This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/attribute_access.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1124 lines
35 KiB
C++
Raw Normal View History

Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <utility>
#include "BKE_attribute_access.hh"
#include "BKE_attribute_math.hh"
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
#include "BKE_customdata.h"
#include "BKE_deform.h"
#include "BKE_geometry_set.hh"
#include "BKE_mesh.h"
#include "BKE_pointcloud.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_pointcloud_types.h"
#include "BLI_color.hh"
#include "BLI_float2.hh"
#include "BLI_span.hh"
#include "CLG_log.h"
#include "NOD_node_tree_multi_function.hh"
#include "attribute_access_intern.hh"
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
static CLG_LogRef LOG = {"bke.attribute_access"};
using blender::float3;
using blender::Set;
using blender::StringRef;
using blender::StringRefNull;
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
using blender::bke::ReadAttributePtr;
using blender::bke::WriteAttributePtr;
using blender::fn::GMutableSpan;
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
namespace blender::bke {
/* -------------------------------------------------------------------- */
/** \name Attribute Accessor implementations
* \{ */
ReadAttribute::~ReadAttribute()
{
if (array_is_temporary_ && array_buffer_ != nullptr) {
cpp_type_.destruct_n(array_buffer_, size_);
MEM_freeN(array_buffer_);
}
}
fn::GSpan ReadAttribute::get_span() const
{
if (size_ == 0) {
return fn::GSpan(cpp_type_);
}
if (array_buffer_ == nullptr) {
std::lock_guard lock{span_mutex_};
if (array_buffer_ == nullptr) {
this->initialize_span();
}
}
return fn::GSpan(cpp_type_, array_buffer_, size_);
}
void ReadAttribute::initialize_span() const
{
const int element_size = cpp_type_.size();
array_buffer_ = MEM_mallocN_aligned(size_ * element_size, cpp_type_.alignment(), __func__);
array_is_temporary_ = true;
for (const int i : IndexRange(size_)) {
this->get_internal(i, POINTER_OFFSET(array_buffer_, i * element_size));
}
}
WriteAttribute::~WriteAttribute()
{
if (array_should_be_applied_) {
CLOG_ERROR(&LOG, "Forgot to call apply_span.");
}
if (array_is_temporary_ && array_buffer_ != nullptr) {
cpp_type_.destruct_n(array_buffer_, size_);
MEM_freeN(array_buffer_);
}
}
/**
* Get a mutable span that can be modified. When all modifications to the attribute are done,
* #apply_span should be called. */
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
fn::GMutableSpan WriteAttribute::get_span()
{
if (size_ == 0) {
return fn::GMutableSpan(cpp_type_);
}
if (array_buffer_ == nullptr) {
this->initialize_span(false);
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
array_should_be_applied_ = true;
return fn::GMutableSpan(cpp_type_, array_buffer_, size_);
}
fn::GMutableSpan WriteAttribute::get_span_for_write_only()
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
{
if (size_ == 0) {
return fn::GMutableSpan(cpp_type_);
}
if (array_buffer_ == nullptr) {
this->initialize_span(true);
}
array_should_be_applied_ = true;
return fn::GMutableSpan(cpp_type_, array_buffer_, size_);
}
void WriteAttribute::initialize_span(const bool write_only)
{
const int element_size = cpp_type_.size();
array_buffer_ = MEM_mallocN_aligned(element_size * size_, cpp_type_.alignment(), __func__);
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
array_is_temporary_ = true;
if (write_only) {
/* This does nothing for trivial types, but is necessary for general correctness. */
cpp_type_.construct_default_n(array_buffer_, size_);
}
else {
for (const int i : IndexRange(size_)) {
this->get(i, POINTER_OFFSET(array_buffer_, i * element_size));
}
}
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
void WriteAttribute::apply_span()
{
this->apply_span_if_necessary();
array_should_be_applied_ = false;
}
void WriteAttribute::apply_span_if_necessary()
{
/* Only works when the span has been initialized beforehand. */
BLI_assert(array_buffer_ != nullptr);
const int element_size = cpp_type_.size();
for (const int i : IndexRange(size_)) {
this->set_internal(i, POINTER_OFFSET(array_buffer_, i * element_size));
}
}
/* This is used by the #OutputAttributePtr class. */
class TemporaryWriteAttribute final : public WriteAttribute {
public:
GMutableSpan data;
GeometryComponent &component;
std::string final_name;
TemporaryWriteAttribute(AttributeDomain domain,
GMutableSpan data,
GeometryComponent &component,
std::string final_name)
: WriteAttribute(domain, data.type(), data.size()),
data(data),
component(component),
final_name(std::move(final_name))
{
}
~TemporaryWriteAttribute() override
{
if (data.data() != nullptr) {
cpp_type_.destruct_n(data.data(), data.size());
MEM_freeN(data.data());
}
}
void get_internal(const int64_t index, void *r_value) const override
{
data.type().copy_to_uninitialized(data[index], r_value);
}
void set_internal(const int64_t index, const void *value) override
{
data.type().copy_to_initialized(value, data[index]);
}
void initialize_span(const bool UNUSED(write_only)) override
{
array_buffer_ = data.data();
array_is_temporary_ = false;
}
void apply_span_if_necessary() override
{
/* Do nothing, because the span contains the attribute itself already. */
}
};
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
class ConvertedReadAttribute final : public ReadAttribute {
private:
const CPPType &from_type_;
const CPPType &to_type_;
ReadAttributePtr base_attribute_;
const nodes::DataTypeConversions &conversions_;
public:
ConvertedReadAttribute(ReadAttributePtr base_attribute, const CPPType &to_type)
: ReadAttribute(base_attribute->domain(), to_type, base_attribute->size()),
from_type_(base_attribute->cpp_type()),
to_type_(to_type),
base_attribute_(std::move(base_attribute)),
conversions_(nodes::get_implicit_type_conversions())
{
}
void get_internal(const int64_t index, void *r_value) const override
{
BUFFER_FOR_CPP_TYPE_VALUE(from_type_, buffer);
base_attribute_->get(index, buffer);
conversions_.convert(from_type_, to_type_, buffer, r_value);
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
};
/** \} */
const blender::fn::CPPType *custom_data_type_to_cpp_type(const CustomDataType type)
{
switch (type) {
case CD_PROP_FLOAT:
return &CPPType::get<float>();
case CD_PROP_FLOAT2:
return &CPPType::get<float2>();
case CD_PROP_FLOAT3:
return &CPPType::get<float3>();
case CD_PROP_INT32:
return &CPPType::get<int>();
case CD_PROP_COLOR:
return &CPPType::get<Color4f>();
case CD_PROP_BOOL:
return &CPPType::get<bool>();
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
default:
return nullptr;
}
return nullptr;
}
CustomDataType cpp_type_to_custom_data_type(const blender::fn::CPPType &type)
{
if (type.is<float>()) {
return CD_PROP_FLOAT;
}
if (type.is<float2>()) {
return CD_PROP_FLOAT2;
}
if (type.is<float3>()) {
return CD_PROP_FLOAT3;
}
if (type.is<int>()) {
return CD_PROP_INT32;
}
if (type.is<Color4f>()) {
return CD_PROP_COLOR;
}
if (type.is<bool>()) {
return CD_PROP_BOOL;
}
return static_cast<CustomDataType>(-1);
}
static int attribute_data_type_complexity(const CustomDataType data_type)
{
switch (data_type) {
case CD_PROP_BOOL:
return 0;
case CD_PROP_INT32:
return 1;
case CD_PROP_FLOAT:
return 2;
case CD_PROP_FLOAT2:
return 3;
case CD_PROP_FLOAT3:
return 4;
case CD_PROP_COLOR:
return 5;
#if 0 /* These attribute types are not supported yet. */
case CD_MLOOPCOL:
return 3;
case CD_PROP_STRING:
return 6;
#endif
default:
/* Only accept "generic" custom data types used by the attribute system. */
BLI_assert(false);
return 0;
}
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
CustomDataType attribute_data_type_highest_complexity(Span<CustomDataType> data_types)
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
{
int highest_complexity = INT_MIN;
CustomDataType most_complex_type = CD_PROP_COLOR;
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
for (const CustomDataType data_type : data_types) {
const int complexity = attribute_data_type_complexity(data_type);
if (complexity > highest_complexity) {
highest_complexity = complexity;
most_complex_type = data_type;
}
}
return most_complex_type;
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
/**
* \note Generally the order should mirror the order of the domains
* established in each component's ComponentAttributeProviders.
*/
static int attribute_domain_priority(const AttributeDomain domain)
{
switch (domain) {
#if 0
case ATTR_DOMAIN_CURVE:
return 0;
#endif
case ATTR_DOMAIN_POLYGON:
return 1;
case ATTR_DOMAIN_EDGE:
return 2;
case ATTR_DOMAIN_POINT:
return 3;
case ATTR_DOMAIN_CORNER:
return 4;
default:
/* Domain not supported in nodes yet. */
BLI_assert(false);
return 0;
}
}
/**
* Domains with a higher "information density" have a higher priority, in order
* to choose a domain that will not lose data through domain conversion.
*/
AttributeDomain attribute_domain_highest_priority(Span<AttributeDomain> domains)
{
int highest_priority = INT_MIN;
AttributeDomain highest_priority_domain = ATTR_DOMAIN_CORNER;
for (const AttributeDomain domain : domains) {
const int priority = attribute_domain_priority(domain);
if (priority > highest_priority) {
highest_priority = priority;
highest_priority_domain = domain;
}
}
return highest_priority_domain;
}
ReadAttributePtr BuiltinCustomDataLayerProvider::try_get_for_read(
const GeometryComponent &component) const
{
const CustomData *custom_data = custom_data_access_.get_const_custom_data(component);
if (custom_data == nullptr) {
return {};
}
const int domain_size = component.attribute_domain_size(domain_);
const void *data = CustomData_get_layer(custom_data, stored_type_);
if (data == nullptr) {
return {};
}
return as_read_attribute_(data, domain_size);
}
WriteAttributePtr BuiltinCustomDataLayerProvider::try_get_for_write(
GeometryComponent &component) const
{
if (writable_ != Writable) {
return {};
}
CustomData *custom_data = custom_data_access_.get_custom_data(component);
if (custom_data == nullptr) {
return {};
}
const int domain_size = component.attribute_domain_size(domain_);
void *data = CustomData_get_layer(custom_data, stored_type_);
if (data == nullptr) {
return {};
}
void *new_data = CustomData_duplicate_referenced_layer(custom_data, stored_type_, domain_size);
if (data != new_data) {
custom_data_access_.update_custom_data_pointers(component);
data = new_data;
}
if (update_on_write_ != nullptr) {
update_on_write_(component);
}
return as_write_attribute_(data, domain_size);
}
bool BuiltinCustomDataLayerProvider::try_delete(GeometryComponent &component) const
{
if (deletable_ != Deletable) {
return false;
}
CustomData *custom_data = custom_data_access_.get_custom_data(component);
if (custom_data == nullptr) {
return {};
}
const int domain_size = component.attribute_domain_size(domain_);
const int layer_index = CustomData_get_layer_index(custom_data, stored_type_);
const bool delete_success = CustomData_free_layer(
custom_data, stored_type_, domain_size, layer_index);
if (delete_success) {
custom_data_access_.update_custom_data_pointers(component);
}
return delete_success;
}
bool BuiltinCustomDataLayerProvider::try_create(GeometryComponent &component) const
{
if (createable_ != Creatable) {
return false;
}
CustomData *custom_data = custom_data_access_.get_custom_data(component);
if (custom_data == nullptr) {
return false;
}
if (CustomData_get_layer(custom_data, stored_type_) != nullptr) {
/* Exists already. */
return false;
}
const int domain_size = component.attribute_domain_size(domain_);
const void *data = CustomData_add_layer(
custom_data, stored_type_, CD_DEFAULT, nullptr, domain_size);
const bool success = data != nullptr;
if (success) {
custom_data_access_.update_custom_data_pointers(component);
}
return success;
}
bool BuiltinCustomDataLayerProvider::exists(const GeometryComponent &component) const
{
const CustomData *custom_data = custom_data_access_.get_const_custom_data(component);
if (custom_data == nullptr) {
return false;
}
const void *data = CustomData_get_layer(custom_data, stored_type_);
return data != nullptr;
}
ReadAttributePtr CustomDataAttributeProvider::try_get_for_read(
const GeometryComponent &component, const StringRef attribute_name) const
{
const CustomData *custom_data = custom_data_access_.get_const_custom_data(component);
if (custom_data == nullptr) {
return {};
}
const int domain_size = component.attribute_domain_size(domain_);
for (const CustomDataLayer &layer : Span(custom_data->layers, custom_data->totlayer)) {
if (layer.name != attribute_name) {
continue;
}
const CustomDataType data_type = (CustomDataType)layer.type;
switch (data_type) {
case CD_PROP_FLOAT:
return this->layer_to_read_attribute<float>(layer, domain_size);
case CD_PROP_FLOAT2:
return this->layer_to_read_attribute<float2>(layer, domain_size);
case CD_PROP_FLOAT3:
return this->layer_to_read_attribute<float3>(layer, domain_size);
case CD_PROP_INT32:
return this->layer_to_read_attribute<int>(layer, domain_size);
case CD_PROP_COLOR:
return this->layer_to_read_attribute<Color4f>(layer, domain_size);
case CD_PROP_BOOL:
return this->layer_to_read_attribute<bool>(layer, domain_size);
default:
break;
}
}
return {};
}
WriteAttributePtr CustomDataAttributeProvider::try_get_for_write(
GeometryComponent &component, const StringRef attribute_name) const
{
CustomData *custom_data = custom_data_access_.get_custom_data(component);
if (custom_data == nullptr) {
return {};
}
const int domain_size = component.attribute_domain_size(domain_);
for (CustomDataLayer &layer : MutableSpan(custom_data->layers, custom_data->totlayer)) {
if (layer.name != attribute_name) {
continue;
}
CustomData_duplicate_referenced_layer_named(custom_data, layer.type, layer.name, domain_size);
const CustomDataType data_type = (CustomDataType)layer.type;
switch (data_type) {
case CD_PROP_FLOAT:
return this->layer_to_write_attribute<float>(layer, domain_size);
case CD_PROP_FLOAT2:
return this->layer_to_write_attribute<float2>(layer, domain_size);
case CD_PROP_FLOAT3:
return this->layer_to_write_attribute<float3>(layer, domain_size);
case CD_PROP_INT32:
return this->layer_to_write_attribute<int>(layer, domain_size);
case CD_PROP_COLOR:
return this->layer_to_write_attribute<Color4f>(layer, domain_size);
case CD_PROP_BOOL:
return this->layer_to_write_attribute<bool>(layer, domain_size);
default:
break;
}
}
return {};
}
bool CustomDataAttributeProvider::try_delete(GeometryComponent &component,
const StringRef attribute_name) const
{
CustomData *custom_data = custom_data_access_.get_custom_data(component);
if (custom_data == nullptr) {
return false;
}
const int domain_size = component.attribute_domain_size(domain_);
for (const int i : IndexRange(custom_data->totlayer)) {
const CustomDataLayer &layer = custom_data->layers[i];
if (this->type_is_supported((CustomDataType)layer.type) && layer.name == attribute_name) {
CustomData_free_layer(custom_data, layer.type, domain_size, i);
return true;
}
}
return false;
}
bool CustomDataAttributeProvider::try_create(GeometryComponent &component,
const StringRef attribute_name,
const AttributeDomain domain,
const CustomDataType data_type) const
{
if (domain_ != domain) {
return false;
}
if (!this->type_is_supported(data_type)) {
return false;
}
CustomData *custom_data = custom_data_access_.get_custom_data(component);
if (custom_data == nullptr) {
return false;
}
for (const CustomDataLayer &layer : Span(custom_data->layers, custom_data->totlayer)) {
if (layer.name == attribute_name) {
return false;
}
}
const int domain_size = component.attribute_domain_size(domain_);
char attribute_name_c[MAX_NAME];
attribute_name.copy(attribute_name_c);
CustomData_add_layer_named(
custom_data, data_type, CD_DEFAULT, nullptr, domain_size, attribute_name_c);
return true;
}
bool CustomDataAttributeProvider::foreach_attribute(const GeometryComponent &component,
const AttributeForeachCallback callback) const
{
const CustomData *custom_data = custom_data_access_.get_const_custom_data(component);
if (custom_data == nullptr) {
return true;
}
for (const CustomDataLayer &layer : Span(custom_data->layers, custom_data->totlayer)) {
const CustomDataType data_type = (CustomDataType)layer.type;
if (this->type_is_supported(data_type)) {
AttributeMetaData meta_data{domain_, data_type};
if (!callback(layer.name, meta_data)) {
return false;
}
}
}
return true;
}
ReadAttributePtr NamedLegacyCustomDataProvider::try_get_for_read(
const GeometryComponent &component, const StringRef attribute_name) const
{
const CustomData *custom_data = custom_data_access_.get_const_custom_data(component);
if (custom_data == nullptr) {
return {};
}
for (const CustomDataLayer &layer : Span(custom_data->layers, custom_data->totlayer)) {
if (layer.type == stored_type_) {
if (layer.name == attribute_name) {
const int domain_size = component.attribute_domain_size(domain_);
return as_read_attribute_(layer.data, domain_size);
}
}
}
return {};
}
WriteAttributePtr NamedLegacyCustomDataProvider::try_get_for_write(
GeometryComponent &component, const StringRef attribute_name) const
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
{
CustomData *custom_data = custom_data_access_.get_custom_data(component);
if (custom_data == nullptr) {
return {};
}
for (CustomDataLayer &layer : MutableSpan(custom_data->layers, custom_data->totlayer)) {
if (layer.type == stored_type_) {
if (layer.name == attribute_name) {
const int domain_size = component.attribute_domain_size(domain_);
void *data_old = layer.data;
void *data_new = CustomData_duplicate_referenced_layer_named(
custom_data, stored_type_, layer.name, domain_size);
if (data_old != data_new) {
custom_data_access_.update_custom_data_pointers(component);
}
return as_write_attribute_(layer.data, domain_size);
}
}
}
return {};
}
bool NamedLegacyCustomDataProvider::try_delete(GeometryComponent &component,
const StringRef attribute_name) const
{
CustomData *custom_data = custom_data_access_.get_custom_data(component);
if (custom_data == nullptr) {
return false;
}
for (const int i : IndexRange(custom_data->totlayer)) {
const CustomDataLayer &layer = custom_data->layers[i];
if (layer.type == stored_type_) {
if (layer.name == attribute_name) {
const int domain_size = component.attribute_domain_size(domain_);
CustomData_free_layer(custom_data, stored_type_, domain_size, i);
custom_data_access_.update_custom_data_pointers(component);
return true;
}
}
}
return false;
}
bool NamedLegacyCustomDataProvider::foreach_attribute(
const GeometryComponent &component, const AttributeForeachCallback callback) const
{
const CustomData *custom_data = custom_data_access_.get_const_custom_data(component);
if (custom_data == nullptr) {
return true;
}
for (const CustomDataLayer &layer : Span(custom_data->layers, custom_data->totlayer)) {
if (layer.type == stored_type_) {
AttributeMetaData meta_data{domain_, attribute_type_};
if (!callback(layer.name, meta_data)) {
return false;
}
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
}
return true;
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
void NamedLegacyCustomDataProvider::foreach_domain(
const FunctionRef<void(AttributeDomain)> callback) const
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
{
callback(domain_);
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
} // namespace blender::bke
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
/* -------------------------------------------------------------------- */
/** \name Geometry Component
* \{ */
const blender::bke::ComponentAttributeProviders *GeometryComponent::get_attribute_providers() const
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
{
return nullptr;
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
bool GeometryComponent::attribute_domain_supported(const AttributeDomain domain) const
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
{
using namespace blender::bke;
const ComponentAttributeProviders *providers = this->get_attribute_providers();
if (providers == nullptr) {
return false;
}
return providers->supported_domains().contains(domain);
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
int GeometryComponent::attribute_domain_size(const AttributeDomain UNUSED(domain)) const
{
BLI_assert(false);
return 0;
}
ReadAttributePtr GeometryComponent::attribute_try_get_for_read(
const StringRef attribute_name) const
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
{
using namespace blender::bke;
const ComponentAttributeProviders *providers = this->get_attribute_providers();
if (providers == nullptr) {
return {};
}
const BuiltinAttributeProvider *builtin_provider =
providers->builtin_attribute_providers().lookup_default_as(attribute_name, nullptr);
if (builtin_provider != nullptr) {
return builtin_provider->try_get_for_read(*this);
}
for (const DynamicAttributesProvider *dynamic_provider :
providers->dynamic_attribute_providers()) {
ReadAttributePtr attribute = dynamic_provider->try_get_for_read(*this, attribute_name);
if (attribute) {
return attribute;
}
}
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
return {};
}
ReadAttributePtr GeometryComponent::attribute_try_adapt_domain(
ReadAttributePtr attribute, const AttributeDomain new_domain) const
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
{
if (attribute && attribute->domain() == new_domain) {
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
return attribute;
}
return {};
}
WriteAttributePtr GeometryComponent::attribute_try_get_for_write(const StringRef attribute_name)
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
{
using namespace blender::bke;
const ComponentAttributeProviders *providers = this->get_attribute_providers();
if (providers == nullptr) {
return {};
}
const BuiltinAttributeProvider *builtin_provider =
providers->builtin_attribute_providers().lookup_default_as(attribute_name, nullptr);
if (builtin_provider != nullptr) {
return builtin_provider->try_get_for_write(*this);
}
for (const DynamicAttributesProvider *dynamic_provider :
providers->dynamic_attribute_providers()) {
WriteAttributePtr attribute = dynamic_provider->try_get_for_write(*this, attribute_name);
if (attribute) {
return attribute;
}
}
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
return {};
}
bool GeometryComponent::attribute_try_delete(const StringRef attribute_name)
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
{
using namespace blender::bke;
const ComponentAttributeProviders *providers = this->get_attribute_providers();
if (providers == nullptr) {
return {};
}
const BuiltinAttributeProvider *builtin_provider =
providers->builtin_attribute_providers().lookup_default_as(attribute_name, nullptr);
if (builtin_provider != nullptr) {
return builtin_provider->try_delete(*this);
}
bool success = false;
for (const DynamicAttributesProvider *dynamic_provider :
providers->dynamic_attribute_providers()) {
success = dynamic_provider->try_delete(*this, attribute_name) || success;
}
return success;
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
bool GeometryComponent::attribute_try_create(const StringRef attribute_name,
const AttributeDomain domain,
const CustomDataType data_type)
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
{
using namespace blender::bke;
if (attribute_name.is_empty()) {
return false;
}
const ComponentAttributeProviders *providers = this->get_attribute_providers();
if (providers == nullptr) {
return false;
}
const BuiltinAttributeProvider *builtin_provider =
providers->builtin_attribute_providers().lookup_default_as(attribute_name, nullptr);
if (builtin_provider != nullptr) {
if (builtin_provider->domain() != domain) {
return false;
}
if (builtin_provider->data_type() != data_type) {
return false;
}
return builtin_provider->try_create(*this);
}
for (const DynamicAttributesProvider *dynamic_provider :
providers->dynamic_attribute_providers()) {
if (dynamic_provider->try_create(*this, attribute_name, domain, data_type)) {
return true;
}
}
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
return false;
}
Set<std::string> GeometryComponent::attribute_names() const
{
Set<std::string> attributes;
this->attribute_foreach([&](StringRefNull name, const AttributeMetaData &UNUSED(meta_data)) {
attributes.add(name);
return true;
});
return attributes;
}
void GeometryComponent::attribute_foreach(const AttributeForeachCallback callback) const
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
{
using namespace blender::bke;
const ComponentAttributeProviders *providers = this->get_attribute_providers();
if (providers == nullptr) {
return;
}
/* Keep track handled attribute names to make sure that we do not return the same name twice. */
Set<std::string> handled_attribute_names;
for (const BuiltinAttributeProvider *provider :
providers->builtin_attribute_providers().values()) {
if (provider->exists(*this)) {
AttributeMetaData meta_data{provider->domain(), provider->data_type()};
if (!callback(provider->name(), meta_data)) {
return;
}
handled_attribute_names.add_new(provider->name());
}
}
for (const DynamicAttributesProvider *provider : providers->dynamic_attribute_providers()) {
const bool continue_loop = provider->foreach_attribute(
*this, [&](StringRefNull name, const AttributeMetaData &meta_data) {
if (handled_attribute_names.add(name)) {
return callback(name, meta_data);
}
return true;
});
if (!continue_loop) {
return;
}
}
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
bool GeometryComponent::attribute_exists(const blender::StringRef attribute_name) const
{
ReadAttributePtr attribute = this->attribute_try_get_for_read(attribute_name);
if (attribute) {
return true;
}
return false;
}
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
static ReadAttributePtr try_adapt_data_type(ReadAttributePtr attribute,
const blender::fn::CPPType &to_type)
{
const blender::fn::CPPType &from_type = attribute->cpp_type();
if (from_type == to_type) {
return attribute;
}
const blender::nodes::DataTypeConversions &conversions =
blender::nodes::get_implicit_type_conversions();
if (!conversions.is_convertible(from_type, to_type)) {
return {};
}
return std::make_unique<blender::bke::ConvertedReadAttribute>(std::move(attribute), to_type);
}
ReadAttributePtr GeometryComponent::attribute_try_get_for_read(
const StringRef attribute_name,
const AttributeDomain domain,
const CustomDataType data_type) const
{
ReadAttributePtr attribute = this->attribute_try_get_for_read(attribute_name);
if (!attribute) {
return {};
}
if (attribute->domain() != domain) {
attribute = this->attribute_try_adapt_domain(std::move(attribute), domain);
if (!attribute) {
return {};
}
}
const blender::fn::CPPType *cpp_type = blender::bke::custom_data_type_to_cpp_type(data_type);
BLI_assert(cpp_type != nullptr);
if (attribute->cpp_type() != *cpp_type) {
attribute = try_adapt_data_type(std::move(attribute), *cpp_type);
if (!attribute) {
return {};
}
}
return attribute;
}
ReadAttributePtr GeometryComponent::attribute_try_get_for_read(const StringRef attribute_name,
const AttributeDomain domain) const
{
if (!this->attribute_domain_supported(domain)) {
return {};
}
ReadAttributePtr attribute = this->attribute_try_get_for_read(attribute_name);
if (!attribute) {
return {};
}
if (attribute->domain() != domain) {
attribute = this->attribute_try_adapt_domain(std::move(attribute), domain);
if (!attribute) {
return {};
}
}
return attribute;
}
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
ReadAttributePtr GeometryComponent::attribute_get_for_read(const StringRef attribute_name,
const AttributeDomain domain,
const CustomDataType data_type,
const void *default_value) const
{
ReadAttributePtr attribute = this->attribute_try_get_for_read(attribute_name, domain, data_type);
if (attribute) {
return attribute;
}
return this->attribute_get_constant_for_read(domain, data_type, default_value);
}
blender::bke::ReadAttributePtr GeometryComponent::attribute_get_constant_for_read(
const AttributeDomain domain, const CustomDataType data_type, const void *value) const
{
BLI_assert(this->attribute_domain_supported(domain));
const blender::fn::CPPType *cpp_type = blender::bke::custom_data_type_to_cpp_type(data_type);
BLI_assert(cpp_type != nullptr);
if (value == nullptr) {
value = cpp_type->default_value();
}
const int domain_size = this->attribute_domain_size(domain);
return std::make_unique<blender::bke::ConstantReadAttribute>(
domain, domain_size, *cpp_type, value);
}
blender::bke::ReadAttributePtr GeometryComponent::attribute_get_constant_for_read_converted(
const AttributeDomain domain,
const CustomDataType in_data_type,
const CustomDataType out_data_type,
const void *value) const
{
BLI_assert(this->attribute_domain_supported(domain));
if (value == nullptr || in_data_type == out_data_type) {
return this->attribute_get_constant_for_read(domain, out_data_type, value);
}
const blender::fn::CPPType *in_cpp_type = blender::bke::custom_data_type_to_cpp_type(
in_data_type);
const blender::fn::CPPType *out_cpp_type = blender::bke::custom_data_type_to_cpp_type(
out_data_type);
BLI_assert(in_cpp_type != nullptr);
BLI_assert(out_cpp_type != nullptr);
const blender::nodes::DataTypeConversions &conversions =
blender::nodes::get_implicit_type_conversions();
BLI_assert(conversions.is_convertible(*in_cpp_type, *out_cpp_type));
void *out_value = alloca(out_cpp_type->size());
conversions.convert(*in_cpp_type, *out_cpp_type, value, out_value);
const int domain_size = this->attribute_domain_size(domain);
blender::bke::ReadAttributePtr attribute = std::make_unique<blender::bke::ConstantReadAttribute>(
domain, domain_size, *out_cpp_type, out_value);
out_cpp_type->destruct(out_value);
return attribute;
}
OutputAttributePtr GeometryComponent::attribute_try_get_for_output(const StringRef attribute_name,
const AttributeDomain domain,
const CustomDataType data_type,
const void *default_value)
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
{
const blender::fn::CPPType *cpp_type = blender::bke::custom_data_type_to_cpp_type(data_type);
BLI_assert(cpp_type != nullptr);
WriteAttributePtr attribute = this->attribute_try_get_for_write(attribute_name);
/* If the attribute doesn't exist, make a new one with the correct type. */
if (!attribute) {
this->attribute_try_create(attribute_name, domain, data_type);
attribute = this->attribute_try_get_for_write(attribute_name);
if (attribute && default_value != nullptr) {
void *data = attribute->get_span_for_write_only().data();
cpp_type->fill_initialized(default_value, data, attribute->size());
attribute->apply_span();
}
return OutputAttributePtr(std::move(attribute));
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
/* If an existing attribute has a matching domain and type, just use that. */
if (attribute->domain() == domain && attribute->cpp_type() == *cpp_type) {
return OutputAttributePtr(std::move(attribute));
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
/* Otherwise create a temporary buffer to use before saving the new attribute. */
return OutputAttributePtr(*this, domain, attribute_name, data_type);
}
/* Construct from an attribute that already exists in the geometry component. */
OutputAttributePtr::OutputAttributePtr(WriteAttributePtr attribute)
: attribute_(std::move(attribute))
{
}
/* Construct a temporary attribute that has to replace an existing one later on. */
OutputAttributePtr::OutputAttributePtr(GeometryComponent &component,
AttributeDomain domain,
std::string final_name,
CustomDataType data_type)
{
const blender::fn::CPPType *cpp_type = blender::bke::custom_data_type_to_cpp_type(data_type);
BLI_assert(cpp_type != nullptr);
const int domain_size = component.attribute_domain_size(domain);
void *buffer = MEM_malloc_arrayN(domain_size, cpp_type->size(), __func__);
GMutableSpan new_span{*cpp_type, buffer, domain_size};
/* Copy converted values from conflicting attribute, in case the value is read.
* TODO: An optimization could be to not do this, when the caller says that the attribute will
* only be written. */
ReadAttributePtr src_attribute = component.attribute_get_for_read(
final_name, domain, data_type, nullptr);
for (const int i : blender::IndexRange(domain_size)) {
src_attribute->get(i, new_span[i]);
}
attribute_ = std::make_unique<blender::bke::TemporaryWriteAttribute>(
domain, new_span, component, std::move(final_name));
}
/* Store the computed attribute. If it was stored from the beginning already, nothing is done. This
* might delete another attribute with the same name. */
void OutputAttributePtr::save()
{
if (!attribute_) {
CLOG_WARN(&LOG, "Trying to save an attribute that does not exist anymore.");
return;
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
blender::bke::TemporaryWriteAttribute *attribute =
dynamic_cast<blender::bke::TemporaryWriteAttribute *>(attribute_.get());
if (attribute == nullptr) {
/* The attribute is saved already. */
attribute_.reset();
return;
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
StringRefNull name = attribute->final_name;
const blender::fn::CPPType &cpp_type = attribute->cpp_type();
/* Delete an existing attribute with the same name if necessary. */
attribute->component.attribute_try_delete(name);
if (!attribute->component.attribute_try_create(
name, attribute_->domain(), attribute_->custom_data_type())) {
/* Cannot create the target attribute for some reason. */
CLOG_WARN(&LOG,
"Creating the '%s' attribute with type '%s' failed.",
name.c_str(),
cpp_type.name().c_str());
attribute_.reset();
return;
}
WriteAttributePtr new_attribute = attribute->component.attribute_try_get_for_write(name);
GMutableSpan temp_span = attribute->data;
GMutableSpan new_span = new_attribute->get_span_for_write_only();
BLI_assert(temp_span.size() == new_span.size());
/* Currently we copy over the attribute. In the future we want to reuse the buffer. */
cpp_type.move_to_initialized_n(temp_span.data(), new_span.data(), new_span.size());
new_attribute->apply_span();
attribute_.reset();
}
OutputAttributePtr::~OutputAttributePtr()
{
if (attribute_) {
CLOG_ERROR(&LOG, "Forgot to call #save or #apply_span_and_save.");
}
}
/* Utility function to call #apply_span and #save in the right order. */
void OutputAttributePtr::apply_span_and_save()
{
BLI_assert(attribute_);
attribute_->apply_span();
this->save();
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
/** \} */