE_nla_tweakedit_remap(adt, *(td->val), NLATIME_CONVERT_MAP);
else
val= *(td->val);
/* snap to nearest marker */
// TODO: need some more careful checks for where data comes from
val= (float)ED_markers_find_nearest_marker_time(&t->scene->markers, val);
/* convert frame out of nla-action time */
if (adt)
*(td->val)= BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP);
else
*(td->val)= val;
}
}
/* ----------------- Translation ----------------------- */
void initTimeTranslate(TransInfo *t)
{
t->mode = TFM_TIME_TRANSLATE;
t->transform = TimeTranslate;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
/* num-input has max of (n-1) */
t->idx_max = 0;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
/* initialise snap like for everything else */
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
}
static void headerTimeTranslate(TransInfo *t, char *str)
{
char tvec[60];
/* if numeric input is active, use results from that, otherwise apply snapping to result */
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
const Scene *scene = t->scene;
const short autosnap= getAnimEdit_SnapMode(t);
const short doTime = getAnimEdit_DrawTime(t);
const double secf= FPS;
float val = t->values[0];
/* apply snapping + frame->seconds conversions */
if (autosnap == SACTSNAP_STEP) {
if (doTime)
val= floor(val/secf + 0.5f);
else
val= floor(val + 0.5f);
}
else {
if (doTime)
val= val / secf;
}
sprintf(&tvec[0], "%.4f", val);
}
sprintf(str, "DeltaX: %s", &tvec[0]);
}
static void applyTimeTranslate(TransInfo *t, float sval)
{
TransData *td = t->data;
Scene *scene = t->scene;
int i;
const short doTime= getAnimEdit_DrawTime(t);
const double secf= FPS;
const short autosnap= getAnimEdit_SnapMode(t);
float deltax, val;
/* it doesn't matter whether we apply to t->data or t->data2d, but t->data2d is more convenient */
for (i = 0 ; i < t->total; i++, td++) {
/* it is assumed that td->extra is a pointer to the AnimData,
* whose active action is where this keyframe comes from
* (this is only valid when not in NLA)
*/
AnimData *adt= (t->spacetype != SPACE_NLA) ? td->extra : NULL;
/* check if any need to apply nla-mapping */
if (adt) {
deltax = t->values[0];
if (autosnap == SACTSNAP_STEP) {
if (doTime)
deltax= (float)( floor((deltax/secf) + 0.5f) * secf );
else
deltax= (float)( floor(deltax + 0.5f) );
}
val = BKE_nla_tweakedit_remap(adt, td->ival, NLATIME_CONVERT_MAP);
val += deltax;
*(td->val) = BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP);
}
else {
deltax = val = t->values[0];
if (autosnap == SACTSNAP_STEP) {
if (doTime)
val= (float)( floor((deltax/secf) + 0.5f) * secf );
else
val= (float)( floor(val + 0.5f) );
}
*(td->val) = td->ival + val;
}
/* apply nearest snapping */
doAnimEdit_SnapFrame(t, td, adt, autosnap);
}
}
int TimeTranslate(TransInfo *t, short mval[2])
{
View2D *v2d = (View2D *)t->view;
float cval[2], sval[2];
char str[200];
/* calculate translation amount from mouse movement - in 'time-grid space' */
UI_view2d_region_to_view(v2d, mval[0], mval[0], &cval[0], &cval[1]);
UI_view2d_region_to_view(v2d, t->imval[0], t->imval[0], &sval[0], &sval[1]);
/* we only need to calculate effect for time (applyTimeTranslate only needs that) */
t->values[0] = cval[0] - sval[0];
/* handle numeric-input stuff */
t->vec[0] = t->values[0];
applyNumInput(&t->num, &t->vec[0]);
t->values[0] = t->vec[0];
headerTimeTranslate(t, str);
applyTimeTranslate(t, sval[0]);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ----------------- Time Slide ----------------------- */
void initTimeSlide(TransInfo *t)
{
/* this tool is only really available in the Action Editor... */
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction= (SpaceAction *)t->sa->spacedata.first;
/* set flag for drawing stuff */
saction->flag |= SACTION_MOVING;
}
t->mode = TFM_TIME_SLIDE;
t->transform = TimeSlide;
t->flag |= T_FREE_CUSTOMDATA;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
/* num-input has max of (n-1) */
t->idx_max = 0;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
/* initialise snap like for everything else */
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
}
static void headerTimeSlide(TransInfo *t, float sval, char *str)
{
char tvec[60];
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
float minx= *((float *)(t->customData));
float maxx= *((float *)(t->customData) + 1);
float cval= t->values[0];
float val;
val= 2.0f*(cval-sval) / (maxx-minx);
CLAMP(val, -1.0f, 1.0f);
sprintf(&tvec[0], "%.4f", val);
}
sprintf(str, "TimeSlide: %s", &tvec[0]);
}
static void applyTimeSlide(TransInfo *t, float sval)
{
TransData *td = t->data;
int i;
float minx= *((float *)(t->customData));
float maxx= *((float *)(t->customData) + 1);
/* set value for drawing black line */
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction= (SpaceAction *)t->sa->spacedata.first;
float cvalf = t->values[0];
saction->timeslide= cvalf;
}
/* it doesn't matter whether we apply to t->data or t->data2d, but t->data2d is more convenient */
for (i = 0 ; i < t->total; i++, td++) {
/* it is assumed that td->extra is a pointer to the AnimData,
* whose active action is where this keyframe comes from
* (this is only valid when not in NLA)
*/
AnimData *adt= (t->spacetype != SPACE_NLA) ? td->extra : NULL;
float cval = t->values[0];
/* apply NLA-mapping to necessary values */
if (adt)
cval= BKE_nla_tweakedit_remap(adt, cval, NLATIME_CONVERT_UNMAP);
/* only apply to data if in range */
if ((sval > minx) && (sval < maxx)) {
float cvalc= CLAMPIS(cval, minx, maxx);
float timefac;
/* left half? */
if (td->ival < sval) {
timefac= (sval - td->ival) / (sval - minx);
*(td->val)= cvalc - timefac * (cvalc - minx);
}
else {
timefac= (td->ival - sval) / (maxx - sval);
*(td->val)= cvalc + timefac * (maxx - cvalc);
}
}
}
}
int TimeSlide(TransInfo *t, short mval[2])
{
View2D *v2d = (View2D *)t->view;
float cval[2], sval[2];
float minx= *((float *)(t->customData));
float maxx= *((float *)(t->customData) + 1);
char str[200];
/* calculate mouse co-ordinates */
UI_view2d_region_to_view(v2d, mval[0], mval[0], &cval[0], &cval[1]);
UI_view2d_region_to_view(v2d, t->imval[0], t->imval[0], &sval[0], &sval[1]);
/* t->values[0] stores cval[0], which is the current mouse-pointer location (in frames) */
t->values[0] = cval[0];
/* handle numeric-input stuff */
t->vec[0] = 2.0f*(cval[0]-sval[0]) / (maxx-minx);
applyNumInput(&t->num, &t->vec[0]);
t->values[0] = (maxx-minx) * t->vec[0] / 2.0 + sval[0];
headerTimeSlide(t, sval[0], str);
applyTimeSlide(t, sval[0]);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ----------------- Scaling ----------------------- */
void initTimeScale(TransInfo *t)
{
t->mode = TFM_TIME_SCALE;
t->transform = TimeScale;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
t->helpline = HLP_SPRING; /* set manually because we don't use a predefined input */
t->flag |= T_NULL_ONE;
t->num.flag |= NUM_NULL_ONE;
/* num-input has max of (n-1) */
t->idx_max = 0;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
/* initialise snap like for everything else */
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
}
static void headerTimeScale(TransInfo *t, char *str) {
char tvec[60];
if (hasNumInput(&t->num))
outputNumInput(&(t->num), tvec);
else
sprintf(&tvec[0], "%.4f", t->values[0]);
sprintf(str, "ScaleX: %s", &tvec[0]);
}
static void applyTimeScale(TransInfo *t) {
Scene *scene = t->scene;
TransData *td = t->data;
int i;
const short autosnap= getAnimEdit_SnapMode(t);
const short doTime= getAnimEdit_DrawTime(t);
const double secf= FPS;
for (i = 0 ; i < t->total; i++, td++) {
/* it is assumed that td->extra is a pointer to the AnimData,
* whose active action is where this keyframe comes from
* (this is only valid when not in NLA)
*/
AnimData *adt= (t->spacetype != SPACE_NLA) ? td->extra : NULL;
float startx= CFRA;
float fac= t->values[0];
if (autosnap == SACTSNAP_STEP) {
if (doTime)
fac= (float)( floor(fac/secf + 0.5f) * secf );
else
fac= (float)( floor(fac + 0.5f) );
}
/* check if any need to apply nla-mapping */
if (adt)
startx= BKE_nla_tweakedit_remap(adt, startx, NLATIME_CONVERT_UNMAP);
/* now, calculate the new value */
*(td->val) = td->ival - startx;
*(td->val) *= fac;
*(td->val) += startx;
/* apply nearest snapping */
doAnimEdit_SnapFrame(t, td, adt, autosnap);
}
}
int TimeScale(TransInfo *t, short mval[2])
{
float cval, sval;
float deltax, startx;
float width= 0.0f;
char str[200];
sval= t->imval[0];
cval= mval[0];
/* calculate scaling factor */
startx= sval-(width/2+(t->ar->winx)/2);
deltax= cval-(width/2+(t->ar->winx)/2);
t->values[0] = deltax / startx;
/* handle numeric-input stuff */
t->vec[0] = t->values[0];
applyNumInput(&t->num, &t->vec[0]);
t->values[0] = t->vec[0];
headerTimeScale(t, str);
applyTimeScale(t);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************************ */
void BIF_TransformSetUndo(char *str)
{
// TRANSFORM_FIX_ME
//Trans.undostr= str;
}
void NDofTransform()
{
#if 0 // TRANSFORM_FIX_ME
float fval[7];
float maxval = 50.0f; // also serves as threshold
int axis = -1;
int mode = 0;
int i;
getndof(fval);
for(i = 0; i < 6; i++)
{
float val = fabs(fval[i]);
if (val > maxval)
{
axis = i;
maxval = val;
}
}
switch(axis)
{
case -1:
/* No proper axis found */
break;
case 0:
case 1:
case 2:
mode = TFM_TRANSLATION;
break;
case 4:
mode = TFM_ROTATION;
break;
case 3:
case 5:
mode = TFM_TRACKBALL;
break;
default:
printf("ndof: what we are doing here ?");
}
if (mode != 0)
{
initTransform(mode, CTX_NDOF);
Transform();
}
#endif
}