This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/functions/intern/multi_function_procedure.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

875 lines
27 KiB
C++
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "FN_multi_function_procedure.hh"
#include "BLI_dot_export.hh"
#include "BLI_stack.hh"
namespace blender::fn {
void MFInstructionCursor::set_next(MFProcedure &procedure, MFInstruction *new_instruction) const
{
switch (type_) {
case Type::None: {
break;
}
case Type::Entry: {
procedure.set_entry(*new_instruction);
break;
}
case Type::Call: {
static_cast<MFCallInstruction *>(instruction_)->set_next(new_instruction);
break;
}
case Type::Branch: {
MFBranchInstruction &branch_instruction = *static_cast<MFBranchInstruction *>(instruction_);
if (branch_output_) {
branch_instruction.set_branch_true(new_instruction);
}
else {
branch_instruction.set_branch_false(new_instruction);
}
break;
}
case Type::Destruct: {
static_cast<MFDestructInstruction *>(instruction_)->set_next(new_instruction);
break;
}
case Type::Dummy: {
static_cast<MFDummyInstruction *>(instruction_)->set_next(new_instruction);
break;
}
}
}
MFInstruction *MFInstructionCursor::next(MFProcedure &procedure) const
{
switch (type_) {
case Type::None:
return nullptr;
case Type::Entry:
return procedure.entry();
case Type::Call:
return static_cast<MFCallInstruction *>(instruction_)->next();
case Type::Branch: {
MFBranchInstruction &branch_instruction = *static_cast<MFBranchInstruction *>(instruction_);
if (branch_output_) {
return branch_instruction.branch_true();
}
return branch_instruction.branch_false();
}
case Type::Destruct:
return static_cast<MFDestructInstruction *>(instruction_)->next();
case Type::Dummy:
return static_cast<MFDummyInstruction *>(instruction_)->next();
}
return nullptr;
}
void MFVariable::set_name(std::string name)
{
name_ = std::move(name);
}
void MFCallInstruction::set_next(MFInstruction *instruction)
{
if (next_ != nullptr) {
next_->prev_.remove_first_occurrence_and_reorder(*this);
}
if (instruction != nullptr) {
instruction->prev_.append(*this);
}
next_ = instruction;
}
void MFCallInstruction::set_param_variable(int param_index, MFVariable *variable)
{
if (params_[param_index] != nullptr) {
params_[param_index]->users_.remove_first_occurrence_and_reorder(this);
}
if (variable != nullptr) {
BLI_assert(fn_->param_type(param_index).data_type() == variable->data_type());
variable->users_.append(this);
}
params_[param_index] = variable;
}
void MFCallInstruction::set_params(Span<MFVariable *> variables)
{
BLI_assert(variables.size() == params_.size());
for (const int i : variables.index_range()) {
this->set_param_variable(i, variables[i]);
}
}
void MFBranchInstruction::set_condition(MFVariable *variable)
{
if (condition_ != nullptr) {
condition_->users_.remove_first_occurrence_and_reorder(this);
}
if (variable != nullptr) {
variable->users_.append(this);
}
condition_ = variable;
}
void MFBranchInstruction::set_branch_true(MFInstruction *instruction)
{
if (branch_true_ != nullptr) {
branch_true_->prev_.remove_first_occurrence_and_reorder({*this, true});
}
if (instruction != nullptr) {
instruction->prev_.append({*this, true});
}
branch_true_ = instruction;
}
void MFBranchInstruction::set_branch_false(MFInstruction *instruction)
{
if (branch_false_ != nullptr) {
branch_false_->prev_.remove_first_occurrence_and_reorder({*this, false});
}
if (instruction != nullptr) {
instruction->prev_.append({*this, false});
}
branch_false_ = instruction;
}
void MFDestructInstruction::set_variable(MFVariable *variable)
{
if (variable_ != nullptr) {
variable_->users_.remove_first_occurrence_and_reorder(this);
}
if (variable != nullptr) {
variable->users_.append(this);
}
variable_ = variable;
}
void MFDestructInstruction::set_next(MFInstruction *instruction)
{
if (next_ != nullptr) {
next_->prev_.remove_first_occurrence_and_reorder(*this);
}
if (instruction != nullptr) {
instruction->prev_.append(*this);
}
next_ = instruction;
}
void MFDummyInstruction::set_next(MFInstruction *instruction)
{
if (next_ != nullptr) {
next_->prev_.remove_first_occurrence_and_reorder(*this);
}
if (instruction != nullptr) {
instruction->prev_.append(*this);
}
next_ = instruction;
}
MFVariable &MFProcedure::new_variable(MFDataType data_type, std::string name)
{
MFVariable &variable = *allocator_.construct<MFVariable>().release();
variable.name_ = std::move(name);
variable.data_type_ = data_type;
variable.id_ = variables_.size();
variables_.append(&variable);
return variable;
}
MFCallInstruction &MFProcedure::new_call_instruction(const MultiFunction &fn)
{
MFCallInstruction &instruction = *allocator_.construct<MFCallInstruction>().release();
instruction.type_ = MFInstructionType::Call;
instruction.fn_ = &fn;
instruction.params_ = allocator_.allocate_array<MFVariable *>(fn.param_amount());
instruction.params_.fill(nullptr);
call_instructions_.append(&instruction);
return instruction;
}
MFBranchInstruction &MFProcedure::new_branch_instruction()
{
MFBranchInstruction &instruction = *allocator_.construct<MFBranchInstruction>().release();
instruction.type_ = MFInstructionType::Branch;
branch_instructions_.append(&instruction);
return instruction;
}
MFDestructInstruction &MFProcedure::new_destruct_instruction()
{
MFDestructInstruction &instruction = *allocator_.construct<MFDestructInstruction>().release();
instruction.type_ = MFInstructionType::Destruct;
destruct_instructions_.append(&instruction);
return instruction;
}
MFDummyInstruction &MFProcedure::new_dummy_instruction()
{
MFDummyInstruction &instruction = *allocator_.construct<MFDummyInstruction>().release();
instruction.type_ = MFInstructionType::Dummy;
dummy_instructions_.append(&instruction);
return instruction;
}
MFReturnInstruction &MFProcedure::new_return_instruction()
{
MFReturnInstruction &instruction = *allocator_.construct<MFReturnInstruction>().release();
instruction.type_ = MFInstructionType::Return;
return_instructions_.append(&instruction);
return instruction;
}
void MFProcedure::add_parameter(MFParamType::InterfaceType interface_type, MFVariable &variable)
{
params_.append({interface_type, &variable});
}
void MFProcedure::set_entry(MFInstruction &entry)
{
2021-09-11 12:41:46 +02:00
if (entry_ != nullptr) {
entry_->prev_.remove_first_occurrence_and_reorder(MFInstructionCursor::ForEntry());
}
entry_ = &entry;
entry_->prev_.append(MFInstructionCursor::ForEntry());
}
MFProcedure::~MFProcedure()
{
for (MFCallInstruction *instruction : call_instructions_) {
instruction->~MFCallInstruction();
}
for (MFBranchInstruction *instruction : branch_instructions_) {
instruction->~MFBranchInstruction();
}
for (MFDestructInstruction *instruction : destruct_instructions_) {
instruction->~MFDestructInstruction();
}
for (MFDummyInstruction *instruction : dummy_instructions_) {
instruction->~MFDummyInstruction();
}
for (MFReturnInstruction *instruction : return_instructions_) {
instruction->~MFReturnInstruction();
}
for (MFVariable *variable : variables_) {
variable->~MFVariable();
}
}
bool MFProcedure::validate() const
{
if (entry_ == nullptr) {
return false;
}
if (!this->validate_all_instruction_pointers_set()) {
return false;
}
if (!this->validate_all_params_provided()) {
return false;
}
if (!this->validate_same_variables_in_one_call()) {
return false;
}
if (!this->validate_parameters()) {
return false;
}
if (!this->validate_initialization()) {
return false;
}
return true;
}
bool MFProcedure::validate_all_instruction_pointers_set() const
{
for (const MFCallInstruction *instruction : call_instructions_) {
if (instruction->next_ == nullptr) {
return false;
}
}
for (const MFDestructInstruction *instruction : destruct_instructions_) {
if (instruction->next_ == nullptr) {
return false;
}
}
for (const MFBranchInstruction *instruction : branch_instructions_) {
if (instruction->branch_true_ == nullptr) {
return false;
}
if (instruction->branch_false_ == nullptr) {
return false;
}
}
for (const MFDummyInstruction *instruction : dummy_instructions_) {
if (instruction->next_ == nullptr) {
return false;
}
}
return true;
}
bool MFProcedure::validate_all_params_provided() const
{
for (const MFCallInstruction *instruction : call_instructions_) {
const MultiFunction &fn = instruction->fn();
for (const int param_index : fn.param_indices()) {
const MFParamType param_type = fn.param_type(param_index);
if (param_type.category() == MFParamType::SingleOutput) {
/* Single outputs are optional. */
continue;
}
const MFVariable *variable = instruction->params_[param_index];
if (variable == nullptr) {
return false;
}
}
}
for (const MFBranchInstruction *instruction : branch_instructions_) {
if (instruction->condition_ == nullptr) {
return false;
}
}
for (const MFDestructInstruction *instruction : destruct_instructions_) {
if (instruction->variable_ == nullptr) {
return false;
}
}
return true;
}
bool MFProcedure::validate_same_variables_in_one_call() const
{
for (const MFCallInstruction *instruction : call_instructions_) {
const MultiFunction &fn = *instruction->fn_;
for (const int param_index : fn.param_indices()) {
const MFParamType param_type = fn.param_type(param_index);
const MFVariable *variable = instruction->params_[param_index];
if (variable == nullptr) {
continue;
}
for (const int other_param_index : fn.param_indices()) {
if (other_param_index == param_index) {
continue;
}
const MFVariable *other_variable = instruction->params_[other_param_index];
if (other_variable != variable) {
continue;
}
if (ELEM(param_type.interface_type(), MFParamType::Mutable, MFParamType::Output)) {
/* When a variable is used as mutable or output parameter, it can only be used once. */
return false;
}
const MFParamType other_param_type = fn.param_type(other_param_index);
/* A variable is allowed to be used as input more than once. */
if (other_param_type.interface_type() != MFParamType::Input) {
return false;
}
}
}
}
return true;
}
bool MFProcedure::validate_parameters() const
{
Set<const MFVariable *> variables;
for (const MFParameter &param : params_) {
/* One variable cannot be used as multiple parameters. */
if (!variables.add(param.variable)) {
return false;
}
}
return true;
}
bool MFProcedure::validate_initialization() const
{
/* TODO: Issue warning when it maybe wrongly initialized. */
for (const MFDestructInstruction *instruction : destruct_instructions_) {
const MFVariable &variable = *instruction->variable_;
const InitState state = this->find_initialization_state_before_instruction(*instruction,
variable);
if (!state.can_be_initialized) {
return false;
}
}
for (const MFBranchInstruction *instruction : branch_instructions_) {
const MFVariable &variable = *instruction->condition_;
const InitState state = this->find_initialization_state_before_instruction(*instruction,
variable);
if (!state.can_be_initialized) {
return false;
}
}
for (const MFCallInstruction *instruction : call_instructions_) {
const MultiFunction &fn = *instruction->fn_;
for (const int param_index : fn.param_indices()) {
const MFParamType param_type = fn.param_type(param_index);
const MFVariable &variable = *instruction->params_[param_index];
const InitState state = this->find_initialization_state_before_instruction(*instruction,
variable);
switch (param_type.interface_type()) {
case MFParamType::Input:
case MFParamType::Mutable: {
if (!state.can_be_initialized) {
return false;
}
break;
}
case MFParamType::Output: {
if (!state.can_be_uninitialized) {
return false;
}
break;
}
}
}
}
Set<const MFVariable *> variables_that_should_be_initialized_on_return;
for (const MFParameter &param : params_) {
if (ELEM(param.type, MFParamType::Mutable, MFParamType::Output)) {
variables_that_should_be_initialized_on_return.add_new(param.variable);
}
}
for (const MFReturnInstruction *instruction : return_instructions_) {
for (const MFVariable *variable : variables_) {
const InitState init_state = this->find_initialization_state_before_instruction(*instruction,
*variable);
if (variables_that_should_be_initialized_on_return.contains(variable)) {
if (!init_state.can_be_initialized) {
return false;
}
}
else {
if (!init_state.can_be_uninitialized) {
return false;
}
}
}
}
return true;
}
MFProcedure::InitState MFProcedure::find_initialization_state_before_instruction(
const MFInstruction &target_instruction, const MFVariable &target_variable) const
{
InitState state;
auto check_entry_instruction = [&]() {
bool caller_initialized_variable = false;
for (const MFParameter &param : params_) {
if (param.variable == &target_variable) {
if (ELEM(param.type, MFParamType::Input, MFParamType::Mutable)) {
caller_initialized_variable = true;
break;
}
}
}
if (caller_initialized_variable) {
state.can_be_initialized = true;
}
else {
state.can_be_uninitialized = true;
}
};
if (&target_instruction == entry_) {
check_entry_instruction();
}
Set<const MFInstruction *> checked_instructions;
Stack<const MFInstruction *> instructions_to_check;
for (const MFInstructionCursor &cursor : target_instruction.prev_) {
if (cursor.instruction() != nullptr) {
instructions_to_check.push(cursor.instruction());
}
}
while (!instructions_to_check.is_empty()) {
const MFInstruction &instruction = *instructions_to_check.pop();
if (!checked_instructions.add(&instruction)) {
/* Skip if the instruction has been checked already. */
continue;
}
bool state_modified = false;
switch (instruction.type_) {
case MFInstructionType::Call: {
const MFCallInstruction &call_instruction = static_cast<const MFCallInstruction &>(
instruction);
const MultiFunction &fn = *call_instruction.fn_;
for (const int param_index : fn.param_indices()) {
if (call_instruction.params_[param_index] == &target_variable) {
const MFParamType param_type = fn.param_type(param_index);
if (param_type.interface_type() == MFParamType::Output) {
state.can_be_initialized = true;
state_modified = true;
break;
}
}
}
break;
}
case MFInstructionType::Destruct: {
const MFDestructInstruction &destruct_instruction =
static_cast<const MFDestructInstruction &>(instruction);
if (destruct_instruction.variable_ == &target_variable) {
state.can_be_uninitialized = true;
state_modified = true;
}
break;
}
case MFInstructionType::Branch:
case MFInstructionType::Dummy:
case MFInstructionType::Return: {
/* These instruction types don't change the initialization state of variables. */
break;
}
}
if (!state_modified) {
if (&instruction == entry_) {
check_entry_instruction();
}
for (const MFInstructionCursor &cursor : instruction.prev_) {
if (cursor.instruction() != nullptr) {
instructions_to_check.push(cursor.instruction());
}
}
}
}
return state;
}
class MFProcedureDotExport {
private:
const MFProcedure &procedure_;
dot::DirectedGraph digraph_;
Map<const MFInstruction *, dot::Node *> dot_nodes_by_begin_;
Map<const MFInstruction *, dot::Node *> dot_nodes_by_end_;
public:
MFProcedureDotExport(const MFProcedure &procedure) : procedure_(procedure)
{
}
std::string generate()
{
this->create_nodes();
this->create_edges();
return digraph_.to_dot_string();
}
void create_nodes()
{
Vector<const MFInstruction *> all_instructions;
auto add_instructions = [&](auto instructions) {
all_instructions.extend(instructions.begin(), instructions.end());
};
add_instructions(procedure_.call_instructions_);
add_instructions(procedure_.branch_instructions_);
add_instructions(procedure_.destruct_instructions_);
add_instructions(procedure_.dummy_instructions_);
add_instructions(procedure_.return_instructions_);
Set<const MFInstruction *> handled_instructions;
for (const MFInstruction *representative : all_instructions) {
if (handled_instructions.contains(representative)) {
continue;
}
Vector<const MFInstruction *> block_instructions = this->get_instructions_in_block(
*representative);
std::stringstream ss;
ss << "<";
for (const MFInstruction *current : block_instructions) {
handled_instructions.add_new(current);
switch (current->type()) {
case MFInstructionType::Call: {
this->instruction_to_string(*static_cast<const MFCallInstruction *>(current), ss);
break;
}
case MFInstructionType::Destruct: {
this->instruction_to_string(*static_cast<const MFDestructInstruction *>(current), ss);
break;
}
case MFInstructionType::Dummy: {
this->instruction_to_string(*static_cast<const MFDummyInstruction *>(current), ss);
break;
}
case MFInstructionType::Return: {
this->instruction_to_string(*static_cast<const MFReturnInstruction *>(current), ss);
break;
}
case MFInstructionType::Branch: {
this->instruction_to_string(*static_cast<const MFBranchInstruction *>(current), ss);
break;
}
}
ss << R"(<br align="left" />)";
}
ss << ">";
dot::Node &dot_node = digraph_.new_node(ss.str());
dot_node.set_shape(dot::Attr_shape::Rectangle);
dot_nodes_by_begin_.add_new(block_instructions.first(), &dot_node);
dot_nodes_by_end_.add_new(block_instructions.last(), &dot_node);
}
}
void create_edges()
{
auto create_edge = [&](dot::Node &from_node,
const MFInstruction *to_instruction) -> dot::DirectedEdge & {
if (to_instruction == nullptr) {
dot::Node &to_node = digraph_.new_node("missing");
to_node.set_shape(dot::Attr_shape::Diamond);
return digraph_.new_edge(from_node, to_node);
}
dot::Node &to_node = *dot_nodes_by_begin_.lookup(to_instruction);
return digraph_.new_edge(from_node, to_node);
};
for (auto item : dot_nodes_by_end_.items()) {
const MFInstruction &from_instruction = *item.key;
dot::Node &from_node = *item.value;
switch (from_instruction.type()) {
case MFInstructionType::Call: {
const MFInstruction *to_instruction =
static_cast<const MFCallInstruction &>(from_instruction).next();
create_edge(from_node, to_instruction);
break;
}
case MFInstructionType::Destruct: {
const MFInstruction *to_instruction =
static_cast<const MFDestructInstruction &>(from_instruction).next();
create_edge(from_node, to_instruction);
break;
}
case MFInstructionType::Dummy: {
const MFInstruction *to_instruction =
static_cast<const MFDummyInstruction &>(from_instruction).next();
create_edge(from_node, to_instruction);
break;
}
case MFInstructionType::Return: {
break;
}
case MFInstructionType::Branch: {
const MFBranchInstruction &branch_instruction = static_cast<const MFBranchInstruction &>(
from_instruction);
const MFInstruction *to_true_instruction = branch_instruction.branch_true();
const MFInstruction *to_false_instruction = branch_instruction.branch_false();
create_edge(from_node, to_true_instruction).attributes.set("color", "#118811");
create_edge(from_node, to_false_instruction).attributes.set("color", "#881111");
break;
}
}
}
dot::Node &entry_node = this->create_entry_node();
create_edge(entry_node, procedure_.entry());
}
bool has_to_be_block_begin(const MFInstruction &instruction)
{
if (instruction.prev().size() != 1) {
return true;
}
if (ELEM(instruction.prev()[0].type(),
MFInstructionCursor::Type::Branch,
MFInstructionCursor::Type::Entry)) {
return true;
}
return false;
}
const MFInstruction &get_first_instruction_in_block(const MFInstruction &representative)
{
const MFInstruction *current = &representative;
while (!this->has_to_be_block_begin(*current)) {
current = current->prev()[0].instruction();
if (current == &representative) {
/* There is a loop without entry or exit, just break it up here. */
break;
}
}
return *current;
}
const MFInstruction *get_next_instruction_in_block(const MFInstruction &instruction,
const MFInstruction &block_begin)
{
const MFInstruction *next = nullptr;
switch (instruction.type()) {
case MFInstructionType::Call: {
next = static_cast<const MFCallInstruction &>(instruction).next();
break;
}
case MFInstructionType::Destruct: {
next = static_cast<const MFDestructInstruction &>(instruction).next();
break;
}
case MFInstructionType::Dummy: {
next = static_cast<const MFDummyInstruction &>(instruction).next();
break;
}
case MFInstructionType::Return:
case MFInstructionType::Branch: {
break;
}
}
if (next == nullptr) {
return nullptr;
}
if (next == &block_begin) {
return nullptr;
}
if (this->has_to_be_block_begin(*next)) {
return nullptr;
}
return next;
}
Vector<const MFInstruction *> get_instructions_in_block(const MFInstruction &representative)
{
Vector<const MFInstruction *> instructions;
const MFInstruction &begin = this->get_first_instruction_in_block(representative);
for (const MFInstruction *current = &begin; current != nullptr;
current = this->get_next_instruction_in_block(*current, begin)) {
instructions.append(current);
}
return instructions;
}
void variable_to_string(const MFVariable *variable, std::stringstream &ss)
{
if (variable == nullptr) {
ss << "null";
}
else {
ss << "$" << variable->id();
if (!variable->name().is_empty()) {
ss << "(" << variable->name() << ")";
}
}
}
void instruction_name_format(StringRef name, std::stringstream &ss)
{
ss << name;
}
void instruction_to_string(const MFCallInstruction &instruction, std::stringstream &ss)
{
const MultiFunction &fn = instruction.fn();
this->instruction_name_format(fn.name() + ": ", ss);
for (const int param_index : fn.param_indices()) {
const MFParamType param_type = fn.param_type(param_index);
const MFVariable *variable = instruction.params()[param_index];
ss << R"(<font color="grey30">)";
switch (param_type.interface_type()) {
case MFParamType::Input: {
ss << "in";
break;
}
case MFParamType::Mutable: {
ss << "mut";
break;
}
case MFParamType::Output: {
ss << "out";
break;
}
}
ss << " </font> ";
variable_to_string(variable, ss);
if (param_index < fn.param_amount() - 1) {
ss << ", ";
}
}
}
void instruction_to_string(const MFDestructInstruction &instruction, std::stringstream &ss)
{
instruction_name_format("Destruct ", ss);
variable_to_string(instruction.variable(), ss);
}
void instruction_to_string(const MFDummyInstruction &UNUSED(instruction), std::stringstream &ss)
{
instruction_name_format("Dummy ", ss);
}
void instruction_to_string(const MFReturnInstruction &UNUSED(instruction), std::stringstream &ss)
{
instruction_name_format("Return ", ss);
Vector<ConstMFParameter> outgoing_parameters;
for (const ConstMFParameter &param : procedure_.params()) {
if (ELEM(param.type, MFParamType::Mutable, MFParamType::Output)) {
outgoing_parameters.append(param);
}
}
for (const int param_index : outgoing_parameters.index_range()) {
const ConstMFParameter &param = outgoing_parameters[param_index];
variable_to_string(param.variable, ss);
if (param_index < outgoing_parameters.size() - 1) {
ss << ", ";
}
}
}
void instruction_to_string(const MFBranchInstruction &instruction, std::stringstream &ss)
{
instruction_name_format("Branch ", ss);
variable_to_string(instruction.condition(), ss);
}
dot::Node &create_entry_node()
{
std::stringstream ss;
ss << "Entry: ";
Vector<ConstMFParameter> incoming_parameters;
for (const ConstMFParameter &param : procedure_.params()) {
if (ELEM(param.type, MFParamType::Input, MFParamType::Mutable)) {
incoming_parameters.append(param);
}
}
for (const int param_index : incoming_parameters.index_range()) {
const ConstMFParameter &param = incoming_parameters[param_index];
variable_to_string(param.variable, ss);
if (param_index < incoming_parameters.size() - 1) {
ss << ", ";
}
}
dot::Node &node = digraph_.new_node(ss.str());
node.set_shape(dot::Attr_shape::Ellipse);
return node;
}
};
std::string MFProcedure::to_dot() const
{
MFProcedureDotExport dot_export{*this};
return dot_export.generate();
}
} // namespace blender::fn