This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/particle.c

3700 lines
97 KiB
C
Raw Normal View History

/* particle.c
*
*
* $Id: particle.c $
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2007 by Janne Karhu.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_scene_types.h"
#include "DNA_particle_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_force.h"
#include "DNA_texture_types.h"
#include "DNA_material_types.h"
#include "DNA_object_types.h"
#include "DNA_curve_types.h"
#include "DNA_key_types.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "BLI_dynstr.h"
#include "BLI_kdtree.h"
#include "BLI_linklist.h"
#include "BLI_rand.h"
#include "BLI_threads.h"
#include "BKE_anim.h"
#include "BKE_global.h"
#include "BKE_main.h"
#include "BKE_lattice.h"
#include "BKE_utildefines.h"
#include "BKE_displist.h"
#include "BKE_particle.h"
#include "BKE_DerivedMesh.h"
#include "BKE_ipo.h"
#include "BKE_object.h"
#include "BKE_softbody.h"
#include "BKE_material.h"
#include "BKE_key.h"
#include "BKE_library.h"
#include "BKE_depsgraph.h"
#include "BKE_bad_level_calls.h"
#include "BKE_modifier.h"
#include "BKE_mesh.h"
#include "BKE_cdderivedmesh.h"
#include "blendef.h"
#include "RE_render_ext.h"
static void key_from_object(Object *ob, ParticleKey *key);
static void get_cpa_texture(DerivedMesh *dm, Material *ma, int face_index,
float *fuv, float *orco, ParticleTexture *ptex, int event);
/* few helpers for countall etc. */
int count_particles(ParticleSystem *psys){
ParticleSettings *part=psys->part;
ParticleData *pa;
int tot=0,p;
for(p=0,pa=psys->particles; p<psys->totpart; p++,pa++){
if(pa->alive == PARS_KILLED);
else if(pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN)==0);
else if(pa->alive == PARS_DEAD && (part->flag & PART_DIED)==0);
else if(pa->flag & (PARS_UNEXIST+PARS_NO_DISP));
else tot++;
}
return tot;
}
int count_particles_mod(ParticleSystem *psys, int totgr, int cur){
ParticleSettings *part=psys->part;
ParticleData *pa;
int tot=0,p;
for(p=0,pa=psys->particles; p<psys->totpart; p++,pa++){
if(pa->alive == PARS_KILLED);
else if(pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN)==0);
else if(pa->alive == PARS_DEAD && (part->flag & PART_DIED)==0);
else if(pa->flag & (PARS_UNEXIST+PARS_NO_DISP));
else if(p%totgr==cur) tot++;
}
return tot;
}
int psys_count_keys(ParticleSystem *psys)
{
ParticleData *pa;
int i, totpart=psys->totpart, totkey=0;
for(i=0, pa=psys->particles; i<totpart; i++, pa++)
totkey += pa->totkey;
return totkey;
}
/* remember to free the pointer returned from this! */
char *psys_menu_string(Object *ob, int for_sb)
{
ParticleSystem *psys;
DynStr *ds;
char *str, num[6];
int i;
ds = BLI_dynstr_new();
if(for_sb)
BLI_dynstr_append(ds, "|Object%x-1");
for(i=0,psys=ob->particlesystem.first; psys; i++,psys=psys->next){
BLI_dynstr_append(ds, "|");
sprintf(num,"%i. ",i+1);
BLI_dynstr_append(ds, num);
BLI_dynstr_append(ds, psys->part->id.name+2);
sprintf(num,"%%x%i",i+1);
BLI_dynstr_append(ds, num);
}
str = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
return str;
}
/************************************************/
/* Getting stuff */
/************************************************/
/* get object's active particle system safely */
ParticleSystem *psys_get_current(Object *ob)
{
ParticleSystem *psys;
if(ob==0) return 0;
for(psys=ob->particlesystem.first; psys; psys=psys->next){
if(psys->flag & PSYS_CURRENT)
return psys;
}
return 0;
}
short psys_get_current_num(Object *ob)
{
ParticleSystem *psys;
short i;
if(ob==0) return 0;
for(psys=ob->particlesystem.first, i=0; psys; psys=psys->next, i++)
if(psys->flag & PSYS_CURRENT)
return i;
return i;
}
/* change object's active particle system */
void psys_change_act(void *ob_v, void *act_v)
{
Object *ob = ob_v;
ParticleSystem *npsys, *psys;
short act = *((short*)act_v)-1;
if(act>=0){
npsys=BLI_findlink(&ob->particlesystem,act);
psys=psys_get_current(ob);
if(psys)
psys->flag &= ~PSYS_CURRENT;
if(npsys)
npsys->flag |= PSYS_CURRENT;
}
}
Object *psys_get_lattice(Object *ob, ParticleSystem *psys)
{
Object *lattice=0;
if(!psys_in_edit_mode(psys)==0){
ModifierData *md = (ModifierData*)psys_get_modifier(ob,psys);
for(; md; md=md->next){
if(md->type==eModifierType_Lattice){
LatticeModifierData *lmd = (LatticeModifierData *)md;
lattice=lmd->object;
break;
}
}
if(lattice)
init_latt_deform(lattice,0);
}
return lattice;
}
void psys_disable_all(Object *ob)
{
ParticleSystem *psys=ob->particlesystem.first;
for(; psys; psys=psys->next)
psys->flag &= ~PSYS_ENABLED;
}
void psys_enable_all(Object *ob)
{
ParticleSystem *psys=ob->particlesystem.first;
for(; psys; psys=psys->next)
psys->flag |= PSYS_ENABLED;
}
int psys_ob_has_hair(Object *ob)
{
ParticleSystem *psys = ob->particlesystem.first;
for(; psys; psys=psys->next)
if(psys->part->type == PART_HAIR)
return 1;
return 0;
}
int psys_in_edit_mode(ParticleSystem *psys)
{
return ((G.f & G_PARTICLEEDIT) && psys==psys_get_current(OBACT) && psys->edit);
}
int psys_check_enabled(Object *ob, ParticleSystem *psys)
{
ParticleSystemModifierData *psmd;
if(!(psys->flag & PSYS_ENABLED))
return 0;
psmd= psys_get_modifier(ob, psys);
if(psys->renderdata) {
if(!(psmd->modifier.mode & eModifierMode_Render))
return 0;
}
else if(!(psmd->modifier.mode & eModifierMode_Realtime))
return 0;
return 1;
}
/************************************************/
/* Freeing stuff */
/************************************************/
void psys_free_settings(ParticleSettings *part)
{
if(part->pd)
MEM_freeN(part->pd);
}
void free_hair(ParticleSystem *psys)
{
ParticleData *pa;
int i, totpart=psys->totpart;
for(i=0, pa=psys->particles; i<totpart; i++, pa++) {
if(pa->hair)
MEM_freeN(pa->hair);
pa->hair = NULL;
}
psys->flag &= ~PSYS_HAIR_DONE;
}
void free_keyed_keys(ParticleSystem *psys)
{
if(psys->particles && psys->particles->keys)
MEM_freeN(psys->particles->keys);
}
void free_child_path_cache(ParticleSystem *psys)
{
if(psys->childcache){
if(psys->childcache[0])
MEM_freeN(psys->childcache[0]);
MEM_freeN(psys->childcache);
psys->childcache = NULL;
psys->totchildcache = 0;
}
}
void psys_free_path_cache(ParticleSystem *psys)
{
if(psys->pathcache){
if(psys->pathcache[0])
MEM_freeN(psys->pathcache[0]);
MEM_freeN(psys->pathcache);
psys->pathcache = NULL;
psys->totcached = 0;
}
free_child_path_cache(psys);
}
/* free everything */
void psys_free(Object *ob, ParticleSystem * psys)
{
if(psys){
if(ob->particlesystem.first == NULL && G.f & G_PARTICLEEDIT)
G.f &= ~G_PARTICLEEDIT;
psys_free_path_cache(psys);
free_hair(psys);
free_keyed_keys(psys);
PE_free_particle_edit(psys);
if(psys->particles){
MEM_freeN(psys->particles);
psys->particles = 0;
psys->totpart = 0;
}
if(psys->child){
MEM_freeN(psys->child);
psys->child = 0;
psys->totchild = 0;
}
if(psys->effectors.first)
psys_end_effectors(psys);
if(psys->part){
psys->part->id.us--;
psys->part=0;
}
if(psys->soft){
sbFree(psys->soft);
psys->soft = 0;
}
MEM_freeN(psys);
}
}
/* these functions move away particle data and bring it back after
* rendering, to make different render settings possible without
* removing the previous data. this should be solved properly once */
typedef struct ParticleRenderElem {
int curchild, totchild, reduce;
float lambda, t, scalemin, scalemax;
} ParticleRenderElem;
typedef struct ParticleRenderData {
ChildParticle *child;
ParticleCacheKey **pathcache;
ParticleCacheKey **childcache;
int totchild, totcached, totchildcache;
DerivedMesh *dm;
int totdmvert, totdmedge, totdmface;
float mat[4][4];
float viewmat[4][4], winmat[4][4];
int winx, winy;
int dosimplify;
ParticleRenderElem *elems;
int *origindex;
} ParticleRenderData;
static float psys_render_viewport_falloff(double rate, float dist, float width)
{
return pow(rate, dist/width);
}
static float psys_render_projected_area(ParticleSystem *psys, float *center, float area, double vprate, float *viewport)
{
ParticleRenderData *data= psys->renderdata;
float co[4], view[3], ortho1[3], ortho2[3], w, dx, dy, radius;
/* transform to view space */
VECCOPY(co, center);
co[3]= 1.0f;
Mat4MulVec4fl(data->viewmat, co);
/* compute two vectors orthogonal to view vector */
VECCOPY(view, co);
Normalize(view);
VecOrthoBasisf(view, ortho1, ortho2);
/* compute on screen minification */
w= co[2]*data->winmat[2][3] + data->winmat[3][3];
dx= data->winx*ortho2[0]*data->winmat[0][0];
dy= data->winy*ortho2[1]*data->winmat[1][1];
w= sqrt(dx*dx + dy*dy)/w;
/* w squared because we are working with area */
area= area*w*w;
/* viewport of the screen test */
/* project point on screen */
Mat4MulVec4fl(data->winmat, co);
if(co[3] != 0.0f) {
co[0]= 0.5f*data->winx*(1.0f + co[0]/co[3]);
co[1]= 0.5f*data->winy*(1.0f + co[1]/co[3]);
}
/* screen space radius */
radius= sqrt(area/M_PI);
/* make smaller using fallof once over screen edge */
*viewport= 1.0f;
if(co[0]+radius < 0.0f)
*viewport *= psys_render_viewport_falloff(vprate, -(co[0]+radius), data->winx);
else if(co[0]-radius > data->winx)
*viewport *= psys_render_viewport_falloff(vprate, (co[0]-radius) - data->winx, data->winx);
if(co[1]+radius < 0.0f)
*viewport *= psys_render_viewport_falloff(vprate, -(co[1]+radius), data->winy);
else if(co[1]-radius > data->winy)
*viewport *= psys_render_viewport_falloff(vprate, (co[1]-radius) - data->winy, data->winy);
return area;
}
void psys_render_set(Object *ob, ParticleSystem *psys, float viewmat[][4], float winmat[][4], int winx, int winy)
{
ParticleRenderData*data;
ParticleSystemModifierData *psmd= psys_get_modifier(ob, psys);
if(!G.rendering)
return;
data= MEM_callocN(sizeof(ParticleRenderData), "ParticleRenderData");
data->child= psys->child;
data->totchild= psys->totchild;
data->pathcache= psys->pathcache;
data->totcached= psys->totcached;
data->childcache= psys->childcache;
data->totchildcache= psys->totchildcache;
if(psmd->dm)
data->dm= CDDM_copy(psmd->dm);
data->totdmvert= psmd->totdmvert;
data->totdmedge= psmd->totdmedge;
data->totdmface= psmd->totdmface;
psys->child= NULL;
psys->pathcache= NULL;
psys->childcache= NULL;
psys->totchild= psys->totcached= psys->totchildcache= 0;
Mat4CpyMat4(data->winmat, winmat);
Mat4MulMat4(data->viewmat, ob->obmat, viewmat);
Mat4MulMat4(data->mat, data->viewmat, winmat);
data->winx= winx;
data->winy= winy;
psys->renderdata= data;
}
void psys_render_restore(Object *ob, ParticleSystem *psys)
{
ParticleRenderData*data;
ParticleSystemModifierData *psmd= psys_get_modifier(ob, psys);
data= psys->renderdata;
if(!data)
return;
if(data->elems)
MEM_freeN(data->elems);
if(psmd->dm) {
psmd->dm->needsFree= 1;
psmd->dm->release(psmd->dm);
}
psys_free_path_cache(psys);
if(psys->child){
MEM_freeN(psys->child);
psys->child= 0;
psys->totchild= 0;
}
psys->child= data->child;
psys->totchild= data->totchild;
psys->pathcache= data->pathcache;
psys->totcached= data->totcached;
psys->childcache= data->childcache;
psys->totchildcache= data->totchildcache;
psmd->dm= data->dm;
psmd->totdmvert= data->totdmvert;
psmd->totdmedge= data->totdmedge;
psmd->totdmface= data->totdmface;
psmd->flag &= ~eParticleSystemFlag_psys_updated;
if(psys->part->from==PART_FROM_FACE && psmd->dm)
psys_calc_dmfaces(ob, psmd->dm, psys);
MEM_freeN(data);
psys->renderdata= NULL;
}
int psys_render_simplify_distribution(ParticleThreadContext *ctx, int tot)
{
DerivedMesh *dm= ctx->dm;
Mesh *me= (Mesh*)(ctx->ob->data);
MFace *mf, *mface;
MVert *mvert;
ParticleRenderData *data;
ParticleRenderElem *elems, *elem;
ParticleSettings *part= ctx->psys->part;
float *facearea, (*facecenter)[3], size[3], fac, powrate, scaleclamp;
float co1[3], co2[3], co3[3], co4[3], lambda, arearatio, t, area, viewport;
double vprate;
int *origindex, *facetotvert;
int a, b, totorigface, totface, newtot, skipped;
if(part->draw_as!=PART_DRAW_PATH || !(part->draw & PART_DRAW_REN_STRAND))
return tot;
if(!ctx->psys->renderdata || !(part->simplify_flag & PART_SIMPLIFY_ENABLE))
return tot;
mvert= dm->getVertArray(dm);
mface= dm->getFaceArray(dm);
origindex= dm->getFaceDataArray(dm, CD_ORIGINDEX);
totface= dm->getNumFaces(dm);
totorigface= me->totface;
if(totface == 0 || totorigface == 0 || origindex == NULL)
return tot;
facearea= MEM_callocN(sizeof(float)*totorigface, "SimplifyFaceArea");
facecenter= MEM_callocN(sizeof(float[3])*totorigface, "SimplifyFaceCenter");
facetotvert= MEM_callocN(sizeof(int)*totorigface, "SimplifyFaceArea");
elems= MEM_callocN(sizeof(ParticleRenderElem)*totorigface, "SimplifyFaceElem");
data= ctx->psys->renderdata;
if(data->elems)
MEM_freeN(data->elems);
data->dosimplify= 1;
data->elems= elems;
data->origindex= origindex;
/* compute number of children per original face */
for(a=0; a<tot; a++) {
b= origindex[ctx->index[a]];
if(b != -1)
elems[b].totchild++;
}
/* compute areas and centers of original faces */
for(mf=mface, a=0; a<totface; a++, mf++) {
b= origindex[a];
if(b != -1) {
VECCOPY(co1, mvert[mf->v1].co);
VECCOPY(co2, mvert[mf->v2].co);
VECCOPY(co3, mvert[mf->v3].co);
VECADD(facecenter[b], facecenter[b], co1);
VECADD(facecenter[b], facecenter[b], co2);
VECADD(facecenter[b], facecenter[b], co3);
if(mf->v4) {
VECCOPY(co4, mvert[mf->v4].co);
VECADD(facecenter[b], facecenter[b], co4);
facearea[b] += AreaQ3Dfl(co1, co2, co3, co4);
facetotvert[b] += 4;
}
else {
facearea[b] += AreaT3Dfl(co1, co2, co3);
facetotvert[b] += 3;
}
}
}
for(a=0; a<totorigface; a++)
if(facetotvert[a] > 0)
VecMulf(facecenter[a], 1.0f/facetotvert[a]);
/* for conversion from BU area / pixel area to reference screen size */
mesh_get_texspace(me, 0, 0, size);
fac= ((size[0] + size[1] + size[2])/3.0f)/part->simplify_refsize;
fac= fac*fac;
powrate= log(0.5f)/log(part->simplify_rate*0.5f);
if(part->simplify_flag & PART_SIMPLIFY_VIEWPORT)
vprate= pow(1.0 - part->simplify_viewport, 5.0);
else
vprate= 1.0;
/* set simplification parameters per original face */
for(a=0, elem=elems; a<totorigface; a++, elem++) {
area = psys_render_projected_area(ctx->psys, facecenter[a], facearea[a], vprate, &viewport);
arearatio= fac*area/facearea[a];
if((arearatio < 1.0f || viewport < 1.0f) && elem->totchild) {
/* lambda is percentage of elements to keep */
lambda= (arearatio < 1.0f)? pow(arearatio, powrate): 1.0f;
lambda *= viewport;
lambda= MAX2(lambda, 1.0f/elem->totchild);
/* compute transition region */
t= part->simplify_transition;
elem->t= (lambda-t < 0.0f)? lambda: (lambda+t > 1.0f)? 1.0f-lambda: t;
elem->reduce= 1;
/* scale at end and beginning of the transition region */
elem->scalemax= (lambda+t < 1.0f)? 1.0f/lambda: 1.0f/(1.0f - elem->t*elem->t/t);
elem->scalemin= (lambda+t < 1.0f)? 0.0f: elem->scalemax*(1.0f-elem->t/t);
elem->scalemin= sqrt(elem->scalemin);
elem->scalemax= sqrt(elem->scalemax);
/* clamp scaling */
scaleclamp= MIN2(elem->totchild, 10.0f);
elem->scalemin= MIN2(scaleclamp, elem->scalemin);
elem->scalemax= MIN2(scaleclamp, elem->scalemax);
/* extend lambda to include transition */
lambda= lambda + elem->t;
if(lambda > 1.0f)
lambda= 1.0f;
}
else {
lambda= arearatio;
elem->scalemax= 1.0f; //sqrt(lambda);
elem->scalemin= 1.0f; //sqrt(lambda);
elem->reduce= 0;
}
elem->lambda= lambda;
elem->scalemin= sqrt(elem->scalemin);
elem->scalemax= sqrt(elem->scalemax);
elem->curchild= 0;
}
MEM_freeN(facearea);
MEM_freeN(facecenter);
MEM_freeN(facetotvert);
/* move indices and set random number skipping */
ctx->skip= MEM_callocN(sizeof(int)*tot, "SimplificationSkip");
skipped= 0;
for(a=0, newtot=0; a<tot; a++) {
b= origindex[ctx->index[a]];
if(b != -1) {
if(elems[b].curchild++ < ceil(elems[b].lambda*elems[b].totchild)) {
ctx->index[newtot]= ctx->index[a];
ctx->skip[newtot]= skipped;
skipped= 0;
newtot++;
}
else skipped++;
}
else skipped++;
}
for(a=0, elem=elems; a<totorigface; a++, elem++)
elem->curchild= 0;
return newtot;
}
int psys_render_simplify_params(ParticleSystem *psys, ChildParticle *cpa, float *params)
{
ParticleRenderData *data;
ParticleRenderElem *elem;
float x, w, scale, alpha, lambda, t, scalemin, scalemax;
int b;
if(!(psys->renderdata && (psys->part->simplify_flag & PART_SIMPLIFY_ENABLE)))
return 0;
data= psys->renderdata;
if(!data->dosimplify)
return 0;
b= data->origindex[cpa->num];
if(b == -1)
return 0;
elem= &data->elems[b];
lambda= elem->lambda;
t= elem->t;
scalemin= elem->scalemin;
scalemax= elem->scalemax;
if(!elem->reduce) {
scale= scalemin;
alpha= 1.0f;
}
else {
x= (elem->curchild+0.5f)/elem->totchild;
if(x < lambda-t) {
scale= scalemax;
alpha= 1.0f;
}
else if(x >= lambda+t) {
scale= scalemin;
alpha= 0.0f;
}
else {
w= (lambda+t - x)/(2.0f*t);
scale= scalemin + (scalemax - scalemin)*w;
alpha= w;
}
}
params[0]= scale;
params[1]= alpha;
elem->curchild++;
return 1;
}
/************************************************/
/* Interpolated Particles */
/************************************************/
static float interpolate_particle_value(float v1, float v2, float v3, float v4, float *w, int four)
{
float value;
value= w[0]*v1 + w[1]*v2 + w[2]*v3;
if(four)
value += w[3]*v4;
return value;
}
static void weighted_particle_vector(float *v1, float *v2, float *v3, float *v4, float *weights, float *vec)
{
vec[0]= weights[0]*v1[0] + weights[1]*v2[0] + weights[2]*v3[0] + weights[3]*v4[0];
vec[1]= weights[0]*v1[1] + weights[1]*v2[1] + weights[2]*v3[1] + weights[3]*v4[1];
vec[2]= weights[0]*v1[2] + weights[1]*v2[2] + weights[2]*v3[2] + weights[3]*v4[2];
}
static void interpolate_particle(short type, ParticleKey keys[4], float dt, ParticleKey *result)
{
float t[4];
if(type<0) {
VecfCubicInterpol(keys[1].co, keys[1].vel, keys[2].co, keys[2].vel, dt, result->co, result->vel);
}
else {
set_four_ipo(dt, t, type);
weighted_particle_vector(keys[0].co, keys[1].co, keys[2].co, keys[3].co, t, result->co);
//if(ve){
// if(dt>0.999f){
// set_four_ipo(dt+0.001f,t,ipo_type);
// weighted_particle_vector(key0->co,key1->co,key2->co,key3->co,t,temp);
// VECSUB(ve,temp,co);
// }
// else{
// set_four_ipo(dt-0.001f,t,ipo_type);
// weighted_particle_vector(key0->co,key1->co,key2->co,key3->co,t,temp);
// VECSUB(ve,co,temp);
// }
//}
}
}
/************************************************/
/* Particles on a dm */
/************************************************/
/* interpolate a location on a face based on face coordinates */
void psys_interpolate_face(MVert *mvert, MFace *mface, MTFace *tface, float (*orcodata)[3], float *w, float *vec, float *nor, float *utan, float *vtan, float *orco,float *ornor){
float *v1=0, *v2=0, *v3=0, *v4=0;
float e1[3],e2[3],s1,s2,t1,t2;
float *uv1, *uv2, *uv3, *uv4;
float n1[3], n2[3], n3[3], n4[3];
float tuv[4][2];
float *o1, *o2, *o3, *o4;
v1= (mvert+mface->v1)->co;
v2= (mvert+mface->v2)->co;
v3= (mvert+mface->v3)->co;
VECCOPY(n1,(mvert+mface->v1)->no);
VECCOPY(n2,(mvert+mface->v2)->no);
VECCOPY(n3,(mvert+mface->v3)->no);
Normalize(n1);
Normalize(n2);
Normalize(n3);
if(mface->v4) {
v4= (mvert+mface->v4)->co;
VECCOPY(n4,(mvert+mface->v4)->no);
Normalize(n4);
vec[0]= w[0]*v1[0] + w[1]*v2[0] + w[2]*v3[0] + w[3]*v4[0];
vec[1]= w[0]*v1[1] + w[1]*v2[1] + w[2]*v3[1] + w[3]*v4[1];
vec[2]= w[0]*v1[2] + w[1]*v2[2] + w[2]*v3[2] + w[3]*v4[2];
if(nor){
if(mface->flag & ME_SMOOTH){
nor[0]= w[0]*n1[0] + w[1]*n2[0] + w[2]*n3[0] + w[3]*n4[0];
nor[1]= w[0]*n1[1] + w[1]*n2[1] + w[2]*n3[1] + w[3]*n4[1];
nor[2]= w[0]*n1[2] + w[1]*n2[2] + w[2]*n3[2] + w[3]*n4[2];
}
else
CalcNormFloat4(v1,v2,v3,v4,nor);
}
}
else {
vec[0]= w[0]*v1[0] + w[1]*v2[0] + w[2]*v3[0];
vec[1]= w[0]*v1[1] + w[1]*v2[1] + w[2]*v3[1];
vec[2]= w[0]*v1[2] + w[1]*v2[2] + w[2]*v3[2];
if(nor){
if(mface->flag & ME_SMOOTH){
nor[0]= w[0]*n1[0] + w[1]*n2[0] + w[2]*n3[0];
nor[1]= w[0]*n1[1] + w[1]*n2[1] + w[2]*n3[1];
nor[2]= w[0]*n1[2] + w[1]*n2[2] + w[2]*n3[2];
}
else
CalcNormFloat(v1,v2,v3,nor);
}
}
/* calculate tangent vectors */
if(utan && vtan){
if(tface){
uv1= tface->uv[0];
uv2= tface->uv[1];
uv3= tface->uv[2];
uv4= tface->uv[3];
}
else{
uv1= tuv[0]; uv2= tuv[1]; uv3= tuv[2]; uv4= tuv[3];
spheremap(v1[0], v1[1], v1[2], uv1, uv1+1);
spheremap(v2[0], v2[1], v2[2], uv2, uv2+1);
spheremap(v3[0], v3[1], v3[2], uv3, uv3+1);
if(v4)
spheremap(v4[0], v4[1], v4[2], uv4, uv4+1);
}
if(v4){
s1= uv3[0] - uv1[0];
s2= uv4[0] - uv1[0];
t1= uv3[1] - uv1[1];
t2= uv4[1] - uv1[1];
VecSubf(e1, v3, v1);
VecSubf(e2, v4, v1);
}
else{
s1= uv2[0] - uv1[0];
s2= uv3[0] - uv1[0];
t1= uv2[1] - uv1[1];
t2= uv3[1] - uv1[1];
VecSubf(e1, v2, v1);
VecSubf(e2, v3, v1);
}
vtan[0] = (s1*e2[0] - s2*e1[0]);
vtan[1] = (s1*e2[1] - s2*e1[1]);
vtan[2] = (s1*e2[2] - s2*e1[2]);
utan[0] = (t1*e2[0] - t2*e1[0]);
utan[1] = (t1*e2[1] - t2*e1[1]);
utan[2] = (t1*e2[2] - t2*e1[2]);
}
if(orco) {
if(orcodata) {
o1= orcodata[mface->v1];
o2= orcodata[mface->v2];
o3= orcodata[mface->v3];
if(mface->v4) {
o4= orcodata[mface->v4];
orco[0]= w[0]*o1[0] + w[1]*o2[0] + w[2]*o3[0] + w[3]*o4[0];
orco[1]= w[0]*o1[1] + w[1]*o2[1] + w[2]*o3[1] + w[3]*o4[1];
orco[2]= w[0]*o1[2] + w[1]*o2[2] + w[2]*o3[2] + w[3]*o4[2];
if(ornor)
CalcNormFloat4(o1, o2, o3, o4, ornor);
}
else {
orco[0]= w[0]*o1[0] + w[1]*o2[0] + w[2]*o3[0];
orco[1]= w[0]*o1[1] + w[1]*o2[1] + w[2]*o3[1];
orco[2]= w[0]*o1[2] + w[1]*o2[2] + w[2]*o3[2];
if(ornor)
CalcNormFloat(o1, o2, o3, ornor);
}
}
else {
VECCOPY(orco, vec);
if(ornor)
VECCOPY(ornor, nor);
}
}
}
void psys_interpolate_uvs(MTFace *tface, int quad, float *w, float *uvco){
float v10= tface->uv[0][0];
float v11= tface->uv[0][1];
float v20= tface->uv[1][0];
float v21= tface->uv[1][1];
float v30= tface->uv[2][0];
float v31= tface->uv[2][1];
float v40,v41;
if(quad) {
v40= tface->uv[3][0];
v41= tface->uv[3][1];
uvco[0]= w[0]*v10 + w[1]*v20 + w[2]*v30 + w[3]*v40;
uvco[1]= w[0]*v11 + w[1]*v21 + w[2]*v31 + w[3]*v41;
}
else {
uvco[0]= w[0]*v10 + w[1]*v20 + w[2]*v30;
uvco[1]= w[0]*v11 + w[1]*v21 + w[2]*v31;
}
}
float psys_interpolate_value_from_verts(DerivedMesh *dm, short from, int index, float *fw, float *values)
{
if(values==0)
return 0.0;
switch(from){
case PART_FROM_VERT:
return values[index];
case PART_FROM_FACE:
case PART_FROM_VOLUME:
{
MFace *mf=dm->getFaceData(dm,index,CD_MFACE);
return interpolate_particle_value(values[mf->v1],values[mf->v2],values[mf->v3],values[mf->v4],fw,mf->v4);
}
}
return 0.0;
}
/* conversion of pa->fw to origspace layer coordinates */
static void psys_w_to_origspace(float *w, float *uv)
{
uv[0]= w[1] + w[2];
uv[1]= w[2] + w[3];
}
/* conversion of pa->fw to weights in face from origspace */
static void psys_origspace_to_w(OrigSpaceFace *osface, int quad, float *w, float *neww)
{
float v[4][3], co[3];
v[0][0]= osface->uv[0][0]; v[0][1]= osface->uv[0][1]; v[0][2]= 0.0f;
v[1][0]= osface->uv[1][0]; v[1][1]= osface->uv[1][1]; v[1][2]= 0.0f;
v[2][0]= osface->uv[2][0]; v[2][1]= osface->uv[2][1]; v[2][2]= 0.0f;
psys_w_to_origspace(w, co);
co[2]= 0.0f;
if(quad) {
v[3][0]= osface->uv[3][0]; v[3][1]= osface->uv[3][1]; v[3][2]= 0.0f;
MeanValueWeights(v, 4, co, neww);
}
else {
MeanValueWeights(v, 3, co, neww);
neww[3]= 0.0f;
}
}
/* find the derived mesh face for a particle, set the mf passed.
This is slow, can be optimized but only for many lookups, return the face lookup index*/
int psys_particle_dm_face_lookup(Object *ob, DerivedMesh *dm, int index, float *fw, struct LinkNode *node)
{
Mesh *me= (Mesh*)ob->data;
MFace *mface;
OrigSpaceFace *osface;
int *origindex;
int quad, findex, totface;
float uv[2], (*faceuv)[2];
mface = dm->getFaceDataArray(dm, CD_MFACE);
origindex = dm->getFaceDataArray(dm, CD_ORIGINDEX);
osface = dm->getFaceDataArray(dm, CD_ORIGSPACE);
totface = dm->getNumFaces(dm);
if(osface==NULL || origindex==NULL) {
/* Assume we dont need osface data */
if (index <totface) {
//printf("\tNO CD_ORIGSPACE, assuming not needed\n");
return index;
} else {
printf("\tNO CD_ORIGSPACE, error out of range\n");
return DMCACHE_NOTFOUND;
}
}
else if(index >= me->totface)
return DMCACHE_NOTFOUND; /* index not in the original mesh */
psys_w_to_origspace(fw, uv);
if(node) { /* we have a linked list of faces that we use, faster! */
for(;node; node=node->next) {
findex= (int)node->link;
faceuv= osface[findex].uv;
quad= mface[findex].v4;
/* check that this intersects - Its possible this misses :/ -
* could also check its not between */
if(quad) {
if(IsectPQ2Df(uv, faceuv[0], faceuv[1], faceuv[2], faceuv[3]))
return findex;
}
else if(IsectPT2Df(uv, faceuv[0], faceuv[1], faceuv[2]))
return findex;
}
}
else { /* if we have no node, try every face */
for(findex=0; findex<totface; findex++) {
if(origindex[findex] == index) {
faceuv= osface[findex].uv;
quad= mface[findex].v4;
/* check that this intersects - Its possible this misses :/ -
* could also check its not between */
if(quad) {
if(IsectPQ2Df(uv, faceuv[0], faceuv[1], faceuv[2], faceuv[3]))
return findex;
}
else if(IsectPT2Df(uv, faceuv[0], faceuv[1], faceuv[2]))
return findex;
}
}
}
return DMCACHE_NOTFOUND;
}
/* interprets particle data to get a point on a mesh in object space */
#define PARTICLE_ERROR(_nor, _vec) _vec[0]=_vec[1]=_vec[2]=0.0; if(_nor){ _nor[0]=_nor[1]=0.0; _nor[2]=1.0; }
void psys_particle_on_dm(Object *ob, DerivedMesh *dm, int from, int index, int index_dmcache, float *fw, float foffset, float *vec, float *nor, float *utan, float *vtan, float *orco, float *ornor)
{
float (*orcodata)[3];
if(index < 0){ /* 'no dm' error has happened! */
PARTICLE_ERROR(nor, vec);
return;
}
orcodata= dm->getVertDataArray(dm, CD_ORCO);
if (dm->deformedOnly || index_dmcache == DMCACHE_ISCHILD) {
/* this works for meshes with deform verts only - constructive modifiers wont work properly*/
float temp1[3];
if(from == PART_FROM_VERT) {
if(index >= dm->getNumVerts(dm)) {
PARTICLE_ERROR(nor, vec);
return;
}
dm->getVertCo(dm,index,vec);
if(nor){
dm->getVertNo(dm,index,nor);
Normalize(nor);
}
if(orco)
VECCOPY(orco, orcodata[index])
if(ornor) {
dm->getVertNo(dm,index,nor);
Normalize(nor);
}
}
else { /* PART_FROM_FACE / PART_FROM_VOLUME */
MFace *mface;
MTFace *mtface=0;
MVert *mvert;
int uv_index;
if(index >= dm->getNumFaces(dm)) {
PARTICLE_ERROR(nor, vec);
return;
}
mface=dm->getFaceData(dm,index,CD_MFACE);
mvert=dm->getVertDataArray(dm,CD_MVERT);
uv_index=CustomData_get_active_layer_index(&dm->faceData,CD_MTFACE);
if(uv_index>=0){
CustomDataLayer *layer=&dm->faceData.layers[uv_index];
mtface= &((MTFace*)layer->data)[index];
}
if(from==PART_FROM_VOLUME){
psys_interpolate_face(mvert,mface,mtface,orcodata,fw,vec,temp1,utan,vtan,orco,ornor);
if(nor)
VECCOPY(nor,temp1);
Normalize(temp1);
VecMulf(temp1,-foffset);
VECADD(vec,vec,temp1);
}
else
psys_interpolate_face(mvert,mface,mtface,orcodata,fw,vec,nor,utan,vtan,orco,ornor);
}
} else {
/* Need to support constructive modifiers, this is a bit more tricky
we need a customdata layer like UV's so we can position the particle */
/* Only face supported at the moment */
if (from==PART_FROM_FACE) {
/* find a face on the derived mesh that uses this face */
Mesh *me= (Mesh*)ob->data;
MVert *mvert;
MFace *mface;
MTFace *mtface;
OrigSpaceFace *osface;
int *origindex;
float fw_mod[4];
int i, totface;
mvert= dm->getVertDataArray(dm,CD_MVERT);
osface= dm->getFaceDataArray(dm, CD_ORIGSPACE);
origindex= dm->getFaceDataArray(dm, CD_ORIGINDEX);
/* For this to work we need origindex and OrigSpace coords */
if(origindex==NULL || osface==NULL || index>=me->totface) {
PARTICLE_ERROR(nor, vec);
return;
}
if (index_dmcache == DMCACHE_NOTFOUND)
i = psys_particle_dm_face_lookup(ob, dm, index, fw, (LinkNode*)NULL);
else
i = index_dmcache;
totface = dm->getNumFaces(dm);
/* Any time this happens, and the face has not been removed,
* its a BUG watch out for this error! */
if (i==-1) {
printf("Cannot find original face %i\n", index);
PARTICLE_ERROR(nor, vec);
return;
}
else if(i >= totface)
return;
mface= dm->getFaceData(dm, i, CD_MFACE);
mtface= dm->getFaceData(dm, i, CD_MTFACE);
osface += i;
/* we need to modify the original weights to become weights for
* the derived mesh face */
psys_origspace_to_w(osface, mface->v4, fw, fw_mod);
psys_interpolate_face(mvert,mface,mtface,orcodata,fw_mod,vec,nor,utan,vtan,orco,ornor);
}
else {
/* TODO PARTICLE - support verts and volume */
PARTICLE_ERROR(nor, vec);
}
}
}
#undef PARTICLE_ERROR
ParticleSystemModifierData *psys_get_modifier(Object *ob, ParticleSystem *psys)
{
ModifierData *md;
ParticleSystemModifierData *psmd;
for(md=ob->modifiers.first; md; md=md->next){
if(md->type==eModifierType_ParticleSystem){
psmd= (ParticleSystemModifierData*) md;
if(psmd->psys==psys){
return psmd;
}
}
}
return 0;
}
/************************************************/
/* Particles on a shape */
/************************************************/
/* ready for future use */
void psys_particle_on_shape(int distr, int index, float *fuv, float *vec, float *nor, float *utan, float *vtan, float *orco, float *ornor)
{
/* TODO */
float zerovec[3]={0.0f,0.0f,0.0f};
if(vec){
VECCOPY(vec,zerovec);
}
if(nor){
VECCOPY(nor,zerovec);
}
if(utan){
VECCOPY(utan,zerovec);
}
if(vtan){
VECCOPY(vtan,zerovec);
}
if(orco){
VECCOPY(orco,zerovec);
}
if(ornor){
VECCOPY(ornor,zerovec);
}
}
/************************************************/
/* Particles on emitter */
/************************************************/
void psys_particle_on_emitter(Object *ob, ParticleSystemModifierData *psmd, int from, int index, int index_dmcache, float *fuv, float foffset, float *vec, float *nor, float *utan, float *vtan, float *orco, float *ornor){
if(psmd){
if(psmd->psys->part->distr==PART_DISTR_GRID){
if(vec){
VECCOPY(vec,fuv);
}
return;
}
/* we cant use the num_dmcache */
psys_particle_on_dm(ob, psmd->dm,from,index,index_dmcache,fuv,foffset,vec,nor,utan,vtan,orco,ornor);
}
else
psys_particle_on_shape(from,index,fuv,vec,nor,utan,vtan,orco,ornor);
}
/************************************************/
/* Path Cache */
/************************************************/
static void hair_to_particle(ParticleKey *key, HairKey *hkey)
{
VECCOPY(key->co, hkey->co);
key->time = hkey->time;
}
static void bp_to_particle(ParticleKey *key, BodyPoint *bp, HairKey *hkey)
{
VECCOPY(key->co, bp->pos);
key->time = hkey->time;
}
static float vert_weight(MDeformVert *dvert, int group)
{
MDeformWeight *dw;
int i;
if(dvert) {
dw= dvert->dw;
for(i= dvert->totweight; i>0; i--, dw++) {
if(dw->def_nr == group) return dw->weight;
if(i==1) break; /*otherwise dw will point to somewhere it shouldn't*/
}
}
return 0.0;
}
static void do_prekink(ParticleKey *state, ParticleKey *par, float *par_rot, float time, float freq, float shape, float amplitude, short type, short axis, float obmat[][4])
{
float vec[3]={0.0,0.0,0.0}, q1[4]={1,0,0,0},*q2;
float t;
CLAMP(time,0.0,1.0);
if(shape!=0.0f && type!=PART_KINK_BRAID) {
if(shape<0.0f)
time= (float)pow(time, 1.0+shape);
else
time= (float)pow(time, 1.0/(1.0-shape));
}
t=time;
t*=(float)M_PI*freq;
if(par==0) return;
switch(type){
case PART_KINK_CURL:
vec[axis]=1.0;
if(par_rot)
q2=par_rot;
else{
q2=vectoquat(par->vel,axis,(axis+1)%3);
}
QuatMulVecf(q2,vec);
VecMulf(vec,amplitude);
VECADD(state->co,state->co,vec);
VECSUB(vec,state->co,par->co);
if(t!=0.0)
VecRotToQuat(par->vel,t,q1);
QuatMulVecf(q1,vec);
VECADD(state->co,par->co,vec);
break;
case PART_KINK_RADIAL:
VECSUB(vec,state->co,par->co);
Normalize(vec);
VecMulf(vec,amplitude*(float)sin(t));
VECADD(state->co,state->co,vec);
break;
case PART_KINK_WAVE:
vec[axis]=1.0;
if(obmat)
Mat4MulVecfl(obmat,vec);
if(par_rot)
QuatMulVecf(par_rot,vec);
Projf(q1,vec,par->vel);
VECSUB(vec,vec,q1);
Normalize(vec);
VecMulf(vec,amplitude*(float)sin(t));
VECADD(state->co,state->co,vec);
break;
case PART_KINK_BRAID:
if(par){
float y_vec[3]={0.0,1.0,0.0};
float z_vec[3]={0.0,0.0,1.0};
float vec_from_par[3], vec_one[3], radius, state_co[3];
float inp_y,inp_z,length;
if(par_rot)
q2=par_rot;
else
q2=vectoquat(par->vel,axis,(axis+1)%3);
QuatMulVecf(q2,y_vec);
QuatMulVecf(q2,z_vec);
VECSUB(vec_from_par,state->co,par->co);
VECCOPY(vec_one,vec_from_par);
radius=Normalize(vec_one);
inp_y=Inpf(y_vec,vec_one);
inp_z=Inpf(z_vec,vec_one);
if(inp_y>0.5){
VECCOPY(state_co,y_vec);
VecMulf(y_vec,amplitude*(float)cos(t));
VecMulf(z_vec,amplitude/2.0f*(float)sin(2.0f*t));
}
else if(inp_z>0.0){
VECCOPY(state_co,z_vec);
VecMulf(state_co,(float)sin(M_PI/3.0f));
VECADDFAC(state_co,state_co,y_vec,-0.5f);
VecMulf(y_vec,-amplitude*(float)cos(t + M_PI/3.0f));
VecMulf(z_vec,amplitude/2.0f*(float)cos(2.0f*t + M_PI/6.0f));
}
else{
VECCOPY(state_co,z_vec);
VecMulf(state_co,-(float)sin(M_PI/3.0f));
VECADDFAC(state_co,state_co,y_vec,-0.5f);
VecMulf(y_vec,amplitude*(float)-sin(t+M_PI/6.0f));
VecMulf(z_vec,amplitude/2.0f*(float)-sin(2.0f*t+M_PI/3.0f));
}
VecMulf(state_co,amplitude);
VECADD(state_co,state_co,par->co);
VECSUB(vec_from_par,state->co,state_co);
length=Normalize(vec_from_par);
VecMulf(vec_from_par,MIN2(length,amplitude/2.0f));
VECADD(state_co,par->co,y_vec);
VECADD(state_co,state_co,z_vec);
VECADD(state_co,state_co,vec_from_par);
shape=(2.0f*(float)M_PI)*(1.0f+shape);
if(t<shape){
shape=t/shape;
shape=(float)sqrt((double)shape);
VecLerpf(state->co,state->co,state_co,shape);
}
else{
VECCOPY(state->co,state_co);
}
}
break;
//case PART_KINK_ROT:
// vec[axis]=1.0;
// QuatMulVecf(par->rot,vec);
// VecMulf(vec,amplitude*(float)sin(t));
// VECADD(state->co,state->co,vec);
// break;
}
}
static void do_postkink(ParticleKey *state, ParticleKey *par, float *par_rot, float time, float freq, float shape, float amplitude, short type, short axis, float obmat[][4])
{
static ParticleKey first;
static float q[4];
float vec[3]={0.0,0.0,0.0};
float t;
CLAMP(time,0.0,1.0);
t=time;
t*=(float)M_PI*freq;
if(par==0) return;
switch(type){
case PART_KINK_ROLL:
if(time<(0.5+shape/2.0f)){
float *q2;
memcpy(&first,state,sizeof(ParticleKey));
Normalize(first.vel);
if(par_rot)
q2=par_rot;
else
q2=vectoquat(par->vel,axis,(axis+1)%3);
QUATCOPY(q,q2);
}
else{
float fac;
shape=0.5f+shape/2.0f;
t-=(float)M_PI*(shape*freq + 0.5f);
vec[axis]=1.0;
QuatMulVecf(q,vec);
fac=amplitude*(1.0f+((1.0f-time)/(1.0f-shape)*(float)sin(t)));
VECADDFAC(state->co,first.co,vec,fac);
fac=amplitude*((1.0f-time)/(1.0f-shape)*(float)cos(t));
VECADDFAC(state->co,state->co,first.vel,fac);
}
break;
}
}
static void do_clump(ParticleKey *state, ParticleKey *par, float time, float clumpfac, float clumppow, float pa_clump)
{
if(par && clumpfac!=0.0){
float clump, cpow;
if(clumppow<0.0)
cpow=1.0f+clumppow;
else
cpow=1.0f+9.0f*clumppow;
if(clumpfac<0.0) /* clump roots instead of tips */
clump = -clumpfac*pa_clump*(float)pow(1.0-(double)time,(double)cpow);
else
clump = clumpfac*pa_clump*(float)pow((double)time,(double)cpow);
VecLerpf(state->co,state->co,par->co,clump);
}
}
int do_guide(ParticleKey *state, int pa_num, float time, ListBase *lb)
{
PartDeflect *pd;
ParticleEffectorCache *ec;
Object *eob;
Curve *cu;
ParticleKey key, par;
float effect[3]={0.0,0.0,0.0}, distance, f_force, mindist, totforce=0.0;
float guidevec[4], guidedir[3], rot2[4], temp[3], angle, pa_loc[3], pa_zero[3]={0.0f,0.0f,0.0f};
float veffect[3]={0.0,0.0,0.0}, guidetime;
effect[0]=effect[1]=effect[2]=0.0;
if(lb->first){
for(ec = lb->first; ec; ec= ec->next){
eob= ec->ob;
if(ec->type & PSYS_EC_EFFECTOR){
pd=eob->pd;
if(pd->forcefield==PFIELD_GUIDE){
cu = (Curve*)eob->data;
distance=ec->distances[pa_num];
mindist=pd->f_strength;
VECCOPY(pa_loc, ec->locations+3*pa_num);
VECCOPY(pa_zero,pa_loc);
VECADD(pa_zero,pa_zero,ec->firstloc);
guidetime=time/(1.0-pd->free_end);
/* WARNING: bails out with continue here */
if(((pd->flag & PFIELD_USEMAX) && distance>pd->maxdist) || guidetime>1.0f) continue;
if(guidetime>1.0f) continue;
/* calculate contribution factor for this guide */
f_force=1.0f;
if(distance<=mindist);
else if(pd->flag & PFIELD_USEMAX) {
if(mindist>=pd->maxdist) f_force= 0.0f;
else if(pd->f_power!=0.0f){
f_force= 1.0f - (distance-mindist)/(pd->maxdist - mindist);
f_force = (float)pow(f_force, pd->f_power);
}
}
else if(pd->f_power!=0.0f){
f_force= 1.0f/(1.0f + distance-mindist);
f_force = (float)pow(f_force, pd->f_power);
}
if(pd->flag & PFIELD_GUIDE_PATH_ADD)
where_on_path(eob, f_force*guidetime, guidevec, guidedir);
else
where_on_path(eob, guidetime, guidevec, guidedir);
Mat4MulVecfl(ec->ob->obmat,guidevec);
Mat4Mul3Vecfl(ec->ob->obmat,guidedir);
Normalize(guidedir);
if(guidetime!=0.0){
/* curve direction */
Crossf(temp, ec->firstdir, guidedir);
angle=Inpf(ec->firstdir,guidedir)/(VecLength(ec->firstdir));
angle=saacos(angle);
VecRotToQuat(temp,angle,rot2);
QuatMulVecf(rot2,pa_loc);
/* curve tilt */
VecRotToQuat(guidedir,guidevec[3]-ec->firstloc[3],rot2);
QuatMulVecf(rot2,pa_loc);
//q=vectoquat(guidedir, pd->kink_axis, (pd->kink_axis+1)%3);
//QuatMul(par.rot,rot2,q);
}
//else{
// par.rot[0]=1.0f;
// par.rot[1]=par.rot[2]=par.rot[3]=0.0f;
//}
/* curve taper */
if(cu->taperobj)
VecMulf(pa_loc,calc_taper(cu->taperobj,(int)(f_force*guidetime*100.0),100));
/* TODO */
//else{
///* curve size*/
// calc_curve_subdiv_radius(cu,cu->nurb.first,((Nurb*)cu->nurb.first)->
//}
par.co[0]=par.co[1]=par.co[2]=0.0f;
VECCOPY(key.co,pa_loc);
do_prekink(&key, &par, 0, guidetime, pd->kink_freq, pd->kink_shape, pd->kink_amp, pd->kink, pd->kink_axis, 0);
do_clump(&key, &par, guidetime, pd->clump_fac, pd->clump_pow, 1.0f);
do_postkink(&key, &par, 0, guidetime, pd->kink_freq, pd->kink_shape, pd->kink_amp, pd->kink, pd->kink_axis, 0);
VECCOPY(pa_loc,key.co);
VECADD(pa_loc,pa_loc,guidevec);
VECSUB(pa_loc,pa_loc,pa_zero);
VECADDFAC(effect,effect,pa_loc,f_force);
VECADDFAC(veffect,veffect,guidedir,f_force);
totforce+=f_force;
}
}
}
if(totforce!=0.0){
if(totforce>1.0)
VecMulf(effect,1.0f/totforce);
CLAMP(totforce,0.0,1.0);
VECADD(effect,effect,pa_zero);
VecLerpf(state->co,state->co,effect,totforce);
Normalize(veffect);
VecMulf(veffect,VecLength(state->vel));
VECCOPY(state->vel,veffect);
return 1;
}
}
return 0;
}
static void do_rough(float *loc, float t, float fac, float size, float thres, ParticleKey *state)
{
float rough[3];
float rco[3];
if(thres!=0.0)
if((float)fabs((float)(-1.5+loc[0]+loc[1]+loc[2]))<1.5f*thres) return;
VECCOPY(rco,loc);
VecMulf(rco,t);
rough[0]=-1.0f+2.0f*BLI_gTurbulence(size, rco[0], rco[1], rco[2], 2,0,2);
rough[1]=-1.0f+2.0f*BLI_gTurbulence(size, rco[1], rco[2], rco[0], 2,0,2);
rough[2]=-1.0f+2.0f*BLI_gTurbulence(size, rco[2], rco[0], rco[1], 2,0,2);
VECADDFAC(state->co,state->co,rough,fac);
}
static void do_rough_end(float *loc, float t, float fac, float shape, ParticleKey *state, ParticleKey *par)
{
float rough[3], rnor[3];
float roughfac;
roughfac=fac*(float)pow((double)t,shape);
VECCOPY(rough,loc);
rough[0]=-1.0f+2.0f*rough[0];
rough[1]=-1.0f+2.0f*rough[1];
rough[2]=-1.0f+2.0f*rough[2];
VecMulf(rough,roughfac);
if(par){
VECCOPY(rnor,par->vel);
}
else{
VECCOPY(rnor,state->vel);
}
Normalize(rnor);
Projf(rnor,rough,rnor);
VECSUB(rough,rough,rnor);
VECADD(state->co,state->co,rough);
}
static int check_path_length(int k, ParticleCacheKey *keys, ParticleCacheKey *state, float max_length, float *cur_length, float length, float *dvec)
{
if(*cur_length + length > max_length){
//if(p<totparent){
// if(k<=(int)cache[totpart+p]->time){
// /* parents need to be calculated fully first so that they don't mess up their children */
// /* we'll make a note of where we got to though so that they're easy to finish later */
// state->time=(max_length-*cur_length)/length;
// cache[totpart+p]->time=(float)k;
// }
//}
//else{
VecMulf(dvec, (max_length - *cur_length) / length);
VECADD(state->co, (state - 1)->co, dvec);
keys->steps = k;
/* something over the maximum step value */
return k=100000;
//}
}
else {
*cur_length+=length;
return k;
}
}
static void finalize_path_length(ParticleCacheKey *keys)
{
ParticleCacheKey *state = keys;
float dvec[3];
state += state->steps;
VECSUB(dvec, state->co, (state - 1)->co);
VecMulf(dvec, state->steps);
VECADD(state->co, (state - 1)->co, dvec);
}
static void offset_child(ChildParticle *cpa, ParticleKey *par, ParticleKey *child, float flat, float radius)
{
VECCOPY(child->co,cpa->fuv);
VecMulf(child->co,radius);
child->co[0]*=flat;
VECCOPY(child->vel,par->vel);
QuatMulVecf(par->rot,child->co);
QUATCOPY(child->rot,par->rot);
VECADD(child->co,child->co,par->co);
}
float *psys_cache_vgroup(DerivedMesh *dm, ParticleSystem *psys, int vgroup)
{
float *vg=0;
if(psys->vgroup[vgroup]){
MDeformVert *dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
if(dvert){
int totvert=dm->getNumVerts(dm), i;
vg=MEM_callocN(sizeof(float)*totvert, "vg_cache");
if(psys->vg_neg&(1<<vgroup)){
for(i=0; i<totvert; i++)
vg[i]=1.0f-vert_weight(dvert+i,psys->vgroup[vgroup]-1);
}
else{
for(i=0; i<totvert; i++)
vg[i]=vert_weight(dvert+i,psys->vgroup[vgroup]-1);
}
}
}
return vg;
}
void psys_find_parents(Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys)
{
ParticleSettings *part=psys->part;
KDTree *tree;
ChildParticle *cpa;
int p, totparent,totchild=psys->totchild;
float co[3], orco[3];
int from=PART_FROM_FACE;
totparent=(int)(totchild*part->parents*0.3);
tree=BLI_kdtree_new(totparent);
for(p=0,cpa=psys->child; p<totparent; p++,cpa++){
psys_particle_on_emitter(ob,psmd,from,cpa->num,-1,cpa->fuv,cpa->foffset,co,0,0,0,orco,0);
BLI_kdtree_insert(tree, p, orco, NULL);
}
BLI_kdtree_balance(tree);
for(; p<totchild; p++,cpa++){
psys_particle_on_emitter(ob,psmd,from,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co,0,0,0,orco,0);
cpa->parent=BLI_kdtree_find_nearest(tree, orco, NULL, NULL);
}
BLI_kdtree_free(tree);
}
static void get_strand_normal(Material *ma, float *surfnor, float surfdist, float *nor)
{
float cross[3], nstrand[3], vnor[3], blend;
if(!((ma->mode & MA_STR_SURFDIFF) || (ma->strand_surfnor > 0.0f)))
return;
if(ma->mode & MA_STR_SURFDIFF) {
Crossf(cross, surfnor, nor);
Crossf(nstrand, nor, cross);
blend= INPR(nstrand, surfnor);
CLAMP(blend, 0.0f, 1.0f);
VecLerpf(vnor, nstrand, surfnor, blend);
Normalize(vnor);
}
else
VECCOPY(vnor, nor)
if(ma->strand_surfnor > 0.0f) {
if(ma->strand_surfnor > surfdist) {
blend= (ma->strand_surfnor - surfdist)/ma->strand_surfnor;
VecLerpf(vnor, vnor, surfnor, blend);
Normalize(vnor);
}
}
VECCOPY(nor, vnor);
}
int psys_threads_init_path(ParticleThread *threads, float cfra, int editupdate)
{
ParticleThreadContext *ctx= threads[0].ctx;
Object *ob= ctx->ob;
ParticleSystem *psys= ctx->psys;
ParticleSettings *part = psys->part;
ParticleEditSettings *pset = &G.scene->toolsettings->particle;
int totparent=0, between=0;
int steps = (int)pow(2.0,(double)part->draw_step);
int totchild = psys->totchild;
int i, seed, totthread= threads[0].tot;
/*---start figuring out what is actually wanted---*/
if(psys_in_edit_mode(psys))
if(psys->renderdata==0 && (psys->edit==NULL || pset->flag & PE_SHOW_CHILD)==0)
totchild=0;
if(totchild && part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES){
totparent=(int)(totchild*part->parents*0.3);
/* part->parents could still be 0 so we can't test with totparent */
between=1;
}
if(psys->renderdata)
steps=(int)pow(2.0,(double)part->ren_step);
else{
totchild=(int)((float)totchild*(float)part->disp/100.0f);
totparent=MIN2(totparent,totchild);
}
if(totchild==0) return 0;
/* init random number generator */
if(ctx->psys->part->flag & PART_ANIM_BRANCHING)
seed= 31415926 + ctx->psys->seed + (int)cfra;
else
seed= 31415926 + ctx->psys->seed;
if(part->flag & PART_BRANCHING || ctx->editupdate || totchild < 10000)
totthread= 1;
for(i=0; i<totthread; i++) {
threads[i].rng_path= rng_new(seed);
threads[i].tot= totthread;
}
/* fill context values */
ctx->between= between;
ctx->steps= steps;
ctx->totchild= totchild;
ctx->totparent= totparent;
ctx->cfra= cfra;
psys->lattice = psys_get_lattice(ob, psys);
/* cache all relevant vertex groups if they exist */
if(part->from!=PART_FROM_PARTICLE){
ctx->vg_length = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_LENGTH);
ctx->vg_clump = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_CLUMP);
ctx->vg_kink = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_KINK);
ctx->vg_rough1 = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_ROUGH1);
ctx->vg_rough2 = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_ROUGH2);
ctx->vg_roughe = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_ROUGHE);
}
/* set correct ipo timing */
if(part->flag&PART_ABS_TIME && part->ipo){
calc_ipo(part->ipo, cfra);
execute_ipo((ID *)part, part->ipo);
}
return 1;
}
/* note: this function must be thread safe, except for branching! */
void psys_thread_create_path(ParticleThread *thread, struct ChildParticle *cpa, ParticleCacheKey *keys, int i)
{
ParticleThreadContext *ctx= thread->ctx;
Object *ob= ctx->ob;
ParticleSystem *psys = ctx->psys;
ParticleSettings *part = psys->part;
ParticleCacheKey **cache= psys->childcache;
ParticleCacheKey **pcache= psys->pathcache;
ParticleCacheKey *state, *par = NULL, *key[4];
ParticleData *pa;
ParticleTexture ptex;
float *cpa_fuv=0;
float co[3], orco[3], ornor[3], t, rough_t, cpa_1st[3], dvec[3];
float branch_begin, branch_end, branch_prob, branchfac, rough_rand;
float pa_rough1, pa_rough2, pa_roughe;
float length, pa_length, pa_clump, pa_kink;
float max_length = 1.0f, cur_length = 0.0f;
int k, cpa_num, guided=0;
short cpa_from;
if(part->flag & PART_BRANCHING) {
branch_begin=rng_getFloat(thread->rng_path);
branch_end=branch_begin+(1.0f-branch_begin)*rng_getFloat(thread->rng_path);
branch_prob=rng_getFloat(thread->rng_path);
rough_rand=rng_getFloat(thread->rng_path);
}
else {
branch_begin= 0.0f;
branch_end= 0.0f;
branch_prob= 0.0f;
rough_rand= 0.0f;
}
if(i<psys->totpart){
branch_begin=0.0f;
branch_end=1.0f;
branch_prob=0.0f;
}
if(ctx->between){
int w, needupdate;
float foffset;
if(ctx->editupdate && !(part->flag & PART_BRANCHING)) {
needupdate= 0;
w= 0;
while(w<4 && cpa->pa[w]>=0) {
if(psys->particles[cpa->pa[w]].flag & PARS_EDIT_RECALC) {
needupdate= 1;
break;
}
w++;
}
if(!needupdate)
return;
else
memset(keys, 0, sizeof(*keys)*(ctx->steps+1));
}
/* get parent paths */
w= 0;
while(w<4 && cpa->pa[w]>=0){
key[w] = pcache[cpa->pa[w]];
w++;
}
/* get the original coordinates (orco) for texture usage */
cpa_num = cpa->num;
foffset= cpa->foffset;
if(part->childtype == PART_CHILD_FACES)
foffset = -(2.0f + part->childspread);
cpa_fuv = cpa->fuv;
cpa_from = PART_FROM_FACE;
psys_particle_on_emitter(ob,ctx->psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa->fuv,foffset,co,ornor,0,0,orco,0);
/* we need to save the actual root position of the child for positioning it accurately to the surface of the emitter */
VECCOPY(cpa_1st,co);
Mat4MulVecfl(ob->obmat,cpa_1st);
pa=0;
}
else{
if(ctx->editupdate && !(part->flag & PART_BRANCHING)) {
if(!(psys->particles[cpa->parent].flag & PARS_EDIT_RECALC))
return;
memset(keys, 0, sizeof(*keys)*(ctx->steps+1));
}
/* get the parent path */
key[0]=pcache[cpa->parent];
/* get the original coordinates (orco) for texture usage */
pa=psys->particles+cpa->parent;
cpa_from=part->from;
cpa_num=pa->num;
cpa_fuv=pa->fuv;
psys_particle_on_emitter(ob,ctx->psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa_fuv,pa->foffset,co,ornor,0,0,orco,0);
}
keys->steps = ctx->steps;
/* correct child ipo timing */
if((part->flag&PART_ABS_TIME)==0 && part->ipo){
float dsta=part->end-part->sta;
calc_ipo(part->ipo, 100.0f*(ctx->cfra-(part->sta+dsta*cpa->rand[1]))/(part->lifetime*(1.0f - part->randlife*cpa->rand[0])));
execute_ipo((ID *)part, part->ipo);
}
/* get different child parameters from textures & vgroups */
ptex.length=part->length*(1.0f - part->randlength*cpa->rand[0]);
ptex.clump=1.0;
ptex.kink=1.0;
ptex.rough= 1.0;
get_cpa_texture(ctx->dm,ctx->ma,cpa_num,cpa_fuv,orco,&ptex,
MAP_PA_LENGTH|MAP_PA_CLUMP|MAP_PA_KINK|MAP_PA_ROUGH);
pa_length=ptex.length;
pa_clump=ptex.clump;
pa_kink=ptex.kink;
pa_rough1=ptex.rough;
pa_rough2=ptex.rough;
pa_roughe=ptex.rough;
if(ctx->vg_length)
pa_length*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_length);
if(ctx->vg_clump)
pa_clump*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_clump);
if(ctx->vg_kink)
pa_kink*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_kink);
if(ctx->vg_rough1)
pa_rough1*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_rough1);
if(ctx->vg_rough2)
pa_rough2*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_rough2);
if(ctx->vg_roughe)
pa_roughe*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_roughe);
/* create the child path */
for(k=0,state=keys; k<=ctx->steps; k++,state++){
t=(float)k/(float)ctx->steps;
if(ctx->between){
int w=0;
state->co[0] = state->co[1] = state->co[2] = 0.0f;
state->vel[0] = state->vel[1] = state->vel[2] = 0.0f;
//QUATCOPY(state->rot,key[0]->rot);
/* child position is the weighted sum of parent positions */
while(w<4 && cpa->pa[w]>=0){
state->co[0] += cpa->w[w] * key[w]->co[0];
state->co[1] += cpa->w[w] * key[w]->co[1];
state->co[2] += cpa->w[w] * key[w]->co[2];
state->vel[0] += cpa->w[w] * key[w]->vel[0];
state->vel[1] += cpa->w[w] * key[w]->vel[1];
state->vel[2] += cpa->w[w] * key[w]->vel[2];
key[w]++;
w++;
}
if(k==0){
/* calculate the offset between actual child root position and first position interpolated from parents */
VECSUB(cpa_1st,cpa_1st,state->co);
}
/* apply offset for correct positioning */
VECADD(state->co,state->co,cpa_1st);
}
else{
/* offset the child from the parent position */
offset_child(cpa, (ParticleKey*)key[0], (ParticleKey*)state, part->childflat, part->childrad);
key[0]++;
}
if(ctx->totparent){
if(i>=ctx->totparent)
/* this is not threadsafe, but should only happen for
* branching particles particles, which are not threaded */
par = cache[cpa->parent] + k;
else
par=0;
}
else if(cpa->parent>=0){
par=pcache[cpa->parent]+k;
}
/* apply different deformations to the child path */
if(part->flag & PART_CHILD_GUIDE)
guided = do_guide((ParticleKey*)state, i, t, &(psys->effectors)); //safe to cast, since only co and vel are used
if(guided==0){
if(part->kink)
do_prekink((ParticleKey*)state, (ParticleKey*)par, par->rot, t,
part->kink_freq * pa_kink, part->kink_shape, part->kink_amp, part->kink, part->kink_axis, ob->obmat);
do_clump((ParticleKey*)state, (ParticleKey*)par, t, part->clumpfac, part->clumppow, pa_clump);
if(part->kink)
do_postkink((ParticleKey*)state, (ParticleKey*)par, par->rot, t,
part->kink_freq * pa_kink, part->kink_shape, part->kink_amp, part->kink, part->kink_axis, ob->obmat);
}
if(part->flag & PART_BRANCHING && ctx->between == 0 && part->flag & PART_ANIM_BRANCHING)
rough_t = t * rough_rand;
else
rough_t = t;
if(part->rough1 != 0.0 && pa_rough1 != 0.0)
do_rough(orco, rough_t, pa_rough1*part->rough1, part->rough1_size, 0.0, (ParticleKey*)state);
if(part->rough2 != 0.0 && pa_rough2 != 0.0)
do_rough(cpa->rand, rough_t, pa_rough2*part->rough2, part->rough2_size, part->rough2_thres, (ParticleKey*)state);
if(part->rough_end != 0.0 && pa_roughe != 0.0)
do_rough_end(cpa->rand, rough_t, pa_roughe*part->rough_end, part->rough_end_shape, (ParticleKey*)state, (ParticleKey*)par);
if(part->flag & PART_BRANCHING && ctx->between==0){
if(branch_prob > part->branch_thres){
branchfac=0.0f;
}
else{
if(part->flag & PART_SYMM_BRANCHING){
if(t < branch_begin || t > branch_end)
branchfac=0.0f;
else{
if((t-branch_begin)/(branch_end-branch_begin)<0.5)
branchfac=2.0f*(t-branch_begin)/(branch_end-branch_begin);
else
branchfac=2.0f*(branch_end-t)/(branch_end-branch_begin);
CLAMP(branchfac,0.0f,1.0f);
}
}
else{
if(t < branch_begin){
branchfac=0.0f;
}
else{
branchfac=(t-branch_begin)/((1.0f-branch_begin)*0.5f);
CLAMP(branchfac,0.0f,1.0f);
}
}
}
if(i<psys->totpart)
VecLerpf(state->co, (pcache[i] + k)->co, state->co, branchfac);
else
/* this is not threadsafe, but should only happen for
* branching particles particles, which are not threaded */
VecLerpf(state->co, (cache[i - psys->totpart] + k)->co, state->co, branchfac);
}
/* we have to correct velocity because of kink & clump */
if(k>1){
VECSUB((state-1)->vel,state->co,(state-2)->co);
VecMulf((state-1)->vel,0.5);
if(ctx->ma && (part->draw & PART_DRAW_MAT_COL))
get_strand_normal(ctx->ma, ornor, cur_length, (state-1)->vel);
}
/* check if path needs to be cut before actual end of data points */
if(k){
VECSUB(dvec,state->co,(state-1)->co);
if(part->flag&PART_ABS_LENGTH)
length=VecLength(dvec);
else
length=1.0f/(float)ctx->steps;
k=check_path_length(k,keys,state,max_length,&cur_length,length,dvec);
}
else{
/* initialize length calculation */
if(part->flag&PART_ABS_LENGTH)
max_length= part->abslength*pa_length;
else
max_length= pa_length;
cur_length= 0.0f;
}
if(ctx->ma && (part->draw & PART_DRAW_MAT_COL)) {
VECCOPY(state->col, &ctx->ma->r)
get_strand_normal(ctx->ma, ornor, cur_length, state->vel);
}
}
/* now let's finalise the interpolated parents that we might have left half done before */
if(i<ctx->totparent)
finalize_path_length(keys);
}
void *exec_child_path_cache(void *data)
{
ParticleThread *thread= (ParticleThread*)data;
ParticleThreadContext *ctx= thread->ctx;
ParticleSystem *psys= ctx->psys;
ParticleCacheKey **cache= psys->childcache;
ChildParticle *cpa;
int i, totchild= ctx->totchild;
cpa= psys->child + thread->num;
for(i=thread->num; i<totchild; i+=thread->tot, cpa+=thread->tot)
psys_thread_create_path(thread, cpa, cache[i], i);
return 0;
}
void psys_cache_child_paths(Object *ob, ParticleSystem *psys, float cfra, int editupdate)
{
ParticleSettings *part = psys->part;
ParticleThread *pthreads;
ParticleThreadContext *ctx;
ParticleCacheKey **cache, *tcache;
ListBase threads;
int i, totchild, totparent, totthread;
unsigned long totchildstep;
pthreads= psys_threads_create(ob, psys, G.scene->r.threads);
if(!psys_threads_init_path(pthreads, cfra, editupdate)) {
psys_threads_free(pthreads);
return;
}
ctx= pthreads[0].ctx;
totchild= ctx->totchild;
totparent= ctx->totparent;
if(editupdate && psys->childcache && !(part->flag & PART_BRANCHING) && totchild == psys->totchildcache) {
cache = psys->childcache;
}
else {
/* clear out old and create new empty path cache */
free_child_path_cache(psys);
cache = psys->childcache = MEM_callocN(totchild*sizeof(void *), "Child path cache array");
totchildstep= totchild*(ctx->steps + 1);
tcache = MEM_callocN(totchildstep*sizeof(ParticleCacheKey), "Child path cache");
for(i=0; i<totchild; i++)
cache[i] = tcache + i * (ctx->steps + 1);
psys->totchildcache = totchild;
}
totthread= pthreads[0].tot;
if(totthread > 1) {
BLI_init_threads(&threads, exec_child_path_cache, totthread);
for(i=0; i<totthread; i++)
BLI_insert_thread(&threads, &pthreads[i]);
BLI_end_threads(&threads);
}
else
exec_child_path_cache(&pthreads[0]);
psys_threads_free(pthreads);
}
/* Calculates paths ready for drawing/rendering. */
/* -Usefull for making use of opengl vertex arrays for super fast strand drawing. */
/* -Makes child strands possible and creates them too into the cache. */
/* -Cached path data is also used to determine cut position for the editmode tool. */
void psys_cache_paths(Object *ob, ParticleSystem *psys, float cfra, int editupdate)
{
ParticleCacheKey *ca, **cache=psys->pathcache;
ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys);
ParticleEditSettings *pset = &G.scene->toolsettings->particle;
ParticleData *pa;
ParticleKey keys[4], result, *kkey[2] = {NULL, NULL};
HairKey *hkey[2] = {NULL, NULL};
ParticleEdit *edit = 0;
ParticleEditKey *ekey = 0;
SoftBody *soft = 0;
BodyPoint *bp[2] = {NULL, NULL};
Material *ma;
float birthtime = 0.0, dietime = 0.0;
float t, time, keytime, dfra = 1.0, frs_sec = G.scene->r.frs_sec;
float col[3] = {0.5f, 0.5f, 0.5f};
float prev_tangent[3], hairmat[4][4];
int k,i;
int steps = (int)pow(2.0, (double)psys->part->draw_step);
int totpart = psys->totpart;
char nosel[4], sel[4];
float sel_col[3];
float nosel_col[3];
float length, vec[3];
/* we don't have anything valid to create paths from so let's quit here */
if((psys->flag & PSYS_HAIR_DONE)==0 && (psys->flag & PSYS_KEYED)==0)
return;
if(psys->renderdata)
steps = (int)pow(2.0, (double)psys->part->ren_step);
else if(psys_in_edit_mode(psys)){
edit=psys->edit;
//timed = edit->draw_timed;
PE_get_colors(sel,nosel);
if(pset->brushtype == PE_BRUSH_WEIGHT){
sel_col[0] = sel_col[1] = sel_col[2] = 1.0f;
nosel_col[0] = nosel_col[1] = nosel_col[2] = 0.0f;
}
else{
sel_col[0] = (float)sel[0] / 255.0f;
sel_col[1] = (float)sel[1] / 255.0f;
sel_col[2] = (float)sel[2] / 255.0f;
nosel_col[0] = (float)nosel[0] / 255.0f;
nosel_col[1] = (float)nosel[1] / 255.0f;
nosel_col[2] = (float)nosel[2] / 255.0f;
}
}
if(editupdate && psys->pathcache && totpart == psys->totcached) {
cache = psys->pathcache;
}
else {
/* clear out old and create new empty path cache */
psys_free_path_cache(psys);
/* allocate cache array for fast access and set pointers to contiguous mem block */
cache = psys->pathcache = MEM_callocN(MAX2(1, totpart) * sizeof(void *), "Path cache array");
cache[0] = MEM_callocN(totpart * (steps + 1) * sizeof(ParticleCacheKey), "Path cache");
for(i=1; i<totpart; i++)
cache[i] = cache[0] + i * (steps + 1);
}
if(edit==NULL && psys->soft && psys->softflag & OB_SB_ENABLE)
soft = psys->soft;
psys->lattice = psys_get_lattice(ob, psys);
ma= give_current_material(ob, psys->part->omat);
if(ma && (psys->part->draw & PART_DRAW_MAT_COL))
VECCOPY(col, &ma->r)
/*---first main loop: create all actual particles' paths---*/
for(i=0,pa=psys->particles; i<totpart; i++, pa++){
if(psys && edit==NULL && (pa->flag & PARS_NO_DISP || pa->flag & PARS_UNEXIST)) {
if(soft)
bp[0] += pa->totkey; /* TODO use of initialized value? */
continue;
}
if(editupdate && !(pa->flag & PARS_EDIT_RECALC)) continue;
else memset(cache[i], 0, sizeof(*cache[i])*(steps+1));
cache[i]->steps = steps;
if(edit)
ekey = edit->keys[i];
/*--get the first data points--*/
if(psys->flag & PSYS_KEYED) {
kkey[0] = pa->keys;
kkey[1] = kkey[0] + 1;
birthtime = kkey[0]->time;
dietime = kkey[0][pa->totkey-1].time;
}
else {
hkey[0] = pa->hair;
hkey[1] = hkey[0] + 1;
birthtime = hkey[0]->time;
dietime = hkey[0][pa->totkey-1].time;
psys_mat_hair_to_global(ob, psmd->dm, psys->part->from, pa, hairmat);
}
if(soft){
bp[0] = soft->bpoint + pa->bpi;
bp[1] = bp[0] + 1;
}
/*--interpolate actual path from data points--*/
for(k=0, ca=cache[i]; k<=steps; k++, ca++){
time = (float)k / (float)steps;
t = birthtime + time * (dietime - birthtime);
if(psys->flag & PSYS_KEYED) {
while(kkey[1]->time < t) {
kkey[1]++;
}
kkey[0] = kkey[1] - 1;
}
else {
while(hkey[1]->time < t) {
hkey[1]++;
bp[1]++;
}
hkey[0] = hkey[1] - 1;
}
if(soft) {
bp[0] = bp[1] - 1;
bp_to_particle(keys + 1, bp[0], hkey[0]);
bp_to_particle(keys + 2, bp[1], hkey[1]);
}
else if(psys->flag & PSYS_KEYED) {
memcpy(keys + 1, kkey[0], sizeof(ParticleKey));
memcpy(keys + 2, kkey[1], sizeof(ParticleKey));
}
else {
hair_to_particle(keys + 1, hkey[0]);
hair_to_particle(keys + 2, hkey[1]);
}
if((psys->flag & PSYS_KEYED)==0) {
if(soft) {
if(hkey[0] != pa->hair)
bp_to_particle(keys, bp[0] - 1, hkey[0] - 1);
else
bp_to_particle(keys, bp[0], hkey[0]);
}
else {
if(hkey[0] != pa->hair)
hair_to_particle(keys, hkey[0] - 1);
else
hair_to_particle(keys, hkey[0]);
}
if(soft) {
if(hkey[1] != pa->hair + pa->totkey - 1)
bp_to_particle(keys + 3, bp[1], hkey[1] + 1);
else
bp_to_particle(keys + 3, bp[1], hkey[1]);
}
else {
if(hkey[1] != pa->hair + pa->totkey - 1)
hair_to_particle(keys + 3, hkey[1] + 1);
else
hair_to_particle(keys + 3, hkey[1]);
}
}
dfra = keys[2].time - keys[1].time;
keytime = (t - keys[1].time) / dfra;
/* convert velocity to timestep size */
if(psys->flag & PSYS_KEYED){
VecMulf(keys[1].vel, dfra / frs_sec);
VecMulf(keys[2].vel, dfra / frs_sec);
}
/* now we should have in chronologiacl order k1<=k2<=t<=k3<=k4 with keytime between [0,1]->[k2,k3] (k1 & k4 used for cardinal & bspline interpolation)*/
interpolate_particle((psys->flag & PSYS_KEYED) ? -1 /* signal for cubic interpolation */
: ((psys->part->flag & PART_HAIR_BSPLINE) ? KEY_BSPLINE : KEY_CARDINAL)
,keys, keytime, &result);
/* the velocity needs to be converted back from cubic interpolation */
if(psys->flag & PSYS_KEYED){
VecMulf(result.vel, frs_sec / dfra);
}
else if(soft==NULL) { /* softbody and keyed are allready in global space */
Mat4MulVecfl(hairmat, result.co);
}
VECCOPY(ca->co, result.co);
}
/*--modify paths--*/
VecSubf(vec,(cache[i]+1)->co,cache[i]->co);
length = VecLength(vec);
for(k=0, ca=cache[i]; k<=steps; k++, ca++) {
/* apply effectors */
if(edit==0 && k) {
float force[3] = {0.0f,0.0f,0.0f}, vel[3] = {0.0f,0.0f,0.0f};
ParticleKey eff_key;
VECCOPY(eff_key.co,(ca-1)->co);
VECCOPY(eff_key.vel,(ca-1)->vel);
QUATCOPY(eff_key.rot,(ca-1)->rot);
do_effectors(i, pa, &eff_key, ob, psys, force, vel, dfra, cfra);
VecMulf(force, pow((float)k / (float)steps, 100.0f * psys->part->eff_hair) / (float)steps);
VecAddf(force, force, vec);
Normalize(force);
if(k < steps) {
VecSubf(vec, (ca+1)->co, ca->co);
length = VecLength(vec);
}
VECADDFAC(ca->co, (ca-1)->co, force, length);
}
/* apply guide curves to path data */
if(edit==0 && psys->effectors.first && (psys->part->flag & PART_CHILD_GUIDE)==0)
do_guide(&result, i, time, &psys->effectors);
/* apply lattice */
if(psys->lattice && edit==0)
calc_latt_deform(ca->co, 1.0f);
/* figure out rotation */
if(k) {
float angle, tangent[3], normal[3], q[4];
if(k == 1) {
float *q2;
VECSUB(tangent, ca->co, (ca - 1)->co);
q2 = vectoquat(tangent, OB_POSX, OB_POSZ);
QUATCOPY((ca - 1)->rot, q2);
VECCOPY(prev_tangent, tangent);
Normalize(prev_tangent);
}
else {
VECSUB(tangent, ca->co, (ca - 1)->co);
Normalize(tangent);
angle = saacos(Inpf(tangent, prev_tangent));
if((angle > -0.000001) && (angle < 0.000001)){
QUATCOPY((ca - 1)->rot, (ca - 2)->rot);
}
else{
Crossf(normal, prev_tangent, tangent);
VecRotToQuat(normal, angle, q);
QuatMul((ca - 1)->rot, q, (ca - 2)->rot);
}
VECCOPY(prev_tangent, tangent);
}
if(k == steps) {
QUATCOPY(ca->rot, (ca - 1)->rot);
}
}
/* set velocity */
if(k){
VECSUB(ca->vel, ca->co, (ca-1)->co);
if(k==1) {
VECCOPY((ca-1)->vel, ca->vel);
}
}
/* selection coloring in edit mode */
if(edit){
if(pset->brushtype==PE_BRUSH_WEIGHT){
if(k==steps)
VecLerpf(ca->col, nosel_col, sel_col, hkey[0]->weight);
else
VecLerpf(ca->col,nosel_col,sel_col,
(1.0f - keytime) * hkey[0]->weight + keytime * hkey[1]->weight);
}
else{
if((ekey + (hkey[0] - pa->hair))->flag & PEK_SELECT){
if((ekey + (hkey[1] - pa->hair))->flag & PEK_SELECT){
VECCOPY(ca->col, sel_col);
}
else{
VecLerpf(ca->col, sel_col, nosel_col, keytime);
}
}
else{
if((ekey + (hkey[1] - pa->hair))->flag & PEK_SELECT){
VecLerpf(ca->col, nosel_col, sel_col, keytime);
}
else{
VECCOPY(ca->col, nosel_col);
}
}
}
}
else{
VECCOPY(ca->col, col);
}
}
}
psys->totcached = totpart;
if(psys && psys->lattice){
end_latt_deform();
psys->lattice=0;
}
}
/************************************************/
/* Particle Key handling */
/************************************************/
void copy_particle_key(ParticleKey *to, ParticleKey *from, int time){
if(time){
memcpy(to,from,sizeof(ParticleKey));
}
else{
float to_time=to->time;
memcpy(to,from,sizeof(ParticleKey));
to->time=to_time;
}
/*
VECCOPY(to->co,from->co);
VECCOPY(to->vel,from->vel);
QUATCOPY(to->rot,from->rot);
if(time)
to->time=from->time;
to->flag=from->flag;
to->sbw=from->sbw;
*/
}
void psys_get_from_key(ParticleKey *key, float *loc, float *vel, float *rot, float *time){
if(loc) VECCOPY(loc,key->co);
if(vel) VECCOPY(vel,key->vel);
if(rot) QUATCOPY(rot,key->rot);
if(time) *time=key->time;
}
/*-------changing particle keys from space to another-------*/
void psys_key_to_object(Object *ob, ParticleKey *key, float imat[][4]){
float q[4], imat2[4][4];
if(imat==0){
Mat4Invert(imat2,ob->obmat);
imat=imat2;
}
VECADD(key->vel,key->vel,key->co);
Mat4MulVecfl(imat,key->co);
Mat4MulVecfl(imat,key->vel);
Mat4ToQuat(imat,q);
VECSUB(key->vel,key->vel,key->co);
QuatMul(key->rot,q,key->rot);
}
static void key_from_object(Object *ob, ParticleKey *key){
float q[4];
VECADD(key->vel,key->vel,key->co);
Mat4MulVecfl(ob->obmat,key->co);
Mat4MulVecfl(ob->obmat,key->vel);
Mat4ToQuat(ob->obmat,q);
VECSUB(key->vel,key->vel,key->co);
QuatMul(key->rot,q,key->rot);
}
static void triatomat(float *v1, float *v2, float *v3, float (*uv)[2], float mat[][4])
{
float det, w1, w2, d1[2], d2[2];
memset(mat, 0, sizeof(float)*4*4);
mat[3][3]= 1.0f;
/* first axis is the normal */
CalcNormFloat(v1, v2, v3, mat[2]);
/* second axis along (1, 0) in uv space */
if(uv) {
d1[0]= uv[1][0] - uv[0][0];
d1[1]= uv[1][1] - uv[0][1];
d2[0]= uv[2][0] - uv[0][0];
d2[1]= uv[2][1] - uv[0][1];
det = d2[0]*d1[1] - d2[1]*d1[0];
if(det != 0.0f) {
det= 1.0f/det;
w1= -d2[1]*det;
w2= d1[1]*det;
mat[1][0]= w1*(v2[0] - v1[0]) + w2*(v3[0] - v1[0]);
mat[1][1]= w1*(v2[1] - v1[1]) + w2*(v3[1] - v1[1]);
mat[1][2]= w1*(v2[2] - v1[2]) + w2*(v3[2] - v1[2]);
Normalize(mat[1]);
}
else
mat[1][0]= mat[1][1]= mat[1][2]= 0.0f;
}
else {
VecSubf(mat[1], v2, v1);
Normalize(mat[1]);
}
/* third as a cross product */
Crossf(mat[0], mat[1], mat[2]);
}
static void psys_face_mat(Object *ob, DerivedMesh *dm, ParticleData *pa, float mat[][4], int orco)
{
float v[3][3];
MFace *mface;
OrigSpaceFace *osface;
float (*orcodata)[3];
int i = pa->num_dmcache==DMCACHE_NOTFOUND ? pa->num : pa->num_dmcache;
if (i==-1 || i >= dm->getNumFaces(dm)) { Mat4One(mat); return; }
mface=dm->getFaceData(dm,i,CD_MFACE);
osface=dm->getFaceData(dm,i,CD_ORIGSPACE);
if(orco && (orcodata=dm->getVertDataArray(dm, CD_ORCO))) {
VECCOPY(v[0], orcodata[mface->v1]);
VECCOPY(v[1], orcodata[mface->v2]);
VECCOPY(v[2], orcodata[mface->v3]);
/* ugly hack to use non-transformed orcos, since only those
* give symmetric results for mirroring in particle mode */
transform_mesh_orco_verts(ob->data, v, 3, 1);
}
else {
dm->getVertCo(dm,mface->v1,v[0]);
dm->getVertCo(dm,mface->v2,v[1]);
dm->getVertCo(dm,mface->v3,v[2]);
}
triatomat(v[0], v[1], v[2], (osface)? osface->uv: NULL, mat);
}
void psys_mat_hair_to_object(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[][4])
{
float vec[3];
psys_face_mat(0, dm, pa, hairmat, 0);
psys_particle_on_dm(ob, dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, 0, 0);
VECCOPY(hairmat[3],vec);
}
void psys_mat_hair_to_orco(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[][4])
{
float vec[3], orco[3];
psys_face_mat(ob, dm, pa, hairmat, 1);
psys_particle_on_dm(ob, dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, orco, 0);
/* see psys_face_mat for why this function is called */
transform_mesh_orco_verts(ob->data, &orco, 1, 1);
VECCOPY(hairmat[3],orco);
}
/*
void psys_key_to_geometry(DerivedMesh *dm, ParticleData *pa, ParticleKey *key)
{
float q[4], v1[3], v2[3], v3[3];
dm->getVertCo(dm,pa->verts[0],v1);
dm->getVertCo(dm,pa->verts[1],v2);
dm->getVertCo(dm,pa->verts[2],v3);
triatoquat(v1, v2, v3, q);
QuatInv(q);
VECSUB(key->co,key->co,v1);
VECADD(key->vel,key->vel,key->co);
QuatMulVecf(q, key->co);
QuatMulVecf(q, key->vel);
VECSUB(key->vel,key->vel,key->co);
QuatMul(key->rot,q,key->rot);
}
void psys_key_from_geometry(DerivedMesh *dm, ParticleData *pa, ParticleKey *key)
{
float q[4], v1[3], v2[3], v3[3];
dm->getVertCo(dm,pa->verts[0],v1);
dm->getVertCo(dm,pa->verts[1],v2);
dm->getVertCo(dm,pa->verts[2],v3);
triatoquat(v1, v2, v3, q);
VECADD(key->vel,key->vel,key->co);
QuatMulVecf(q, key->co);
QuatMulVecf(q, key->vel);
VECSUB(key->vel,key->vel,key->co);
VECADD(key->co,key->co,v1);
QuatMul(key->rot,q,key->rot);
}
*/
void psys_vec_rot_to_face(DerivedMesh *dm, ParticleData *pa, float *vec)//to_geometry(DerivedMesh *dm, ParticleData *pa, float *vec)
{
float mat[4][4];
psys_face_mat(0, dm, pa, mat, 0);
Mat4Transp(mat); /* cheap inverse for rotation matrix */
Mat4Mul3Vecfl(mat, vec);
}
/* unused */
#if 0
static void psys_vec_rot_from_face(DerivedMesh *dm, ParticleData *pa, float *vec)//from_geometry(DerivedMesh *dm, ParticleData *pa, float *vec)
{
float q[4], v1[3], v2[3], v3[3];
/*
dm->getVertCo(dm,pa->verts[0],v1);
dm->getVertCo(dm,pa->verts[1],v2);
dm->getVertCo(dm,pa->verts[2],v3);
*/
/* replace with this */
MFace *mface;
int i; // = psys_particle_dm_face_lookup(dm, pa->num, pa->fuv, pa->foffset, (LinkNode*)NULL);
i = pa->num_dmcache==DMCACHE_NOTFOUND ? pa->num : pa->num_dmcache;
if (i==-1 || i >= dm->getNumFaces(dm)) { vec[0] = vec[1] = 0; vec[2] = 1; return; }
mface=dm->getFaceData(dm,i,CD_MFACE);
dm->getVertCo(dm,mface->v1,v1);
dm->getVertCo(dm,mface->v2,v2);
dm->getVertCo(dm,mface->v3,v3);
/* done */
triatoquat(v1, v2, v3, q);
QuatMulVecf(q, vec);
//VECADD(vec,vec,v1);
}
#endif
void psys_mat_hair_to_global(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[][4])
{
float facemat[4][4];
psys_mat_hair_to_object(ob, dm, from, pa, facemat);
Mat4MulMat4(hairmat, facemat, ob->obmat);
}
/************************************************/
/* ParticleSettings handling */
/************************************************/
static void default_particle_settings(ParticleSettings *part)
{
int i;
part->type= PART_EMITTER;
part->distr= PART_DISTR_JIT;
part->draw_as=PART_DRAW_DOT;
part->bb_uv_split=1;
part->bb_align=PART_BB_VIEW;
part->bb_split_offset=PART_BB_OFF_LINEAR;
part->flag=PART_REACT_MULTIPLE|PART_HAIR_GEOMETRY;
part->sta= 1.0;
part->end= 100.0;
part->lifetime= 50.0;
part->jitfac= 1.0;
part->totpart= 1000;
part->grid_res= 10;
part->timetweak= 1.0;
part->keyed_time= 0.5;
//part->userjit;
part->integrator= PART_INT_MIDPOINT;
part->phystype= PART_PHYS_NEWTON;
part->hair_step= 10;
part->keys_step= 5;
part->draw_step= 4;
part->ren_step= 6;
part->adapt_angle= 5;
part->adapt_pix= 3;
part->kink_axis= 2;
part->reactevent= PART_EVENT_DEATH;
part->disp=100;
part->from= PART_FROM_FACE;
part->length= 1.0;
part->nbetween= 4;
part->boidneighbours= 5;
part->max_vel = 10.0f;
part->average_vel = 0.3f;
part->max_tan_acc = 0.2f;
part->max_lat_acc = 1.0f;
part->reactshape=1.0f;
part->mass=1.0;
part->size=1.0;
part->childsize=1.0;
part->child_nbr=10;
part->ren_child_nbr=100;
part->childrad=0.2f;
part->childflat=0.0f;
part->clumppow=0.0f;
part->kink_amp=0.2f;
part->kink_freq=2.0;
part->rough1_size=1.0;
part->rough2_size=1.0;
part->rough_end_shape=1.0;
part->draw_line[0]=0.5;
part->banking=1.0;
part->max_bank=1.0;
for(i=0; i<BOID_TOT_RULES; i++){
part->boidrule[i]=(char)i;
part->boidfac[i]=0.5;
}
part->ipo = NULL;
part->simplify_refsize= 1920;
part->simplify_rate= 1.0f;
part->simplify_transition= 0.1f;
part->simplify_viewport= 0.8;
}
ParticleSettings *psys_new_settings(char *name, Main *main)
{
ParticleSettings *part;
part= alloc_libblock(&main->particle, ID_PA, name);
default_particle_settings(part);
return part;
}
ParticleSettings *psys_copy_settings(ParticleSettings *part)
{
ParticleSettings *partn;
partn= copy_libblock(part);
if(partn->pd) partn->pd= MEM_dupallocN(part->pd);
return partn;
}
void psys_make_local_settings(ParticleSettings *part)
{
Object *ob;
ParticleSettings *par;
int local=0, lib=0;
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
if(part->id.lib==0) return;
if(part->id.us==1) {
part->id.lib= 0;
part->id.flag= LIB_LOCAL;
new_id(0, (ID *)part, 0);
return;
}
/* test objects */
ob= G.main->object.first;
while(ob) {
ParticleSystem *psys=ob->particlesystem.first;
for(; psys; psys=psys->next){
if(psys->part==part) {
if(ob->id.lib) lib= 1;
else local= 1;
}
}
ob= ob->id.next;
}
if(local && lib==0) {
part->id.lib= 0;
part->id.flag= LIB_LOCAL;
new_id(0, (ID *)part, 0);
}
else if(local && lib) {
par= psys_copy_settings(part);
par->id.us= 0;
/* do objects */
ob= G.main->object.first;
while(ob) {
ParticleSystem *psys=ob->particlesystem.first;
for(; psys; psys=psys->next){
if(psys->part==part && ob->id.lib==0) {
psys->part= par;
par->id.us++;
part->id.us--;
}
}
ob= ob->id.next;
}
}
}
/* should be integrated to depgraph signals */
void psys_flush_settings(ParticleSettings *part, int event, int hair_recalc)
{
Base *base;
Object *ob, *tob;
ParticleSystem *psys;
int flush;
/* update all that have same particle settings */
for(base = G.scene->base.first; base; base= base->next) {
if(base->object->particlesystem.first) {
ob=base->object;
flush=0;
for(psys=ob->particlesystem.first; psys; psys=psys->next){
if(psys->part==part){
psys->recalc |= event;
if(hair_recalc)
psys->recalc |= PSYS_RECALC_HAIR;
flush++;
}
else if(psys->part->type==PART_REACTOR){
ParticleSystem *tpsys;
tob=psys->target_ob;
if(tob==0)
tob=ob;
tpsys=BLI_findlink(&tob->particlesystem,psys->target_psys-1);
if(tpsys && tpsys->part==part){
psys->flag |= event;
flush++;
}
}
}
if(flush)
DAG_object_flush_update(G.scene, ob, OB_RECALC_DATA);
}
}
}
/************************************************/
/* Textures */
/************************************************/
static void get_cpa_texture(DerivedMesh *dm, Material *ma, int face_index, float *fw, float *orco, ParticleTexture *ptex, int event)
{
MTex *mtex;
int m,setvars=0;
float value, rgba[4], texco[3];
if(ma) for(m=0; m<MAX_MTEX; m++){
mtex=ma->mtex[m];
if(mtex && (ma->septex & (1<<m))==0){
float var=mtex->varfac;
short blend=mtex->blendtype;
short neg=mtex->pmaptoneg;
if(mtex->texco & TEXCO_UV && fw){
int uv_index=CustomData_get_named_layer_index(&dm->faceData,CD_MTFACE,mtex->uvname);
if(uv_index<0){
uv_index=CustomData_get_active_layer_index(&dm->faceData,CD_MTFACE);
}
if(uv_index>=0){
CustomDataLayer *layer=&dm->faceData.layers[uv_index];
MTFace *mtface= &((MTFace*)layer->data)[face_index];
MFace *mf=dm->getFaceData(dm,face_index,CD_MFACE);
psys_interpolate_uvs(mtface,mf->v4,fw,texco);
texco[0]*=2.0;
texco[1]*=2.0;
texco[0]-=1.0;
texco[1]-=1.0;
}
else
VECCOPY(texco,orco);
}
else{
VECCOPY(texco,orco);
}
externtex(mtex, texco, &value, rgba, rgba+1, rgba+2, rgba+3);
if((event & mtex->pmapto) & MAP_PA_TIME){
if((setvars&MAP_PA_TIME)==0){
ptex->time=0.0;
setvars|=MAP_PA_TIME;
}
ptex->time= texture_value_blend(mtex->def_var,ptex->time,value,var,blend,neg & MAP_PA_TIME);
}
if((event & mtex->pmapto) & MAP_PA_LENGTH)
ptex->length= texture_value_blend(value,ptex->length,value,var,blend,neg & MAP_PA_LENGTH);
if((event & mtex->pmapto) & MAP_PA_CLUMP)
ptex->clump= texture_value_blend(value,ptex->clump,value,var,blend,neg & MAP_PA_CLUMP);
if((event & mtex->pmapto) & MAP_PA_KINK)
ptex->kink= texture_value_blend(value,ptex->kink,value,var,blend,neg & MAP_PA_KINK);
if((event & mtex->pmapto) & MAP_PA_ROUGH)
ptex->rough= texture_value_blend(value,ptex->rough,value,var,blend,neg & MAP_PA_ROUGH);
}
}
if(event & MAP_PA_TIME) { CLAMP(ptex->time,0.0,1.0); }
if(event & MAP_PA_LENGTH) { CLAMP(ptex->length,0.0,1.0); }
if(event & MAP_PA_CLUMP) { CLAMP(ptex->clump,0.0,1.0); }
if(event & MAP_PA_KINK) { CLAMP(ptex->kink,0.0,1.0); }
if(event & MAP_PA_ROUGH) { CLAMP(ptex->rough,0.0,1.0); }
}
void psys_get_texture(Object *ob, Material *ma, ParticleSystemModifierData *psmd, ParticleSystem *psys, ParticleData *pa, ParticleTexture *ptex, int event)
{
MTex *mtex;
int m;
float value, rgba[4], co[3], texco[3];
int setvars=0;
if(ma) for(m=0; m<MAX_MTEX; m++){
mtex=ma->mtex[m];
if(mtex && (ma->septex & (1<<m))==0){
float var=mtex->varfac;
short blend=mtex->blendtype;
short neg=mtex->pmaptoneg;
if(mtex->texco & TEXCO_UV){
int uv_index=CustomData_get_named_layer_index(&psmd->dm->faceData,CD_MTFACE,mtex->uvname);
if(uv_index<0){
uv_index=CustomData_get_active_layer_index(&psmd->dm->faceData,CD_MTFACE);
}
if(uv_index>=0){
CustomDataLayer *layer=&psmd->dm->faceData.layers[uv_index];
MTFace *mtface= &((MTFace*)layer->data)[pa->num];
MFace *mf=psmd->dm->getFaceData(psmd->dm,pa->num,CD_MFACE);
psys_interpolate_uvs(mtface,mf->v4,pa->fuv,texco);
texco[0]*=2.0;
texco[1]*=2.0;
texco[0]-=1.0;
texco[1]-=1.0;
}
else
//psys_particle_on_emitter(ob,psmd,psys->part->from,pa->num,pa->fuv,pa->foffset,texco,0,0,0);
/* <jahka> anyways I think it will be too small a difference to notice, so psys_get_texture should only know about the original mesh structure.. no dm needed anywhere */
/* <brecht> the code only does dm based lookup now, so passing num_dmcache anyway to avoid^
* massive slowdown here */
psys_particle_on_emitter(ob,psmd,psys->part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,0,0,0,texco, 0);
}
else{
//psys_particle_on_emitter(ob,psmd,psys->part->from,pa->num,pa->fuv,pa->offset,texco,0,0,0);
/* ditto above */
psys_particle_on_emitter(ob,psmd,psys->part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,0,0,0,texco, 0);
}
externtex(mtex, texco, &value, rgba, rgba+1, rgba+2, rgba+3);
if((event & mtex->pmapto) & MAP_PA_TIME){
if((setvars&MAP_PA_TIME)==0){
ptex->time=0.0;
setvars|=MAP_PA_TIME;
}
ptex->time= texture_value_blend(mtex->def_var,ptex->time,value,var,blend,neg & MAP_PA_TIME);
}
if((event & mtex->pmapto) & MAP_PA_LIFE)
ptex->life= texture_value_blend(mtex->def_var,ptex->life,value,var,blend,neg & MAP_PA_LIFE);
if((event & mtex->pmapto) & MAP_PA_DENS)
ptex->exist= texture_value_blend(mtex->def_var,ptex->exist,value,var,blend,neg & MAP_PA_DENS);
if((event & mtex->pmapto) & MAP_PA_SIZE)
ptex->size= texture_value_blend(mtex->def_var,ptex->size,value,var,blend,neg & MAP_PA_SIZE);
if((event & mtex->pmapto) & MAP_PA_IVEL)
ptex->ivel= texture_value_blend(mtex->def_var,ptex->ivel,value,var,blend,neg & MAP_PA_IVEL);
if((event & mtex->pmapto) & MAP_PA_PVEL)
texture_rgb_blend(ptex->pvel,rgba,ptex->pvel,value,var,blend);
if((event & mtex->pmapto) & MAP_PA_LENGTH)
ptex->length= texture_value_blend(mtex->def_var,ptex->length,value,var,blend,neg & MAP_PA_LENGTH);
if((event & mtex->pmapto) & MAP_PA_CLUMP)
ptex->clump= texture_value_blend(mtex->def_var,ptex->clump,value,var,blend,neg & MAP_PA_CLUMP);
if((event & mtex->pmapto) & MAP_PA_KINK)
ptex->kink= texture_value_blend(mtex->def_var,ptex->kink,value,var,blend,neg & MAP_PA_CLUMP);
}
}
if(event & MAP_PA_TIME) { CLAMP(ptex->time,0.0,1.0); }
if(event & MAP_PA_LIFE) { CLAMP(ptex->life,0.0,1.0); }
if(event & MAP_PA_DENS) { CLAMP(ptex->exist,0.0,1.0); }
if(event & MAP_PA_SIZE) { CLAMP(ptex->size,0.0,1.0); }
if(event & MAP_PA_IVEL) { CLAMP(ptex->ivel,0.0,1.0); }
if(event & MAP_PA_LENGTH) { CLAMP(ptex->length,0.0,1.0); }
if(event & MAP_PA_CLUMP) { CLAMP(ptex->clump,0.0,1.0); }
if(event & MAP_PA_KINK) { CLAMP(ptex->kink,0.0,1.0); }
}
/************************************************/
/* Particle State */
/************************************************/
float psys_get_timestep(ParticleSettings *part)
{
return 0.04f*part->timetweak;
}
/* part->size should be updated with possible ipo effection before this is called */
float psys_get_size(Object *ob, Material *ma, ParticleSystemModifierData *psmd, IpoCurve *icu_size, ParticleSystem *psys, ParticleSettings *part, ParticleData *pa, float *vg_size)
{
ParticleTexture ptex;
float size=1.0f;
if(ma && part->from!=PART_FROM_PARTICLE){
ptex.size=size;
psys_get_texture(ob,ma,psmd,psys,pa,&ptex,MAP_PA_SIZE);
size=ptex.size;
}
if(icu_size){
calc_icu(icu_size,pa->time);
size*=icu_size->curval;
}
if(vg_size)
size*=psys_interpolate_value_from_verts(psmd->dm,part->from,pa->num,pa->fuv,vg_size);
if(part->randsize!=0.0)
size*= 1.0f - part->randsize*pa->sizemul;
return size*part->size;
}
float psys_get_child_time(ParticleSystem *psys, ChildParticle *cpa, float cfra)
{
ParticleSettings *part = psys->part;
if(part->childtype==PART_CHILD_FACES){
float time;
int w=0;
time=0.0;
while(w<4 && cpa->pa[w]>=0){
time+=cpa->w[w]*(psys->particles+cpa->pa[w])->time;
w++;
}
return (cfra-time)/(part->lifetime*(1.0f-part->randlife*cpa->rand[1]));
}
else{
ParticleData *pa = psys->particles + cpa->parent;
return (cfra-pa->time)/pa->lifetime;
}
}
float psys_get_child_size(ParticleSystem *psys, ChildParticle *cpa, float cfra, float *pa_time)
{
ParticleSettings *part = psys->part;
float size, time;
if(part->childtype==PART_CHILD_FACES){
if(pa_time)
time=*pa_time;
else
time=psys_get_child_time(psys,cpa,cfra);
if((part->flag&PART_ABS_TIME)==0 && part->ipo){
calc_ipo(part->ipo, 100*time);
execute_ipo((ID *)part, part->ipo);
}
size=part->size;
}
else
size=psys->particles[cpa->parent].size;
size*=part->childsize;
if(part->childrandsize!=0.0)
size *= 1.0f - part->childrandsize*cpa->rand[2];
return size;
}
/* get's hair (or keyed) particles state at the "path time" specified in state->time */
void psys_get_particle_on_path(Object *ob, ParticleSystem *psys, int p, ParticleKey *state, int vel)
{
ParticleSettings *part = psys->part;
ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys);
Material *ma = give_current_material(ob, part->omat);
ParticleData *pa;
ChildParticle *cpa;
ParticleTexture ptex;
ParticleKey tstate, *kkey[2] = {NULL, NULL};
HairKey *hkey[2];
ParticleKey *par=0, keys[4];
float t, real_t, dfra, keytime, frs_sec = G.scene->r.frs_sec;
float co[3], orco[3];
float imat[4][4], hairmat[4][4], cpa_1st[3];
float pa_clump = 0.0, pa_kink = 0.0;
int totparent = 0;
int totpart = psys->totpart;
int totchild = psys->totchild;
short between = 0, edit = 0;
float *cpa_fuv; int cpa_num; short cpa_from;
//if(psys_in_edit_mode(psys)){
// if((psys->edit_path->flag & PSYS_EP_SHOW_CHILD)==0)
// totchild=0;
// edit=1;
//}
/* user want's cubic interpolation but only without sb it possible */
//if(interpolation==PART_INTER_CUBIC && baked && psys->softflag==OB_SB_ENABLE)
// interpolation=PART_INTER_BSPLINE;
//else if(baked==0) /* it doesn't make sense to use other types for keyed */
// interpolation=PART_INTER_CUBIC;
t=state->time;
CLAMP(t, 0.0, 1.0);
if(p<totpart){
pa = psys->particles + p;
if(pa->alive==PARS_DEAD && part->flag & PART_STICKY && pa->flag & PARS_STICKY && pa->stick_ob){
copy_particle_key(state,&pa->state,0);
key_from_object(pa->stick_ob,state);
return;
}
if(psys->flag & PSYS_KEYED) {
kkey[0] = pa->keys;
kkey[1] = kkey[0] + 1;
real_t = kkey[0]->time + t * (kkey[0][pa->totkey-1].time - kkey[0]->time);
}
else {
hkey[0] = pa->hair;
hkey[1] = pa->hair + 1;
real_t = hkey[0]->time + (hkey[0][pa->totkey-1].time - hkey[0]->time) * t;
}
if(psys->flag & PSYS_KEYED) {
while(kkey[1]->time < real_t) {
kkey[1]++;
}
kkey[0] = kkey[1] - 1;
memcpy(keys + 1, kkey[0], sizeof(ParticleKey));
memcpy(keys + 2, kkey[1], sizeof(ParticleKey));
}
else {
while(hkey[1]->time < real_t)
hkey[1]++;
hkey[0] = hkey[1] - 1;
hair_to_particle(keys + 1, hkey[0]);
hair_to_particle(keys + 2, hkey[1]);
}
if((psys->flag & PSYS_KEYED)==0) {
//if(soft){
// if(key[0] != sbel.keys)
// DB_copy_key(&k1,key[0]-1);
// else
// DB_copy_key(&k1,&k2);
//}
//else{
if(hkey[0] != pa->hair)
hair_to_particle(keys, hkey[0] - 1);
else
hair_to_particle(keys, hkey[0]);
//}
//if(soft){
// if(key[1] != sbel.keys + sbel.totkey-1)
// DB_copy_key(&k4,key[1]+1);
// else
// DB_copy_key(&k4,&k3);
//}
//else {
if(hkey[1] != pa->hair + pa->totkey - 1)
hair_to_particle(keys + 3, hkey[1] + 1);
else
hair_to_particle(keys + 3, hkey[1]);
}
//}
//psys_get_particle_on_path(bsys,p,t,bkey,ckey[0]);
//if(part->rotfrom==PART_ROT_KEYS)
// QuatInterpol(state->rot,k2.rot,k3.rot,keytime);
//else{
// /* TODO: different rotations */
// float nvel[3];
// float *q2;
// VECCOPY(nvel,state->vel);
// VecMulf(nvel,-1.0f);
// q2=vectoquat(nvel, OB_POSX, OB_POSZ);
// QUATCOPY(state->rot,q2);
//}
dfra = keys[2].time - keys[1].time;
keytime = (real_t - keys[1].time) / dfra;
/* convert velocity to timestep size */
if(psys->flag & PSYS_KEYED){
VecMulf(keys[1].vel, dfra / frs_sec);
VecMulf(keys[2].vel, dfra / frs_sec);
QuatInterpol(state->rot,keys[1].rot,keys[2].rot,keytime);
}
interpolate_particle((psys->flag & PSYS_KEYED) ? -1 /* signal for cubic interpolation */
: ((psys->part->flag & PART_HAIR_BSPLINE) ? KEY_BSPLINE : KEY_CARDINAL)
,keys, keytime, state);
/* the velocity needs to be converted back from cubic interpolation */
if(psys->flag & PSYS_KEYED){
VecMulf(state->vel, frs_sec / dfra);
}
else {
if((pa->flag & PARS_REKEY)==0) {
psys_mat_hair_to_global(ob, psmd->dm, part->from, pa, hairmat);
Mat4MulVecfl(hairmat, state->co);
if(psys->effectors.first && (part->flag & PART_CHILD_GUIDE)==0) {
do_guide(state, p, state->time, &psys->effectors);
/* TODO: proper velocity handling */
}
if(psys->lattice && edit==0)
calc_latt_deform(state->co,1.0f);
}
}
}
else if(totchild){
//Mat4Invert(imat,ob->obmat);
cpa=psys->child+p-totpart;
if(totchild && part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES){
totparent=(int)(totchild*part->parents*0.3);
/* part->parents could still be 0 so we can't test with totparent */
between=1;
}
if(between){
int w = 0;
float foffset;
/* get parent states */
while(w<4 && cpa->pa[w]>=0){
keys[w].time = t;
psys_get_particle_on_path(ob, psys, cpa->pa[w], keys+w, 1);
w++;
}
/* get the original coordinates (orco) for texture usage */
cpa_num=cpa->num;
foffset= cpa->foffset;
if(part->childtype == PART_CHILD_FACES)
foffset = -(2.0f + part->childspread);
cpa_fuv = cpa->fuv;
cpa_from = PART_FROM_FACE;
psys_particle_on_emitter(ob,psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa->fuv,foffset,co,0,0,0,orco,0);
/* we need to save the actual root position of the child for positioning it accurately to the surface of the emitter */
//VECCOPY(cpa_1st,co);
//Mat4MulVecfl(ob->obmat,cpa_1st);
pa=0;
}
else{
/* get the parent state */
keys->time = t;
psys_get_particle_on_path(ob,psys,cpa->parent,keys,1);
/* get the original coordinates (orco) for texture usage */
pa=psys->particles+cpa->parent;
cpa_from=part->from;
cpa_num=pa->num;
cpa_fuv=pa->fuv;
psys_particle_on_emitter(ob,psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa_fuv,pa->foffset,co,0,0,0,orco,0);
}
/* correct child ipo timing */
if((part->flag&PART_ABS_TIME)==0 && part->ipo){
calc_ipo(part->ipo, 100.0f*t);
execute_ipo((ID *)part, part->ipo);
}
/* get different child parameters from textures & vgroups */
ptex.clump=1.0;
ptex.kink=1.0;
get_cpa_texture(psmd->dm,ma,cpa_num,cpa_fuv,orco,&ptex,MAP_PA_CLUMP|MAP_PA_KINK);
pa_clump=ptex.clump;
pa_kink=ptex.kink;
/* TODO: vertex groups */
if(between){
int w=0;
state->co[0] = state->co[1] = state->co[2] = 0.0f;
state->vel[0] = state->vel[1] = state->vel[2] = 0.0f;
/* child position is the weighted sum of parent positions */
while(w<4 && cpa->pa[w]>=0){
state->co[0] += cpa->w[w] * keys[w].co[0];
state->co[1] += cpa->w[w] * keys[w].co[1];
state->co[2] += cpa->w[w] * keys[w].co[2];
state->vel[0] += cpa->w[w] * keys[w].vel[0];
state->vel[1] += cpa->w[w] * keys[w].vel[1];
state->vel[2] += cpa->w[w] * keys[w].vel[2];
w++;
}
/* apply offset for correct positioning */
//VECADD(state->co,state->co,cpa_1st);
}
else{
/* offset the child from the parent position */
offset_child(cpa, keys, state, part->childflat, part->childrad);
}
par = keys;
//if(totparent){
// if(p-totpart>=totparent){
// key.time=t;
// psys_get_particle_on_path(ob,psys,totpart+cpa->parent,&key,1);
// bti->convert_dynamic_key(bsys,&key,par,cpar);
// }
// else
// par=0;
//}
//else
// DB_get_key_on_path(bsys,cpa->parent,t,par,cpar);
/* apply different deformations to the child path */
if(part->kink)
do_prekink(state, par, par->rot, t, part->kink_freq * pa_kink, part->kink_shape,
part->kink_amp, part->kink, part->kink_axis, ob->obmat);
do_clump(state, par, t, part->clumpfac, part->clumppow, 1.0f);
if(part->kink)
do_postkink(state, par, par->rot, t, part->kink_freq * pa_kink, part->kink_shape,
part->kink_amp, part->kink, part->kink_axis, ob->obmat);
if(part->rough1 != 0.0)
do_rough(orco, t, part->rough1, part->rough1_size, 0.0, state);
if(part->rough2 != 0.0)
do_rough(cpa->rand, t, part->rough2, part->rough2_size, part->rough2_thres, state);
if(part->rough_end != 0.0)
do_rough_end(cpa->rand, t, part->rough_end, part->rough_end_shape, state, par);
//if(vel){
// if(t>=0.001f){
// tstate.time=t-0.001f;
// psys_get_particle_on_path(ob,psys,p,&tstate,0);
// VECSUB(state->vel,state->co,tstate.co);
// }
// else{
// tstate.time=t+0.001f;
// psys_get_particle_on_path(ob,psys,p,&tstate,0);
// VECSUB(state->vel,tstate.co,state->co);
// }
//}
}
}
/* gets particle's state at a time, returns 1 if particle exists and can be seen and 0 if not */
int psys_get_particle_state(Object *ob, ParticleSystem *psys, int p, ParticleKey *state, int always){
ParticleSettings *part=psys->part;
ParticleData *pa=0;
float cfra;
int totpart=psys->totpart, between=0;
if(state->time>0)
cfra=state->time;
else
cfra=bsystem_time(0,(float)G.scene->r.cfra,0.0);
if(psys->totchild && p>=totpart){
if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES){
between=1;
}
else
pa=psys->particles+(psys->child+p-totpart)->parent;
}
else
pa=psys->particles+p;
if(between){
state->time = psys_get_child_time(psys,&psys->child[p-totpart],cfra);
if(always==0)
if((state->time<0.0 && (part->flag & PART_UNBORN)==0)
|| (state->time>1.0 && (part->flag & PART_DIED)==0))
return 0;
}
else{
if(pa->alive==PARS_KILLED) return 0;
if(always==0)
if((pa->alive==PARS_UNBORN && (part->flag & PART_UNBORN)==0)
|| (pa->alive==PARS_DEAD && (part->flag & PART_DIED)==0))
return 0;
}
if(psys->flag & PSYS_KEYED){
if(between){
ChildParticle *cpa=psys->child+p-totpart;
state->time= (cfra-(part->sta+(part->end-part->sta)*cpa->rand[0]))/(part->lifetime*cpa->rand[1]);
}
else
state->time= (cfra-pa->time)/(pa->dietime-pa->time);
psys_get_particle_on_path(ob,psys,p,state,1);
return 1;
}
else{
//if(psys->totchild && p>=psys->totpart){
// ChildParticle *cpa=psys->child+p-psys->totpart;
// ParticleKey *key1, skey;
// float t=(cfra-pa->time)/pa->lifetime, clump;
// pa=psys->particles+cpa->parent;
// if(pa->alive==PARS_DEAD && part->flag&PART_STICKY && pa->flag&PARS_STICKY && pa->stick_ob){
// key1=&skey;
// copy_particle_key(key1,&pa->state,0);
// key_from_object(pa->stick_ob,key1);
// }
// else{
// key1=&pa->state;
// }
//
// offset_child(cpa, key1, state, part->childflat, part->childrad);
//
// CLAMP(t,0.0,1.0);
// if(part->kink) /* TODO: part->kink_freq*pa_kink */
// do_prekink(state,key1,t,part->kink_freq,part->kink_shape,part->kink_amp,part->kink,part->kink_axis,ob->obmat);
//
// /* TODO: pa_clump vgroup */
// do_clump(state,key1,t,part->clumpfac,part->clumppow,0);
// if(part->kink) /* TODO: part->kink_freq*pa_kink */
// do_postkink(state,key1,t,part->kink_freq,part->kink_shape,part->kink_amp,part->kink,part->kink_axis,ob->obmat);
//}
//else{
if (pa) { /* TODO PARTICLE - should this ever be NULL? - Campbell */
copy_particle_key(state,&pa->state,0);
if(pa->alive==PARS_DEAD && part->flag&PART_STICKY && pa->flag&PARS_STICKY && pa->stick_ob){
key_from_object(pa->stick_ob,state);
}
if(psys->lattice)
calc_latt_deform(state->co,1.0f);
}
//}
return 1;
}
}
void psys_get_dupli_texture(Object *ob, ParticleSettings *part, ParticleSystemModifierData *psmd, ParticleData *pa, ChildParticle *cpa, float *uv, float *orco)
{
MFace *mface;
MTFace *mtface;
float loc[3];
int num;
if(cpa) {
if(part->childtype == PART_CHILD_FACES) {
mtface= CustomData_get_layer(&psmd->dm->faceData, CD_MTFACE);
if(mtface) {
mface= psmd->dm->getFaceData(psmd->dm, cpa->num, CD_MFACE);
mtface += cpa->num;
psys_interpolate_uvs(mtface, mface->v4, cpa->fuv, uv);
}
else
uv[0]= uv[1]= 0.0f;
}
else
uv[0]= uv[1]= 0.0f;
psys_particle_on_emitter(ob, psmd,
(part->childtype == PART_CHILD_FACES)? PART_FROM_FACE: PART_FROM_PARTICLE,
cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,loc,0,0,0,orco,0);
}
else {
if(part->from == PART_FROM_FACE) {
mtface= CustomData_get_layer(&psmd->dm->faceData, CD_MTFACE);
num= pa->num_dmcache;
if(num == DMCACHE_NOTFOUND)
if(pa->num < psmd->dm->getNumFaces(psmd->dm))
num= pa->num;
if(mtface && num != DMCACHE_NOTFOUND) {
mface= psmd->dm->getFaceData(psmd->dm, num, CD_MFACE);
mtface += num;
psys_interpolate_uvs(mtface, mface->v4, pa->fuv, uv);
}
else
uv[0]= uv[1]= 0.0f;
}
else
uv[0]= uv[1]= 0.0f;
psys_particle_on_emitter(ob,psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,0,0,0,orco,0);
}
}
void psys_get_dupli_path_transform(Object *ob, ParticleSettings *part, ParticleSystemModifierData *psmd, ParticleData *pa, ChildParticle *cpa, ParticleCacheKey *cache, float mat[][4], float *scale)
{
float loc[3], nor[3], vec[3], side[3], len;
VecSubf(vec, (cache+cache->steps-1)->co, cache->co);
len= Normalize(vec);
if(pa)
psys_particle_on_emitter(ob,psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,nor,0,0,0,0);
else
psys_particle_on_emitter(ob, psmd,
(part->childtype == PART_CHILD_FACES)? PART_FROM_FACE: PART_FROM_PARTICLE,
cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,loc,nor,0,0,0,0);
Crossf(side, nor, vec);
Normalize(side);
Crossf(nor, vec, side);
Mat4One(mat);
VECCOPY(mat[0], vec);
VECCOPY(mat[1], side);
VECCOPY(mat[2], nor);
*scale= len;
}