1713 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1713 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|  | /* 
 | ||
|  |  * $Id: Mathutils.c 20922 2009-06-16 07:16:51Z campbellbarton $ | ||
|  |  * | ||
|  |  * ***** BEGIN GPL LICENSE BLOCK ***** | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or | ||
|  |  * modify it under the terms of the GNU General Public License | ||
|  |  * as published by the Free Software Foundation; either version 2 | ||
|  |  * of the License, or (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software Foundation, | ||
|  |  * Inc., 59 Temple Place - Suite 330, Boston, MA	02111-1307, USA. | ||
|  |  * | ||
|  |  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. | ||
|  |  * All rights reserved. | ||
|  |  * | ||
|  |  * This is a new part of Blender. | ||
|  |  * | ||
|  |  * Contributor(s): Joseph Gilbert, Campbell Barton | ||
|  |  * | ||
|  |  * ***** END GPL LICENSE BLOCK ***** | ||
|  |  */ | ||
|  | 
 | ||
|  | #include "Mathutils.h"
 | ||
|  | 
 | ||
|  | #include "BLI_arithb.h"
 | ||
|  | #include "PIL_time.h"
 | ||
|  | #include "BLI_rand.h"
 | ||
|  | #include "BKE_utildefines.h"
 | ||
|  | 
 | ||
|  | //-------------------------DOC STRINGS ---------------------------
 | ||
|  | static char M_Mathutils_doc[] = "The Blender Mathutils module\n\n"; | ||
|  | static char M_Mathutils_Vector_doc[] = "() - create a new vector object from a list of floats"; | ||
|  | static char M_Mathutils_Matrix_doc[] = "() - create a new matrix object from a list of floats"; | ||
|  | static char M_Mathutils_Quaternion_doc[] = "() - create a quaternion from a list or an axis of rotation and an angle"; | ||
|  | static char M_Mathutils_Euler_doc[] = "() - create and return a new euler object"; | ||
|  | static char M_Mathutils_Rand_doc[] = "() - return a random number"; | ||
|  | static char M_Mathutils_CrossVecs_doc[] = "() - returns a vector perpedicular to the 2 vectors crossed"; | ||
|  | static char M_Mathutils_CopyVec_doc[] = "() - create a copy of vector"; | ||
|  | static char M_Mathutils_DotVecs_doc[] = "() - return the dot product of two vectors"; | ||
|  | static char M_Mathutils_AngleBetweenVecs_doc[] = "() - returns the angle between two vectors in degrees"; | ||
|  | static char M_Mathutils_MidpointVecs_doc[] = "() - return the vector to the midpoint between two vectors"; | ||
|  | static char M_Mathutils_MatMultVec_doc[] = "() - multiplies a matrix by a column vector"; | ||
|  | static char M_Mathutils_VecMultMat_doc[] = "() - multiplies a row vector by a matrix"; | ||
|  | static char M_Mathutils_ProjectVecs_doc[] =	"() - returns the projection vector from the projection of vecA onto vecB"; | ||
|  | static char M_Mathutils_RotationMatrix_doc[] = "() - construct a rotation matrix from an angle and axis of rotation"; | ||
|  | static char M_Mathutils_ScaleMatrix_doc[] =	"() - construct a scaling matrix from a scaling factor"; | ||
|  | static char M_Mathutils_OrthoProjectionMatrix_doc[] = "() - construct a orthographic projection matrix from a selected plane"; | ||
|  | static char M_Mathutils_ShearMatrix_doc[] = "() - construct a shearing matrix from a plane of shear and a shear factor"; | ||
|  | static char M_Mathutils_CopyMat_doc[] = "() - create a copy of a matrix"; | ||
|  | static char M_Mathutils_TranslationMatrix_doc[] = "(vec) - create a translation matrix from a vector"; | ||
|  | static char M_Mathutils_CopyQuat_doc[] = "() - copy quatB to quatA"; | ||
|  | static char M_Mathutils_CopyEuler_doc[] = "() - copy eulB to eultA"; | ||
|  | static char M_Mathutils_CrossQuats_doc[] = "() - return the mutliplication of two quaternions"; | ||
|  | static char M_Mathutils_DotQuats_doc[] = "() - return the dot product of two quaternions"; | ||
|  | static char M_Mathutils_Slerp_doc[] = "() - returns the interpolation between two quaternions"; | ||
|  | static char M_Mathutils_DifferenceQuats_doc[] = "() - return the angular displacment difference between two quats"; | ||
|  | static char M_Mathutils_RotateEuler_doc[] = "() - rotate euler by an axis and angle"; | ||
|  | static char M_Mathutils_Intersect_doc[] = "(v1, v2, v3, ray, orig, clip=1) - returns the intersection between a ray and a triangle, if possible, returns None otherwise"; | ||
|  | static char M_Mathutils_TriangleArea_doc[] = "(v1, v2, v3) - returns the area size of the 2D or 3D triangle defined"; | ||
|  | static char M_Mathutils_TriangleNormal_doc[] = "(v1, v2, v3) - returns the normal of the 3D triangle defined"; | ||
|  | static char M_Mathutils_QuadNormal_doc[] = "(v1, v2, v3, v4) - returns the normal of the 3D quad defined"; | ||
|  | static char M_Mathutils_LineIntersect_doc[] = "(v1, v2, v3, v4) - returns a tuple with the points on each line respectively closest to the other"; | ||
|  | //-----------------------METHOD DEFINITIONS ----------------------
 | ||
|  | struct PyMethodDef M_Mathutils_methods[] = { | ||
|  | 	{"Rand", (PyCFunction) M_Mathutils_Rand, METH_VARARGS, M_Mathutils_Rand_doc}, | ||
|  | 	{"Vector", (PyCFunction) M_Mathutils_Vector, METH_VARARGS, M_Mathutils_Vector_doc}, | ||
|  | 	{"CrossVecs", (PyCFunction) M_Mathutils_CrossVecs, METH_VARARGS, M_Mathutils_CrossVecs_doc}, | ||
|  | 	{"DotVecs", (PyCFunction) M_Mathutils_DotVecs, METH_VARARGS, M_Mathutils_DotVecs_doc}, | ||
|  | 	{"AngleBetweenVecs", (PyCFunction) M_Mathutils_AngleBetweenVecs, METH_VARARGS, M_Mathutils_AngleBetweenVecs_doc}, | ||
|  | 	{"MidpointVecs", (PyCFunction) M_Mathutils_MidpointVecs, METH_VARARGS, M_Mathutils_MidpointVecs_doc}, | ||
|  | 	{"VecMultMat", (PyCFunction) M_Mathutils_VecMultMat, METH_VARARGS, M_Mathutils_VecMultMat_doc}, | ||
|  | 	{"ProjectVecs", (PyCFunction) M_Mathutils_ProjectVecs, METH_VARARGS, M_Mathutils_ProjectVecs_doc}, | ||
|  | 	{"CopyVec", (PyCFunction) M_Mathutils_CopyVec, METH_VARARGS, M_Mathutils_CopyVec_doc}, | ||
|  | 	{"Matrix", (PyCFunction) M_Mathutils_Matrix, METH_VARARGS, M_Mathutils_Matrix_doc}, | ||
|  | 	{"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc}, | ||
|  | 	{"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc}, | ||
|  | 	{"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc}, | ||
|  | 	{"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_O, M_Mathutils_TranslationMatrix_doc}, | ||
|  | 	{"CopyMat", (PyCFunction) M_Mathutils_CopyMat, METH_VARARGS, M_Mathutils_CopyMat_doc}, | ||
|  | 	{"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix,  METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc}, | ||
|  | 	{"MatMultVec", (PyCFunction) M_Mathutils_MatMultVec, METH_VARARGS, M_Mathutils_MatMultVec_doc}, | ||
|  | 	{"Quaternion", (PyCFunction) M_Mathutils_Quaternion, METH_VARARGS, M_Mathutils_Quaternion_doc}, | ||
|  | 	{"CopyQuat", (PyCFunction) M_Mathutils_CopyQuat, METH_VARARGS, M_Mathutils_CopyQuat_doc}, | ||
|  | 	{"CrossQuats", (PyCFunction) M_Mathutils_CrossQuats, METH_VARARGS, M_Mathutils_CrossQuats_doc}, | ||
|  | 	{"DotQuats", (PyCFunction) M_Mathutils_DotQuats, METH_VARARGS, M_Mathutils_DotQuats_doc}, | ||
|  | 	{"DifferenceQuats", (PyCFunction) M_Mathutils_DifferenceQuats, METH_VARARGS,M_Mathutils_DifferenceQuats_doc}, | ||
|  | 	{"Slerp", (PyCFunction) M_Mathutils_Slerp, METH_VARARGS, M_Mathutils_Slerp_doc}, | ||
|  | 	{"Euler", (PyCFunction) M_Mathutils_Euler, METH_VARARGS, M_Mathutils_Euler_doc}, | ||
|  | 	{"CopyEuler", (PyCFunction) M_Mathutils_CopyEuler, METH_VARARGS, M_Mathutils_CopyEuler_doc}, | ||
|  | 	{"RotateEuler", (PyCFunction) M_Mathutils_RotateEuler, METH_VARARGS, M_Mathutils_RotateEuler_doc}, | ||
|  | 	{"Intersect", ( PyCFunction ) M_Mathutils_Intersect, METH_VARARGS, M_Mathutils_Intersect_doc}, | ||
|  | 	{"TriangleArea", ( PyCFunction ) M_Mathutils_TriangleArea, METH_VARARGS, M_Mathutils_TriangleArea_doc}, | ||
|  | 	{"TriangleNormal", ( PyCFunction ) M_Mathutils_TriangleNormal, METH_VARARGS, M_Mathutils_TriangleNormal_doc}, | ||
|  | 	{"QuadNormal", ( PyCFunction ) M_Mathutils_QuadNormal, METH_VARARGS, M_Mathutils_QuadNormal_doc}, | ||
|  | 	{"LineIntersect", ( PyCFunction ) M_Mathutils_LineIntersect, METH_VARARGS, M_Mathutils_LineIntersect_doc}, | ||
|  | 	{NULL, NULL, 0, NULL} | ||
|  | }; | ||
|  | /*----------------------------MODULE INIT-------------------------*/ | ||
|  | /* from can be Blender.Mathutils or GameLogic.Mathutils for the BGE */ | ||
|  | 
 | ||
|  | #if (PY_VERSION_HEX >= 0x03000000)
 | ||
|  | static struct PyModuleDef M_Mathutils_module_def = { | ||
|  | 	{}, /* m_base */ | ||
|  | 	"Mathutils",  /* m_name */ | ||
|  | 	M_Mathutils_doc,  /* m_doc */ | ||
|  | 	0,  /* m_size */ | ||
|  | 	M_Mathutils_methods,  /* m_methods */ | ||
|  | 	0,  /* m_reload */ | ||
|  | 	0,  /* m_traverse */ | ||
|  | 	0,  /* m_clear */ | ||
|  | 	0,  /* m_free */ | ||
|  | }; | ||
|  | #endif
 | ||
|  | 
 | ||
|  | PyObject *Mathutils_Init(const char *from) | ||
|  | { | ||
|  | 	PyObject *submodule; | ||
|  | 
 | ||
|  | 	//seed the generator for the rand function
 | ||
|  | 	BLI_srand((unsigned int) (PIL_check_seconds_timer() * 0x7FFFFFFF)); | ||
|  | 	 | ||
|  | 	if( PyType_Ready( &vector_Type ) < 0 ) | ||
|  | 		return NULL; | ||
|  | 	if( PyType_Ready( &matrix_Type ) < 0 ) | ||
|  | 		return NULL;	 | ||
|  | 	if( PyType_Ready( &euler_Type ) < 0 ) | ||
|  | 		return NULL; | ||
|  | 	if( PyType_Ready( &quaternion_Type ) < 0 ) | ||
|  | 		return NULL; | ||
|  | 	 | ||
|  | #if (PY_VERSION_HEX >= 0x03000000)
 | ||
|  | 	submodule = PyModule_Create(&M_Mathutils_module_def); | ||
|  | 	PyDict_SetItemString(PySys_GetObject("modules"), M_Mathutils_module_def.m_name, submodule); | ||
|  | #else
 | ||
|  | 	submodule = Py_InitModule3(from, M_Mathutils_methods, M_Mathutils_doc); | ||
|  | #endif
 | ||
|  | 	 | ||
|  | 	return (submodule); | ||
|  | } | ||
|  | 
 | ||
|  | //-----------------------------METHODS----------------------------
 | ||
|  | //----------------column_vector_multiplication (internal)---------
 | ||
|  | //COLUMN VECTOR Multiplication (Matrix X Vector)
 | ||
|  | // [1][2][3]   [a]
 | ||
|  | // [4][5][6] * [b]
 | ||
|  | // [7][8][9]   [c]
 | ||
|  | //vector/matrix multiplication IS NOT COMMUTATIVE!!!!
 | ||
|  | PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec) | ||
|  | { | ||
|  | 	float vecNew[4], vecCopy[4]; | ||
|  | 	double dot = 0.0f; | ||
|  | 	int x, y, z = 0; | ||
|  | 
 | ||
|  | 	if(mat->rowSize != vec->size){ | ||
|  | 		if(mat->rowSize == 4 && vec->size != 3){ | ||
|  | 			PyErr_SetString(PyExc_AttributeError, "matrix * vector: matrix row size and vector size must be the same"); | ||
|  | 			return NULL; | ||
|  | 		}else{ | ||
|  | 			vecCopy[3] = 1.0f; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for(x = 0; x < vec->size; x++){ | ||
|  | 		vecCopy[x] = vec->vec[x]; | ||
|  | 		} | ||
|  | 
 | ||
|  | 	for(x = 0; x < mat->rowSize; x++) { | ||
|  | 		for(y = 0; y < mat->colSize; y++) { | ||
|  | 			dot += mat->matrix[x][y] * vecCopy[y]; | ||
|  | 		} | ||
|  | 		vecNew[z++] = (float)dot; | ||
|  | 		dot = 0.0f; | ||
|  | 	} | ||
|  | 	return newVectorObject(vecNew, vec->size, Py_NEW); | ||
|  | } | ||
|  | 
 | ||
|  | //-----------------row_vector_multiplication (internal)-----------
 | ||
|  | //ROW VECTOR Multiplication - Vector X Matrix
 | ||
|  | //[x][y][z] *  [1][2][3]
 | ||
|  | //             [4][5][6]
 | ||
|  | //             [7][8][9]
 | ||
|  | //vector/matrix multiplication IS NOT COMMUTATIVE!!!!
 | ||
|  | PyObject *row_vector_multiplication(VectorObject* vec, MatrixObject * mat) | ||
|  | { | ||
|  | 	float vecNew[4], vecCopy[4]; | ||
|  | 	double dot = 0.0f; | ||
|  | 	int x, y, z = 0, vec_size = vec->size; | ||
|  | 
 | ||
|  | 	if(mat->colSize != vec_size){ | ||
|  | 		if(mat->rowSize == 4 && vec_size != 3){ | ||
|  | 			PyErr_SetString(PyExc_AttributeError, "vector * matrix: matrix column size and the vector size must be the same"); | ||
|  | 			return NULL; | ||
|  | 		}else{ | ||
|  | 			vecCopy[3] = 1.0f; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	for(x = 0; x < vec_size; x++){ | ||
|  | 		vecCopy[x] = vec->vec[x]; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	//muliplication
 | ||
|  | 	for(x = 0; x < mat->colSize; x++) { | ||
|  | 		for(y = 0; y < mat->rowSize; y++) { | ||
|  | 			dot += mat->matrix[y][x] * vecCopy[y]; | ||
|  | 		} | ||
|  | 		vecNew[z++] = (float)dot; | ||
|  | 		dot = 0.0f; | ||
|  | 	} | ||
|  | 	return newVectorObject(vecNew, vec_size, Py_NEW); | ||
|  | } | ||
|  | 
 | ||
|  | //-----------------quat_rotation (internal)-----------
 | ||
|  | //This function multiplies a vector/point * quat or vice versa
 | ||
|  | //to rotate the point/vector by the quaternion
 | ||
|  | //arguments should all be 3D
 | ||
|  | PyObject *quat_rotation(PyObject *arg1, PyObject *arg2) | ||
|  | { | ||
|  | 	float rot[3]; | ||
|  | 	QuaternionObject *quat = NULL; | ||
|  | 	VectorObject *vec = NULL; | ||
|  | 
 | ||
|  | 	if(QuaternionObject_Check(arg1)){ | ||
|  | 		quat = (QuaternionObject*)arg1; | ||
|  | 		if(VectorObject_Check(arg2)){ | ||
|  | 			vec = (VectorObject*)arg2; | ||
|  | 			rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -  | ||
|  | 				2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +  | ||
|  | 				2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -  | ||
|  | 				quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0]; | ||
|  | 			rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +  | ||
|  | 				2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -  | ||
|  | 				quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -  | ||
|  | 				2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1]; | ||
|  | 			rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +  | ||
|  | 				quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -  | ||
|  | 				quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -  | ||
|  | 				quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2]; | ||
|  | 			return newVectorObject(rot, 3, Py_NEW); | ||
|  | 		} | ||
|  | 	}else if(VectorObject_Check(arg1)){ | ||
|  | 		vec = (VectorObject*)arg1; | ||
|  | 		if(QuaternionObject_Check(arg2)){ | ||
|  | 			quat = (QuaternionObject*)arg2; | ||
|  | 			rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -  | ||
|  | 				2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +  | ||
|  | 				2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -  | ||
|  | 				quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0]; | ||
|  | 			rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +  | ||
|  | 				2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -  | ||
|  | 				quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -  | ||
|  | 				2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1]; | ||
|  | 			rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +  | ||
|  | 				quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -  | ||
|  | 				quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -  | ||
|  | 				quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2]; | ||
|  | 			return newVectorObject(rot, 3, Py_NEW); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	PyErr_SetString(PyExc_RuntimeError, "quat_rotation(internal): internal problem rotating vector/point\n"); | ||
|  | 	return NULL; | ||
|  | 	 | ||
|  | } | ||
|  | 
 | ||
|  | //----------------------------------Mathutils.Rand() --------------------
 | ||
|  | //returns a random number between a high and low value
 | ||
|  | PyObject *M_Mathutils_Rand(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	float high, low, range; | ||
|  | 	double drand; | ||
|  | 	//initializers
 | ||
|  | 	high = 1.0; | ||
|  | 	low = 0.0; | ||
|  | 
 | ||
|  | 	if(!PyArg_ParseTuple(args, "|ff", &low, &high)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError, "Mathutils.Rand(): expected nothing or optional (float, float)\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if((high < low) || (high < 0 && low > 0)) { | ||
|  | 		PyErr_SetString(PyExc_ValueError, "Mathutils.Rand(): high value should be larger than low value\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	//get the random number 0 - 1
 | ||
|  | 	drand = BLI_drand(); | ||
|  | 
 | ||
|  | 	//set it to range
 | ||
|  | 	range = high - low; | ||
|  | 	drand = drand * range; | ||
|  | 	drand = drand + low; | ||
|  | 
 | ||
|  | 	return PyFloat_FromDouble(drand); | ||
|  | } | ||
|  | //----------------------------------VECTOR FUNCTIONS---------------------
 | ||
|  | //----------------------------------Mathutils.Vector() ------------------
 | ||
|  | // Supports 2D, 3D, and 4D vector objects both int and float values
 | ||
|  | // accepted. Mixed float and int values accepted. Ints are parsed to float 
 | ||
|  | PyObject *M_Mathutils_Vector(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	PyObject *listObject = NULL; | ||
|  | 	int size, i; | ||
|  | 	float vec[4], f; | ||
|  | 	PyObject *v; | ||
|  | 
 | ||
|  | 	size = PySequence_Length(args); | ||
|  | 	if (size == 1) { | ||
|  | 		listObject = PySequence_GetItem(args, 0); | ||
|  | 		if (PySequence_Check(listObject)) { | ||
|  | 			size = PySequence_Length(listObject); | ||
|  | 		} else { // Single argument was not a sequence
 | ||
|  | 			Py_XDECREF(listObject); | ||
|  | 			PyErr_SetString(PyExc_TypeError, "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n"); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 	} else if (size == 0) { | ||
|  | 		//returns a new empty 3d vector
 | ||
|  | 		return newVectorObject(NULL, 3, Py_NEW);  | ||
|  | 	} else { | ||
|  | 		Py_INCREF(args); | ||
|  | 		listObject = args; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (size<2 || size>4) { // Invalid vector size
 | ||
|  | 		Py_XDECREF(listObject); | ||
|  | 		PyErr_SetString(PyExc_AttributeError, "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for (i=0; i<size; i++) { | ||
|  | 		v=PySequence_GetItem(listObject, i); | ||
|  | 		if (v==NULL) { // Failed to read sequence
 | ||
|  | 			Py_XDECREF(listObject); | ||
|  | 			PyErr_SetString(PyExc_RuntimeError, "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n"); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		f= PyFloat_AsDouble(v); | ||
|  | 		if(f==-1 && PyErr_Occurred()) { // parsed item not a number
 | ||
|  | 			Py_DECREF(v); | ||
|  | 			Py_XDECREF(listObject); | ||
|  | 			PyErr_SetString(PyExc_TypeError, "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n"); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		vec[i]= f; | ||
|  | 		Py_DECREF(v); | ||
|  | 	} | ||
|  | 	Py_DECREF(listObject); | ||
|  | 	return newVectorObject(vec, size, Py_NEW); | ||
|  | } | ||
|  | //----------------------------------Mathutils.CrossVecs() ---------------
 | ||
|  | //finds perpendicular vector - only 3D is supported
 | ||
|  | PyObject *M_Mathutils_CrossVecs(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	PyObject *vecCross = NULL; | ||
|  | 	VectorObject *vec1 = NULL, *vec2 = NULL; | ||
|  | 
 | ||
|  | 	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError, "Mathutils.CrossVecs(): expects (2) 3D vector objects\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	if(vec1->size != 3 || vec2->size != 3) { | ||
|  | 		PyErr_SetString(PyExc_AttributeError, "Mathutils.CrossVecs(): expects (2) 3D vector objects\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	vecCross = newVectorObject(NULL, 3, Py_NEW); | ||
|  | 	Crossf(((VectorObject*)vecCross)->vec, vec1->vec, vec2->vec); | ||
|  | 	return vecCross; | ||
|  | } | ||
|  | //----------------------------------Mathutils.DotVec() -------------------
 | ||
|  | //calculates the dot product of two vectors
 | ||
|  | PyObject *M_Mathutils_DotVecs(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	VectorObject *vec1 = NULL, *vec2 = NULL; | ||
|  | 	double dot = 0.0f; | ||
|  | 	int x; | ||
|  | 
 | ||
|  | 	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError, "Mathutils.DotVecs(): expects (2) vector objects of the same size\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	if(vec1->size != vec2->size) { | ||
|  | 		PyErr_SetString(PyExc_AttributeError, "Mathutils.DotVecs(): expects (2) vector objects of the same size\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for(x = 0; x < vec1->size; x++) { | ||
|  | 		dot += vec1->vec[x] * vec2->vec[x]; | ||
|  | 	} | ||
|  | 	return PyFloat_FromDouble(dot); | ||
|  | } | ||
|  | //----------------------------------Mathutils.AngleBetweenVecs() ---------
 | ||
|  | //calculates the angle between 2 vectors
 | ||
|  | PyObject *M_Mathutils_AngleBetweenVecs(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	VectorObject *vec1 = NULL, *vec2 = NULL; | ||
|  | 	double dot = 0.0f, angleRads, test_v1 = 0.0f, test_v2 = 0.0f; | ||
|  | 	int x, size; | ||
|  | 
 | ||
|  | 	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2)) | ||
|  | 		goto AttributeError1; //not vectors
 | ||
|  | 	if(vec1->size != vec2->size) | ||
|  | 		goto AttributeError1; //bad sizes
 | ||
|  | 
 | ||
|  | 	//since size is the same....
 | ||
|  | 	size = vec1->size; | ||
|  | 
 | ||
|  | 	for(x = 0; x < size; x++) { | ||
|  | 		test_v1 += vec1->vec[x] * vec1->vec[x]; | ||
|  | 		test_v2 += vec2->vec[x] * vec2->vec[x]; | ||
|  | 	} | ||
|  | 	if (!test_v1 || !test_v2){ | ||
|  | 		goto AttributeError2; //zero-length vector
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	//dot product
 | ||
|  | 	for(x = 0; x < size; x++) { | ||
|  | 		dot += vec1->vec[x] * vec2->vec[x]; | ||
|  | 	} | ||
|  | 	dot /= (sqrt(test_v1) * sqrt(test_v2)); | ||
|  | 
 | ||
|  | 	angleRads = (double)saacos(dot); | ||
|  | 
 | ||
|  | 	return PyFloat_FromDouble(angleRads * (180/ Py_PI)); | ||
|  | 
 | ||
|  | AttributeError1: | ||
|  | 	PyErr_SetString(PyExc_AttributeError, "Mathutils.AngleBetweenVecs(): expects (2) VECTOR objects of the same size\n"); | ||
|  | 	return NULL; | ||
|  | 
 | ||
|  | AttributeError2: | ||
|  | 	PyErr_SetString(PyExc_AttributeError, "Mathutils.AngleBetweenVecs(): zero length vectors are not acceptable arguments\n"); | ||
|  | 	return NULL; | ||
|  | } | ||
|  | //----------------------------------Mathutils.MidpointVecs() -------------
 | ||
|  | //calculates the midpoint between 2 vectors
 | ||
|  | PyObject *M_Mathutils_MidpointVecs(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	VectorObject *vec1 = NULL, *vec2 = NULL; | ||
|  | 	float vec[4]; | ||
|  | 	int x; | ||
|  | 	 | ||
|  | 	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError, "Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if(vec1->size != vec2->size) { | ||
|  | 		PyErr_SetString(PyExc_AttributeError, "Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for(x = 0; x < vec1->size; x++) { | ||
|  | 		vec[x] = 0.5f * (vec1->vec[x] + vec2->vec[x]); | ||
|  | 	} | ||
|  | 	return newVectorObject(vec, vec1->size, Py_NEW); | ||
|  | } | ||
|  | //----------------------------------Mathutils.ProjectVecs() -------------
 | ||
|  | //projects vector 1 onto vector 2
 | ||
|  | PyObject *M_Mathutils_ProjectVecs(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	VectorObject *vec1 = NULL, *vec2 = NULL; | ||
|  | 	float vec[4];  | ||
|  | 	double dot = 0.0f, dot2 = 0.0f; | ||
|  | 	int x, size; | ||
|  | 
 | ||
|  | 	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError, "Mathutils.ProjectVecs(): expects (2) vector objects of the same size\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if(vec1->size != vec2->size) { | ||
|  | 		PyErr_SetString(PyExc_AttributeError, "Mathutils.ProjectVecs(): expects (2) vector objects of the same size\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	//since they are the same size...
 | ||
|  | 	size = vec1->size; | ||
|  | 
 | ||
|  | 	//get dot products
 | ||
|  | 	for(x = 0; x < size; x++) { | ||
|  | 		dot += vec1->vec[x] * vec2->vec[x]; | ||
|  | 		dot2 += vec2->vec[x] * vec2->vec[x]; | ||
|  | 	} | ||
|  | 	//projection
 | ||
|  | 	dot /= dot2; | ||
|  | 	for(x = 0; x < size; x++) { | ||
|  | 		vec[x] = (float)(dot * vec2->vec[x]); | ||
|  | 	} | ||
|  | 	return newVectorObject(vec, size, Py_NEW); | ||
|  | } | ||
|  | //----------------------------------MATRIX FUNCTIONS--------------------
 | ||
|  | //----------------------------------Mathutils.Matrix() -----------------
 | ||
|  | //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
 | ||
|  | //create a new matrix type
 | ||
|  | PyObject *M_Mathutils_Matrix(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	PyObject *listObject = NULL; | ||
|  | 	PyObject *argObject, *m, *s, *f; | ||
|  | 	MatrixObject *mat; | ||
|  | 	int argSize, seqSize = 0, i, j; | ||
|  | 	float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, | ||
|  | 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; | ||
|  | 
 | ||
|  | 	argSize = PySequence_Length(args); | ||
|  | 	if(argSize > 4){	//bad arg nums
 | ||
|  | 		PyErr_SetString(PyExc_AttributeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n"); | ||
|  | 		return NULL; | ||
|  | 	} else if (argSize == 0) { //return empty 4D matrix
 | ||
|  | 		return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW); | ||
|  | 	}else if (argSize == 1){ | ||
|  | 		//copy constructor for matrix objects
 | ||
|  | 		argObject = PySequence_GetItem(args, 0); | ||
|  | 		if(MatrixObject_Check(argObject)){ | ||
|  | 			mat = (MatrixObject*)argObject; | ||
|  | 
 | ||
|  | 			argSize = mat->rowSize; //rows
 | ||
|  | 			seqSize = mat->colSize; //col
 | ||
|  | 			for(i = 0; i < (seqSize * argSize); i++){ | ||
|  | 				matrix[i] = mat->contigPtr[i]; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		Py_DECREF(argObject); | ||
|  | 	}else{ //2-4 arguments (all seqs? all same size?)
 | ||
|  | 		for(i =0; i < argSize; i++){ | ||
|  | 			argObject = PySequence_GetItem(args, i); | ||
|  | 			if (PySequence_Check(argObject)) { //seq?
 | ||
|  | 				if(seqSize){ //0 at first
 | ||
|  | 					if(PySequence_Length(argObject) != seqSize){ //seq size not same
 | ||
|  | 						Py_DECREF(argObject); | ||
|  | 						PyErr_SetString(PyExc_AttributeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n"); | ||
|  | 						return NULL; | ||
|  | 					} | ||
|  | 				} | ||
|  | 				seqSize = PySequence_Length(argObject); | ||
|  | 			}else{ //arg not a sequence
 | ||
|  | 				Py_XDECREF(argObject); | ||
|  | 				PyErr_SetString(PyExc_TypeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n"); | ||
|  | 				return NULL; | ||
|  | 			} | ||
|  | 			Py_DECREF(argObject); | ||
|  | 		} | ||
|  | 		//all is well... let's continue parsing
 | ||
|  | 		listObject = args; | ||
|  | 		for (i = 0; i < argSize; i++){ | ||
|  | 			m = PySequence_GetItem(listObject, i); | ||
|  | 			if (m == NULL) { // Failed to read sequence
 | ||
|  | 				PyErr_SetString(PyExc_RuntimeError, "Mathutils.Matrix(): failed to parse arguments...\n"); | ||
|  | 				return NULL; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			for (j = 0; j < seqSize; j++) { | ||
|  | 				s = PySequence_GetItem(m, j); | ||
|  | 				if (s == NULL) { // Failed to read sequence
 | ||
|  | 					Py_DECREF(m); | ||
|  | 					PyErr_SetString(PyExc_RuntimeError, "Mathutils.Matrix(): failed to parse arguments...\n"); | ||
|  | 					return NULL; | ||
|  | 				} | ||
|  | 
 | ||
|  | 				f = PyNumber_Float(s); | ||
|  | 				if(f == NULL) { // parsed item is not a number
 | ||
|  | 					Py_DECREF(m); | ||
|  | 					Py_DECREF(s); | ||
|  | 					PyErr_SetString(PyExc_AttributeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n"); | ||
|  | 					return NULL; | ||
|  | 				} | ||
|  | 
 | ||
|  | 				matrix[(seqSize*i)+j]=(float)PyFloat_AS_DOUBLE(f); | ||
|  | 				Py_DECREF(f); | ||
|  | 				Py_DECREF(s); | ||
|  | 			} | ||
|  | 			Py_DECREF(m); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	return newMatrixObject(matrix, argSize, seqSize, Py_NEW); | ||
|  | } | ||
|  | //----------------------------------Mathutils.RotationMatrix() ----------
 | ||
|  | //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
 | ||
|  | //creates a rotation matrix
 | ||
|  | PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	VectorObject *vec = NULL; | ||
|  | 	char *axis = NULL; | ||
|  | 	int matSize; | ||
|  | 	float angle = 0.0f, norm = 0.0f, cosAngle = 0.0f, sinAngle = 0.0f; | ||
|  | 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, | ||
|  | 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; | ||
|  | 
 | ||
|  | 	if(!PyArg_ParseTuple(args, "fi|sO!", &angle, &matSize, &axis, &vector_Type, &vec)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError, "Mathutils.RotationMatrix(): expected float int and optional string and vector\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	/* Clamp to -360:360 */ | ||
|  | 	while (angle<-360.0f) | ||
|  | 		angle+=360.0; | ||
|  | 	while (angle>360.0f) | ||
|  | 		angle-=360.0; | ||
|  | 	 | ||
|  | 	if(matSize != 2 && matSize != 3 && matSize != 4) { | ||
|  | 		PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if(matSize == 2 && (axis != NULL || vec != NULL)) { | ||
|  | 		PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if((matSize == 3 || matSize == 4) && axis == NULL) { | ||
|  | 		PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if(axis) { | ||
|  | 		if(((strcmp(axis, "r") == 0) || (strcmp(axis, "R") == 0)) && vec == NULL) { | ||
|  | 			PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): please define the arbitrary axis of rotation\n"); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	if(vec) { | ||
|  | 		if(vec->size != 3) { | ||
|  | 			PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): the arbitrary axis must be a 3D vector\n"); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	//convert to radians
 | ||
|  | 	angle = angle * (float) (Py_PI / 180); | ||
|  | 	if(axis == NULL && matSize == 2) { | ||
|  | 		//2D rotation matrix
 | ||
|  | 		mat[0] = (float) cos (angle); | ||
|  | 		mat[1] = (float) sin (angle); | ||
|  | 		mat[2] = -((float) sin(angle)); | ||
|  | 		mat[3] = (float) cos(angle); | ||
|  | 	} else if((strcmp(axis, "x") == 0) || (strcmp(axis, "X") == 0)) { | ||
|  | 		//rotation around X
 | ||
|  | 		mat[0] = 1.0f; | ||
|  | 		mat[4] = (float) cos(angle); | ||
|  | 		mat[5] = (float) sin(angle); | ||
|  | 		mat[7] = -((float) sin(angle)); | ||
|  | 		mat[8] = (float) cos(angle); | ||
|  | 	} else if((strcmp(axis, "y") == 0) || (strcmp(axis, "Y") == 0)) { | ||
|  | 		//rotation around Y
 | ||
|  | 		mat[0] = (float) cos(angle); | ||
|  | 		mat[2] = -((float) sin(angle)); | ||
|  | 		mat[4] = 1.0f; | ||
|  | 		mat[6] = (float) sin(angle); | ||
|  | 		mat[8] = (float) cos(angle); | ||
|  | 	} else if((strcmp(axis, "z") == 0) || (strcmp(axis, "Z") == 0)) { | ||
|  | 		//rotation around Z
 | ||
|  | 		mat[0] = (float) cos(angle); | ||
|  | 		mat[1] = (float) sin(angle); | ||
|  | 		mat[3] = -((float) sin(angle)); | ||
|  | 		mat[4] = (float) cos(angle); | ||
|  | 		mat[8] = 1.0f; | ||
|  | 	} else if((strcmp(axis, "r") == 0) || (strcmp(axis, "R") == 0)) { | ||
|  | 		//arbitrary rotation
 | ||
|  | 		//normalize arbitrary axis
 | ||
|  | 		norm = (float) sqrt(vec->vec[0] * vec->vec[0] + | ||
|  | 				       vec->vec[1] * vec->vec[1] + | ||
|  | 				       vec->vec[2] * vec->vec[2]); | ||
|  | 		vec->vec[0] /= norm; | ||
|  | 		vec->vec[1] /= norm; | ||
|  | 		vec->vec[2] /= norm; | ||
|  | 		 | ||
|  | 		if (isnan(vec->vec[0]) || isnan(vec->vec[1]) || isnan(vec->vec[2])) { | ||
|  | 			/* zero length vector, return an identity matrix, could also return an error */ | ||
|  | 			mat[0]= mat[4] = mat[8] = 1.0f; | ||
|  | 		} else {	 | ||
|  | 			/* create matrix */ | ||
|  | 			cosAngle = (float) cos(angle); | ||
|  | 			sinAngle = (float) sin(angle); | ||
|  | 			mat[0] = ((vec->vec[0] * vec->vec[0]) * (1 - cosAngle)) + | ||
|  | 				cosAngle; | ||
|  | 			mat[1] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) + | ||
|  | 				(vec->vec[2] * sinAngle); | ||
|  | 			mat[2] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) - | ||
|  | 				(vec->vec[1] * sinAngle); | ||
|  | 			mat[3] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) - | ||
|  | 				(vec->vec[2] * sinAngle); | ||
|  | 			mat[4] = ((vec->vec[1] * vec->vec[1]) * (1 - cosAngle)) + | ||
|  | 				cosAngle; | ||
|  | 			mat[5] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) + | ||
|  | 				(vec->vec[0] * sinAngle); | ||
|  | 			mat[6] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) + | ||
|  | 				(vec->vec[1] * sinAngle); | ||
|  | 			mat[7] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) - | ||
|  | 				(vec->vec[0] * sinAngle); | ||
|  | 			mat[8] = ((vec->vec[2] * vec->vec[2]) * (1 - cosAngle)) + | ||
|  | 				cosAngle; | ||
|  | 		} | ||
|  | 	} else { | ||
|  | 		PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): unrecognizable axis of rotation type - expected x,y,z or r\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if(matSize == 4) { | ||
|  | 		//resize matrix
 | ||
|  | 		mat[10] = mat[8]; | ||
|  | 		mat[9] = mat[7]; | ||
|  | 		mat[8] = mat[6]; | ||
|  | 		mat[7] = 0.0f; | ||
|  | 		mat[6] = mat[5]; | ||
|  | 		mat[5] = mat[4]; | ||
|  | 		mat[4] = mat[3]; | ||
|  | 		mat[3] = 0.0f; | ||
|  | 	} | ||
|  | 	//pass to matrix creation
 | ||
|  | 	return newMatrixObject(mat, matSize, matSize, Py_NEW); | ||
|  | } | ||
|  | //----------------------------------Mathutils.TranslationMatrix() -------
 | ||
|  | //creates a translation matrix
 | ||
|  | PyObject *M_Mathutils_TranslationMatrix(PyObject * self, VectorObject * vec) | ||
|  | { | ||
|  | 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, | ||
|  | 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; | ||
|  | 	 | ||
|  | 	if(!VectorObject_Check(vec)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError, "Mathutils.TranslationMatrix(): expected vector\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if(vec->size != 3 && vec->size != 4) { | ||
|  | 		PyErr_SetString(PyExc_TypeError, "Mathutils.TranslationMatrix(): vector must be 3D or 4D\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	//create a identity matrix and add translation
 | ||
|  | 	Mat4One((float(*)[4]) mat); | ||
|  | 	mat[12] = vec->vec[0]; | ||
|  | 	mat[13] = vec->vec[1]; | ||
|  | 	mat[14] = vec->vec[2]; | ||
|  | 
 | ||
|  | 	return newMatrixObject(mat, 4, 4, Py_NEW); | ||
|  | } | ||
|  | //----------------------------------Mathutils.ScaleMatrix() -------------
 | ||
|  | //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
 | ||
|  | //creates a scaling matrix
 | ||
|  | PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	VectorObject *vec = NULL; | ||
|  | 	float norm = 0.0f, factor; | ||
|  | 	int matSize, x; | ||
|  | 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, | ||
|  | 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; | ||
|  | 
 | ||
|  | 	if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError, "Mathutils.ScaleMatrix(): expected float int and optional vector\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if(matSize != 2 && matSize != 3 && matSize != 4) { | ||
|  | 		PyErr_SetString(PyExc_AttributeError, "Mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if(vec) { | ||
|  | 		if(vec->size > 2 && matSize == 2) { | ||
|  | 			PyErr_SetString(PyExc_AttributeError, "Mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n"); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	if(vec == NULL) {	//scaling along axis
 | ||
|  | 		if(matSize == 2) { | ||
|  | 			mat[0] = factor; | ||
|  | 			mat[3] = factor; | ||
|  | 		} else { | ||
|  | 			mat[0] = factor; | ||
|  | 			mat[4] = factor; | ||
|  | 			mat[8] = factor; | ||
|  | 		} | ||
|  | 	} else { //scaling in arbitrary direction
 | ||
|  | 		//normalize arbitrary axis
 | ||
|  | 		for(x = 0; x < vec->size; x++) { | ||
|  | 			norm += vec->vec[x] * vec->vec[x]; | ||
|  | 		} | ||
|  | 		norm = (float) sqrt(norm); | ||
|  | 		for(x = 0; x < vec->size; x++) { | ||
|  | 			vec->vec[x] /= norm; | ||
|  | 		} | ||
|  | 		if(matSize == 2) { | ||
|  | 			mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0])); | ||
|  | 			mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1])); | ||
|  | 			mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1])); | ||
|  | 			mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1])); | ||
|  | 		} else { | ||
|  | 			mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0])); | ||
|  | 			mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1])); | ||
|  | 			mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2])); | ||
|  | 			mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1])); | ||
|  | 			mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1])); | ||
|  | 			mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2])); | ||
|  | 			mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2])); | ||
|  | 			mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2])); | ||
|  | 			mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2])); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	if(matSize == 4) { | ||
|  | 		//resize matrix
 | ||
|  | 		mat[10] = mat[8]; | ||
|  | 		mat[9] = mat[7]; | ||
|  | 		mat[8] = mat[6]; | ||
|  | 		mat[7] = 0.0f; | ||
|  | 		mat[6] = mat[5]; | ||
|  | 		mat[5] = mat[4]; | ||
|  | 		mat[4] = mat[3]; | ||
|  | 		mat[3] = 0.0f; | ||
|  | 	} | ||
|  | 	//pass to matrix creation
 | ||
|  | 	return newMatrixObject(mat, matSize, matSize, Py_NEW); | ||
|  | } | ||
|  | //----------------------------------Mathutils.OrthoProjectionMatrix() ---
 | ||
|  | //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
 | ||
|  | //creates an ortho projection matrix
 | ||
|  | PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	VectorObject *vec = NULL; | ||
|  | 	char *plane; | ||
|  | 	int matSize, x; | ||
|  | 	float norm = 0.0f; | ||
|  | 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, | ||
|  | 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; | ||
|  | 	 | ||
|  | 	if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError, "Mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if(matSize != 2 && matSize != 3 && matSize != 4) { | ||
|  | 		PyErr_SetString(PyExc_AttributeError,"Mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if(vec) { | ||
|  | 		if(vec->size > 2 && matSize == 2) { | ||
|  | 			PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n"); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	if(vec == NULL) {	//ortho projection onto cardinal plane
 | ||
|  | 		if(((strcmp(plane, "x") == 0) | ||
|  | 		      || (strcmp(plane, "X") == 0)) && matSize == 2) { | ||
|  | 			mat[0] = 1.0f; | ||
|  | 		} else if(((strcmp(plane, "y") == 0)  | ||
|  | 			|| (strcmp(plane, "Y") == 0)) | ||
|  | 			   && matSize == 2) { | ||
|  | 			mat[3] = 1.0f; | ||
|  | 		} else if(((strcmp(plane, "xy") == 0) | ||
|  | 			     || (strcmp(plane, "XY") == 0)) | ||
|  | 			   && matSize > 2) { | ||
|  | 			mat[0] = 1.0f; | ||
|  | 			mat[4] = 1.0f; | ||
|  | 		} else if(((strcmp(plane, "xz") == 0) | ||
|  | 			     || (strcmp(plane, "XZ") == 0)) | ||
|  | 			   && matSize > 2) { | ||
|  | 			mat[0] = 1.0f; | ||
|  | 			mat[8] = 1.0f; | ||
|  | 		} else if(((strcmp(plane, "yz") == 0) | ||
|  | 			     || (strcmp(plane, "YZ") == 0)) | ||
|  | 			   && matSize > 2) { | ||
|  | 			mat[4] = 1.0f; | ||
|  | 			mat[8] = 1.0f; | ||
|  | 		} else { | ||
|  | 			PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: x, y, xy, xz, yz\n"); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 	} else { //arbitrary plane
 | ||
|  | 		//normalize arbitrary axis
 | ||
|  | 		for(x = 0; x < vec->size; x++) { | ||
|  | 			norm += vec->vec[x] * vec->vec[x]; | ||
|  | 		} | ||
|  | 		norm = (float) sqrt(norm); | ||
|  | 		for(x = 0; x < vec->size; x++) { | ||
|  | 			vec->vec[x] /= norm; | ||
|  | 		} | ||
|  | 		if(((strcmp(plane, "r") == 0) | ||
|  | 		      || (strcmp(plane, "R") == 0)) && matSize == 2) { | ||
|  | 			mat[0] = 1 - (vec->vec[0] * vec->vec[0]); | ||
|  | 			mat[1] = -(vec->vec[0] * vec->vec[1]); | ||
|  | 			mat[2] = -(vec->vec[0] * vec->vec[1]); | ||
|  | 			mat[3] = 1 - (vec->vec[1] * vec->vec[1]); | ||
|  | 		} else if(((strcmp(plane, "r") == 0) | ||
|  | 			     || (strcmp(plane, "R") == 0)) | ||
|  | 			   && matSize > 2) { | ||
|  | 			mat[0] = 1 - (vec->vec[0] * vec->vec[0]); | ||
|  | 			mat[1] = -(vec->vec[0] * vec->vec[1]); | ||
|  | 			mat[2] = -(vec->vec[0] * vec->vec[2]); | ||
|  | 			mat[3] = -(vec->vec[0] * vec->vec[1]); | ||
|  | 			mat[4] = 1 - (vec->vec[1] * vec->vec[1]); | ||
|  | 			mat[5] = -(vec->vec[1] * vec->vec[2]); | ||
|  | 			mat[6] = -(vec->vec[0] * vec->vec[2]); | ||
|  | 			mat[7] = -(vec->vec[1] * vec->vec[2]); | ||
|  | 			mat[8] = 1 - (vec->vec[2] * vec->vec[2]); | ||
|  | 		} else { | ||
|  | 			PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n"); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	if(matSize == 4) { | ||
|  | 		//resize matrix
 | ||
|  | 		mat[10] = mat[8]; | ||
|  | 		mat[9] = mat[7]; | ||
|  | 		mat[8] = mat[6]; | ||
|  | 		mat[7] = 0.0f; | ||
|  | 		mat[6] = mat[5]; | ||
|  | 		mat[5] = mat[4]; | ||
|  | 		mat[4] = mat[3]; | ||
|  | 		mat[3] = 0.0f; | ||
|  | 	} | ||
|  | 	//pass to matrix creation
 | ||
|  | 	return newMatrixObject(mat, matSize, matSize, Py_NEW); | ||
|  | } | ||
|  | //----------------------------------Mathutils.ShearMatrix() -------------
 | ||
|  | //creates a shear matrix
 | ||
|  | PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	int matSize; | ||
|  | 	char *plane; | ||
|  | 	float factor; | ||
|  | 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, | ||
|  | 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}; | ||
|  | 
 | ||
|  | 	if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError,"Mathutils.ShearMatrix(): expected string float and int\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if(matSize != 2 && matSize != 3 && matSize != 4) { | ||
|  | 		PyErr_SetString(PyExc_AttributeError,"Mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if(((strcmp(plane, "x") == 0) || (strcmp(plane, "X") == 0)) | ||
|  | 	    && matSize == 2) { | ||
|  | 		mat[0] = 1.0f; | ||
|  | 		mat[2] = factor; | ||
|  | 		mat[3] = 1.0f; | ||
|  | 	} else if(((strcmp(plane, "y") == 0) | ||
|  | 		     || (strcmp(plane, "Y") == 0)) && matSize == 2) { | ||
|  | 		mat[0] = 1.0f; | ||
|  | 		mat[1] = factor; | ||
|  | 		mat[3] = 1.0f; | ||
|  | 	} else if(((strcmp(plane, "xy") == 0) | ||
|  | 		     || (strcmp(plane, "XY") == 0)) && matSize > 2) { | ||
|  | 		mat[0] = 1.0f; | ||
|  | 		mat[4] = 1.0f; | ||
|  | 		mat[6] = factor; | ||
|  | 		mat[7] = factor; | ||
|  | 	} else if(((strcmp(plane, "xz") == 0) | ||
|  | 		     || (strcmp(plane, "XZ") == 0)) && matSize > 2) { | ||
|  | 		mat[0] = 1.0f; | ||
|  | 		mat[3] = factor; | ||
|  | 		mat[4] = 1.0f; | ||
|  | 		mat[5] = factor; | ||
|  | 		mat[8] = 1.0f; | ||
|  | 	} else if(((strcmp(plane, "yz") == 0) | ||
|  | 		     || (strcmp(plane, "YZ") == 0)) && matSize > 2) { | ||
|  | 		mat[0] = 1.0f; | ||
|  | 		mat[1] = factor; | ||
|  | 		mat[2] = factor; | ||
|  | 		mat[4] = 1.0f; | ||
|  | 		mat[8] = 1.0f; | ||
|  | 	} else { | ||
|  | 		PyErr_SetString(PyExc_AttributeError, "Mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if(matSize == 4) { | ||
|  | 		//resize matrix
 | ||
|  | 		mat[10] = mat[8]; | ||
|  | 		mat[9] = mat[7]; | ||
|  | 		mat[8] = mat[6]; | ||
|  | 		mat[7] = 0.0f; | ||
|  | 		mat[6] = mat[5]; | ||
|  | 		mat[5] = mat[4]; | ||
|  | 		mat[4] = mat[3]; | ||
|  | 		mat[3] = 0.0f; | ||
|  | 	} | ||
|  | 	//pass to matrix creation
 | ||
|  | 	return newMatrixObject(mat, matSize, matSize, Py_NEW); | ||
|  | } | ||
|  | //----------------------------------QUATERNION FUNCTIONS-----------------
 | ||
|  | //----------------------------------Mathutils.Quaternion() --------------
 | ||
|  | PyObject *M_Mathutils_Quaternion(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	PyObject *listObject = NULL, *n, *q, *f; | ||
|  | 	int size, i; | ||
|  | 	float quat[4]; | ||
|  | 	double norm = 0.0f, angle = 0.0f; | ||
|  | 
 | ||
|  | 	size = PySequence_Length(args); | ||
|  | 	if (size == 1 || size == 2) { //seq?
 | ||
|  | 		listObject = PySequence_GetItem(args, 0); | ||
|  | 		if (PySequence_Check(listObject)) { | ||
|  | 			size = PySequence_Length(listObject); | ||
|  | 			if ((size == 4 && PySequence_Length(args) !=1) ||  | ||
|  | 				(size == 3 && PySequence_Length(args) !=2) || (size >4 || size < 3)) {  | ||
|  | 				// invalid args/size
 | ||
|  | 				Py_DECREF(listObject); | ||
|  | 				PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); | ||
|  | 				return NULL; | ||
|  | 			} | ||
|  | 	   		if(size == 3){ //get angle in axis/angle
 | ||
|  | 				n = PySequence_GetItem(args, 1); | ||
|  | 				if(n == NULL) { // parsed item not a number or getItem fail
 | ||
|  | 					Py_DECREF(listObject); | ||
|  | 					PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); | ||
|  | 					return NULL; | ||
|  | 				} | ||
|  | 				 | ||
|  | 				angle = PyFloat_AsDouble(n); | ||
|  | 				Py_DECREF(n); | ||
|  | 				 | ||
|  | 				if (angle==-1 && PyErr_Occurred()) { | ||
|  | 					Py_DECREF(listObject); | ||
|  | 					PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); | ||
|  | 					return NULL; | ||
|  | 				} | ||
|  | 			} | ||
|  | 		}else{ | ||
|  | 			Py_DECREF(listObject); /* assume the list is teh second arg */ | ||
|  | 			listObject = PySequence_GetItem(args, 1); | ||
|  | 			if (size>1 && PySequence_Check(listObject)) { | ||
|  | 				size = PySequence_Length(listObject); | ||
|  | 				if (size != 3) {  | ||
|  | 					// invalid args/size
 | ||
|  | 					Py_DECREF(listObject); | ||
|  | 					PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); | ||
|  | 					return NULL; | ||
|  | 				} | ||
|  | 				n = PySequence_GetItem(args, 0); | ||
|  | 				if(n == NULL) { // parsed item not a number or getItem fail
 | ||
|  | 					Py_DECREF(listObject); | ||
|  | 					PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); | ||
|  | 					return NULL; | ||
|  | 				} | ||
|  | 				angle = PyFloat_AsDouble(n); | ||
|  | 				Py_DECREF(n); | ||
|  | 				 | ||
|  | 				if (angle==-1 && PyErr_Occurred()) { | ||
|  | 					Py_DECREF(listObject); | ||
|  | 					PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); | ||
|  | 					return NULL; | ||
|  | 				} | ||
|  | 			} else { // argument was not a sequence
 | ||
|  | 				Py_XDECREF(listObject); | ||
|  | 				PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); | ||
|  | 				return NULL; | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} else if (size == 0) { //returns a new empty quat
 | ||
|  | 		return newQuaternionObject(NULL, Py_NEW);  | ||
|  | 	} else { | ||
|  | 		Py_INCREF(args); | ||
|  | 		listObject = args; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (size == 3) { // invalid quat size
 | ||
|  | 		if(PySequence_Length(args) != 2){ | ||
|  | 			Py_DECREF(listObject); | ||
|  | 			PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 	}else{ | ||
|  | 		if(size != 4){ | ||
|  | 			Py_DECREF(listObject); | ||
|  | 			PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for (i=0; i<size; i++) { //parse
 | ||
|  | 		q = PySequence_GetItem(listObject, i); | ||
|  | 		if (q == NULL) { // Failed to read sequence
 | ||
|  | 			Py_DECREF(listObject); | ||
|  | 			PyErr_SetString(PyExc_RuntimeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		f = PyNumber_Float(q); | ||
|  | 		if(f == NULL) { // parsed item not a number
 | ||
|  | 			Py_DECREF(q); | ||
|  | 			Py_DECREF(listObject); | ||
|  | 			PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		quat[i] = (float)PyFloat_AS_DOUBLE(f); | ||
|  | 		Py_DECREF(f); | ||
|  | 		Py_DECREF(q); | ||
|  | 	} | ||
|  | 	if(size == 3){ //calculate the quat based on axis/angle
 | ||
|  | 		norm = sqrt(quat[0] * quat[0] + quat[1] * quat[1] + quat[2] * quat[2]); | ||
|  | 		quat[0] /= (float)norm; | ||
|  | 		quat[1] /= (float)norm; | ||
|  | 		quat[2] /= (float)norm; | ||
|  | 
 | ||
|  | 		angle = angle * (Py_PI / 180); | ||
|  | 		quat[3] =(float) (sin(angle/ 2.0f)) * quat[2]; | ||
|  | 		quat[2] =(float) (sin(angle/ 2.0f)) * quat[1]; | ||
|  | 		quat[1] =(float) (sin(angle/ 2.0f)) * quat[0]; | ||
|  | 		quat[0] =(float) (cos(angle/ 2.0f)); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	Py_DECREF(listObject); | ||
|  | 	return newQuaternionObject(quat, Py_NEW); | ||
|  | } | ||
|  | //----------------------------------Mathutils.CrossQuats() ----------------
 | ||
|  | //quaternion multiplication - associate not commutative
 | ||
|  | PyObject *M_Mathutils_CrossQuats(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	QuaternionObject *quatU = NULL, *quatV = NULL; | ||
|  | 	float quat[4]; | ||
|  | 
 | ||
|  | 	if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU, &quaternion_Type, &quatV)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError,"Mathutils.CrossQuats(): expected Quaternion types"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	QuatMul(quat, quatU->quat, quatV->quat); | ||
|  | 
 | ||
|  | 	return newQuaternionObject(quat, Py_NEW); | ||
|  | } | ||
|  | //----------------------------------Mathutils.DotQuats() ----------------
 | ||
|  | //returns the dot product of 2 quaternions
 | ||
|  | PyObject *M_Mathutils_DotQuats(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	QuaternionObject *quatU = NULL, *quatV = NULL; | ||
|  | 	double dot = 0.0f; | ||
|  | 	int x; | ||
|  | 
 | ||
|  | 	if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU, &quaternion_Type, &quatV)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError, "Mathutils.DotQuats(): expected Quaternion types"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for(x = 0; x < 4; x++) { | ||
|  | 		dot += quatU->quat[x] * quatV->quat[x]; | ||
|  | 	} | ||
|  | 	return PyFloat_FromDouble(dot); | ||
|  | } | ||
|  | //----------------------------------Mathutils.DifferenceQuats() ---------
 | ||
|  | //returns the difference between 2 quaternions
 | ||
|  | PyObject *M_Mathutils_DifferenceQuats(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	QuaternionObject *quatU = NULL, *quatV = NULL; | ||
|  | 	float quat[4], tempQuat[4]; | ||
|  | 	double dot = 0.0f; | ||
|  | 	int x; | ||
|  | 
 | ||
|  | 	if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU, &quaternion_Type, &quatV)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError, "Mathutils.DifferenceQuats(): expected Quaternion types"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	tempQuat[0] = quatU->quat[0]; | ||
|  | 	tempQuat[1] = -quatU->quat[1]; | ||
|  | 	tempQuat[2] = -quatU->quat[2]; | ||
|  | 	tempQuat[3] = -quatU->quat[3]; | ||
|  | 
 | ||
|  | 	dot = sqrt(tempQuat[0] * tempQuat[0] + tempQuat[1] *  tempQuat[1] + | ||
|  | 			       tempQuat[2] * tempQuat[2] + tempQuat[3] * tempQuat[3]); | ||
|  | 
 | ||
|  | 	for(x = 0; x < 4; x++) { | ||
|  | 		tempQuat[x] /= (float)(dot * dot); | ||
|  | 	} | ||
|  | 	QuatMul(quat, tempQuat, quatV->quat); | ||
|  | 	return newQuaternionObject(quat, Py_NEW); | ||
|  | } | ||
|  | //----------------------------------Mathutils.Slerp() ------------------
 | ||
|  | //attemps to interpolate 2 quaternions and return the result
 | ||
|  | PyObject *M_Mathutils_Slerp(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	QuaternionObject *quatU = NULL, *quatV = NULL; | ||
|  | 	float quat[4], quat_u[4], quat_v[4], param; | ||
|  | 	double x, y, dot, sinT, angle, IsinT; | ||
|  | 	int z; | ||
|  | 
 | ||
|  | 	if(!PyArg_ParseTuple(args, "O!O!f", &quaternion_Type, &quatU, &quaternion_Type, &quatV, ¶m)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError, "Mathutils.Slerp(): expected Quaternion types and float"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if(param > 1.0f || param < 0.0f) { | ||
|  | 		PyErr_SetString(PyExc_AttributeError, "Mathutils.Slerp(): interpolation factor must be between 0.0 and 1.0"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	//copy quats
 | ||
|  | 	for(z = 0; z < 4; z++){ | ||
|  | 		quat_u[z] = quatU->quat[z]; | ||
|  | 		quat_v[z] = quatV->quat[z]; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	//dot product
 | ||
|  | 	dot = quat_u[0] * quat_v[0] + quat_u[1] * quat_v[1] + | ||
|  | 		quat_u[2] * quat_v[2] + quat_u[3] * quat_v[3]; | ||
|  | 
 | ||
|  | 	//if negative negate a quat (shortest arc)
 | ||
|  | 	if(dot < 0.0f) { | ||
|  | 		quat_v[0] = -quat_v[0]; | ||
|  | 		quat_v[1] = -quat_v[1]; | ||
|  | 		quat_v[2] = -quat_v[2]; | ||
|  | 		quat_v[3] = -quat_v[3]; | ||
|  | 		dot = -dot; | ||
|  | 	} | ||
|  | 	if(dot > .99999f) { //very close
 | ||
|  | 		x = 1.0f - param; | ||
|  | 		y = param; | ||
|  | 	} else { | ||
|  | 		//calculate sin of angle
 | ||
|  | 		sinT = sqrt(1.0f - (dot * dot)); | ||
|  | 		//calculate angle
 | ||
|  | 		angle = atan2(sinT, dot); | ||
|  | 		//caluculate inverse of sin(theta)
 | ||
|  | 		IsinT = 1.0f / sinT; | ||
|  | 		x = sin((1.0f - param) * angle) * IsinT; | ||
|  | 		y = sin(param * angle) * IsinT; | ||
|  | 	} | ||
|  | 	//interpolate
 | ||
|  | 	quat[0] = (float)(quat_u[0] * x + quat_v[0] * y); | ||
|  | 	quat[1] = (float)(quat_u[1] * x + quat_v[1] * y); | ||
|  | 	quat[2] = (float)(quat_u[2] * x + quat_v[2] * y); | ||
|  | 	quat[3] = (float)(quat_u[3] * x + quat_v[3] * y); | ||
|  | 
 | ||
|  | 	return newQuaternionObject(quat, Py_NEW); | ||
|  | } | ||
|  | //----------------------------------EULER FUNCTIONS----------------------
 | ||
|  | //----------------------------------Mathutils.Euler() -------------------
 | ||
|  | //makes a new euler for you to play with
 | ||
|  | PyObject *M_Mathutils_Euler(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 
 | ||
|  | 	PyObject *listObject = NULL; | ||
|  | 	int size, i; | ||
|  | 	float eul[3]; | ||
|  | 	PyObject *e, *f; | ||
|  | 
 | ||
|  | 	size = PySequence_Length(args); | ||
|  | 	if (size == 1) { | ||
|  | 		listObject = PySequence_GetItem(args, 0); | ||
|  | 		if (PySequence_Check(listObject)) { | ||
|  | 			size = PySequence_Length(listObject); | ||
|  | 		} else { // Single argument was not a sequence
 | ||
|  | 			Py_DECREF(listObject); | ||
|  | 			PyErr_SetString(PyExc_TypeError, "Mathutils.Euler(): 3d numeric sequence expected\n"); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 	} else if (size == 0) { | ||
|  | 		//returns a new empty 3d euler
 | ||
|  | 		return newEulerObject(NULL, Py_NEW);  | ||
|  | 	} else { | ||
|  | 		Py_INCREF(args); | ||
|  | 		listObject = args; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (size != 3) { // Invalid euler size
 | ||
|  | 		Py_DECREF(listObject); | ||
|  | 		PyErr_SetString(PyExc_AttributeError, "Mathutils.Euler(): 3d numeric sequence expected\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for (i=0; i<size; i++) { | ||
|  | 		e = PySequence_GetItem(listObject, i); | ||
|  | 		if (e == NULL) { // Failed to read sequence
 | ||
|  | 			Py_DECREF(listObject); | ||
|  | 			PyErr_SetString(PyExc_RuntimeError, "Mathutils.Euler(): 3d numeric sequence expected\n"); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		f = PyNumber_Float(e); | ||
|  | 		if(f == NULL) { // parsed item not a number
 | ||
|  | 			Py_DECREF(e); | ||
|  | 			Py_DECREF(listObject); | ||
|  | 			PyErr_SetString(PyExc_TypeError, "Mathutils.Euler(): 3d numeric sequence expected\n"); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		eul[i]=(float)PyFloat_AS_DOUBLE(f); | ||
|  | 		Py_DECREF(f); | ||
|  | 		Py_DECREF(e); | ||
|  | 	} | ||
|  | 	Py_DECREF(listObject); | ||
|  | 	return newEulerObject(eul, Py_NEW); | ||
|  | } | ||
|  | 
 | ||
|  | //---------------------------------INTERSECTION FUNCTIONS--------------------
 | ||
|  | //----------------------------------Mathutils.Intersect() -------------------
 | ||
|  | PyObject *M_Mathutils_Intersect( PyObject * self, PyObject * args ) | ||
|  | { | ||
|  | 	VectorObject *ray, *ray_off, *vec1, *vec2, *vec3; | ||
|  | 	float dir[3], orig[3], v1[3], v2[3], v3[3], e1[3], e2[3], pvec[3], tvec[3], qvec[3]; | ||
|  | 	float det, inv_det, u, v, t; | ||
|  | 	int clip = 1; | ||
|  | 
 | ||
|  | 	if(!PyArg_ParseTuple(args, "O!O!O!O!O!|i", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &ray, &vector_Type, &ray_off , &clip)) { | ||
|  | 		PyErr_SetString( PyExc_TypeError, "expected 5 vector types\n" ); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if(vec1->size != 3 || vec2->size != 3 || vec3->size != 3 || ray->size != 3 || ray_off->size != 3) { | ||
|  | 		PyErr_SetString( PyExc_TypeError, "only 3D vectors for all parameters\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	VECCOPY(v1, vec1->vec); | ||
|  | 	VECCOPY(v2, vec2->vec); | ||
|  | 	VECCOPY(v3, vec3->vec); | ||
|  | 
 | ||
|  | 	VECCOPY(dir, ray->vec); | ||
|  | 	Normalize(dir); | ||
|  | 
 | ||
|  | 	VECCOPY(orig, ray_off->vec); | ||
|  | 
 | ||
|  | 	/* find vectors for two edges sharing v1 */ | ||
|  | 	VecSubf(e1, v2, v1); | ||
|  | 	VecSubf(e2, v3, v1); | ||
|  | 
 | ||
|  | 	/* begin calculating determinant - also used to calculated U parameter */ | ||
|  | 	Crossf(pvec, dir, e2);	 | ||
|  | 
 | ||
|  | 	/* if determinant is near zero, ray lies in plane of triangle */ | ||
|  | 	det = Inpf(e1, pvec); | ||
|  | 
 | ||
|  | 	if (det > -0.000001 && det < 0.000001) { | ||
|  | 		Py_RETURN_NONE; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	inv_det = 1.0f / det; | ||
|  | 
 | ||
|  | 	/* calculate distance from v1 to ray origin */ | ||
|  | 	VecSubf(tvec, orig, v1); | ||
|  | 
 | ||
|  | 	/* calculate U parameter and test bounds */ | ||
|  | 	u = Inpf(tvec, pvec) * inv_det; | ||
|  | 	if (clip && (u < 0.0f || u > 1.0f)) { | ||
|  | 		Py_RETURN_NONE; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* prepare to test the V parameter */ | ||
|  | 	Crossf(qvec, tvec, e1); | ||
|  | 
 | ||
|  | 	/* calculate V parameter and test bounds */ | ||
|  | 	v = Inpf(dir, qvec) * inv_det; | ||
|  | 
 | ||
|  | 	if (clip && (v < 0.0f || u + v > 1.0f)) { | ||
|  | 		Py_RETURN_NONE; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* calculate t, ray intersects triangle */ | ||
|  | 	t = Inpf(e2, qvec) * inv_det; | ||
|  | 
 | ||
|  | 	VecMulf(dir, t); | ||
|  | 	VecAddf(pvec, orig, dir); | ||
|  | 
 | ||
|  | 	return newVectorObject(pvec, 3, Py_NEW); | ||
|  | } | ||
|  | //----------------------------------Mathutils.LineIntersect() -------------------
 | ||
|  | /* Line-Line intersection using algorithm from mathworld.wolfram.com */ | ||
|  | PyObject *M_Mathutils_LineIntersect( PyObject * self, PyObject * args ) | ||
|  | { | ||
|  | 	PyObject * tuple; | ||
|  | 	VectorObject *vec1, *vec2, *vec3, *vec4; | ||
|  | 	float v1[3], v2[3], v3[3], v4[3], i1[3], i2[3]; | ||
|  | 
 | ||
|  | 	if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) { | ||
|  | 		PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" ); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if( vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec2->size) { | ||
|  | 		PyErr_SetString( PyExc_TypeError,"vectors must be of the same size\n" ); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if( vec1->size == 3 || vec1->size == 2) { | ||
|  | 		int result; | ||
|  | 		 | ||
|  | 		if (vec1->size == 3) { | ||
|  | 			VECCOPY(v1, vec1->vec); | ||
|  | 			VECCOPY(v2, vec2->vec); | ||
|  | 			VECCOPY(v3, vec3->vec); | ||
|  | 			VECCOPY(v4, vec4->vec); | ||
|  | 		} | ||
|  | 		else { | ||
|  | 			v1[0] = vec1->vec[0]; | ||
|  | 			v1[1] = vec1->vec[1]; | ||
|  | 			v1[2] = 0.0f; | ||
|  | 
 | ||
|  | 			v2[0] = vec2->vec[0]; | ||
|  | 			v2[1] = vec2->vec[1]; | ||
|  | 			v2[2] = 0.0f; | ||
|  | 
 | ||
|  | 			v3[0] = vec3->vec[0]; | ||
|  | 			v3[1] = vec3->vec[1]; | ||
|  | 			v3[2] = 0.0f; | ||
|  | 
 | ||
|  | 			v4[0] = vec4->vec[0]; | ||
|  | 			v4[1] = vec4->vec[1]; | ||
|  | 			v4[2] = 0.0f; | ||
|  | 		} | ||
|  | 		 | ||
|  | 		result = LineIntersectLine(v1, v2, v3, v4, i1, i2); | ||
|  | 
 | ||
|  | 		if (result == 0) { | ||
|  | 			/* colinear */ | ||
|  | 			Py_RETURN_NONE; | ||
|  | 		} | ||
|  | 		else { | ||
|  | 			tuple = PyTuple_New( 2 ); | ||
|  | 			PyTuple_SetItem( tuple, 0, newVectorObject(i1, vec1->size, Py_NEW) ); | ||
|  | 			PyTuple_SetItem( tuple, 1, newVectorObject(i2, vec1->size, Py_NEW) ); | ||
|  | 			return tuple; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else { | ||
|  | 		PyErr_SetString( PyExc_TypeError, "2D/3D vectors only\n" ); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | //---------------------------------NORMALS FUNCTIONS--------------------
 | ||
|  | //----------------------------------Mathutils.QuadNormal() -------------------
 | ||
|  | PyObject *M_Mathutils_QuadNormal( PyObject * self, PyObject * args ) | ||
|  | { | ||
|  | 	VectorObject *vec1; | ||
|  | 	VectorObject *vec2; | ||
|  | 	VectorObject *vec3; | ||
|  | 	VectorObject *vec4; | ||
|  | 	float v1[3], v2[3], v3[3], v4[3], e1[3], e2[3], n1[3], n2[3]; | ||
|  | 
 | ||
|  | 	if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) { | ||
|  | 		PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" ); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if( vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size) { | ||
|  | 		PyErr_SetString( PyExc_TypeError,"vectors must be of the same size\n" ); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if( vec1->size != 3 ) { | ||
|  | 		PyErr_SetString( PyExc_TypeError, "only 3D vectors\n" ); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	VECCOPY(v1, vec1->vec); | ||
|  | 	VECCOPY(v2, vec2->vec); | ||
|  | 	VECCOPY(v3, vec3->vec); | ||
|  | 	VECCOPY(v4, vec4->vec); | ||
|  | 
 | ||
|  | 	/* find vectors for two edges sharing v2 */ | ||
|  | 	VecSubf(e1, v1, v2); | ||
|  | 	VecSubf(e2, v3, v2); | ||
|  | 
 | ||
|  | 	Crossf(n1, e2, e1); | ||
|  | 	Normalize(n1); | ||
|  | 
 | ||
|  | 	/* find vectors for two edges sharing v4 */ | ||
|  | 	VecSubf(e1, v3, v4); | ||
|  | 	VecSubf(e2, v1, v4); | ||
|  | 
 | ||
|  | 	Crossf(n2, e2, e1); | ||
|  | 	Normalize(n2); | ||
|  | 
 | ||
|  | 	/* adding and averaging the normals of both triangles */ | ||
|  | 	VecAddf(n1, n2, n1); | ||
|  | 	Normalize(n1); | ||
|  | 
 | ||
|  | 	return newVectorObject(n1, 3, Py_NEW); | ||
|  | } | ||
|  | 
 | ||
|  | //----------------------------Mathutils.TriangleNormal() -------------------
 | ||
|  | PyObject *M_Mathutils_TriangleNormal( PyObject * self, PyObject * args ) | ||
|  | { | ||
|  | 	VectorObject *vec1, *vec2, *vec3; | ||
|  | 	float v1[3], v2[3], v3[3], e1[3], e2[3], n[3]; | ||
|  | 
 | ||
|  | 	if( !PyArg_ParseTuple( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3 ) ) { | ||
|  | 		PyErr_SetString( PyExc_TypeError, "expected 3 vector types\n" ); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if( vec1->size != vec2->size || vec1->size != vec3->size ) { | ||
|  | 		PyErr_SetString( PyExc_TypeError, "vectors must be of the same size\n" ); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if( vec1->size != 3 ) { | ||
|  | 		PyErr_SetString( PyExc_TypeError, "only 3D vectors\n" ); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	VECCOPY(v1, vec1->vec); | ||
|  | 	VECCOPY(v2, vec2->vec); | ||
|  | 	VECCOPY(v3, vec3->vec); | ||
|  | 
 | ||
|  | 	/* find vectors for two edges sharing v2 */ | ||
|  | 	VecSubf(e1, v1, v2); | ||
|  | 	VecSubf(e2, v3, v2); | ||
|  | 
 | ||
|  | 	Crossf(n, e2, e1); | ||
|  | 	Normalize(n); | ||
|  | 
 | ||
|  | 	return newVectorObject(n, 3, Py_NEW); | ||
|  | } | ||
|  | 
 | ||
|  | //--------------------------------- AREA FUNCTIONS--------------------
 | ||
|  | //----------------------------------Mathutils.TriangleArea() -------------------
 | ||
|  | PyObject *M_Mathutils_TriangleArea( PyObject * self, PyObject * args ) | ||
|  | { | ||
|  | 	VectorObject *vec1, *vec2, *vec3; | ||
|  | 	float v1[3], v2[3], v3[3]; | ||
|  | 
 | ||
|  | 	if( !PyArg_ParseTuple | ||
|  | 	    ( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2 | ||
|  | 		, &vector_Type, &vec3 ) ) { | ||
|  | 		PyErr_SetString( PyExc_TypeError, "expected 3 vector types\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	if( vec1->size != vec2->size || vec1->size != vec3->size ) { | ||
|  | 		PyErr_SetString( PyExc_TypeError, "vectors must be of the same size\n" ); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (vec1->size == 3) { | ||
|  | 		VECCOPY(v1, vec1->vec); | ||
|  | 		VECCOPY(v2, vec2->vec); | ||
|  | 		VECCOPY(v3, vec3->vec); | ||
|  | 
 | ||
|  | 		return PyFloat_FromDouble( AreaT3Dfl(v1, v2, v3) ); | ||
|  | 	} | ||
|  | 	else if (vec1->size == 2) { | ||
|  | 		v1[0] = vec1->vec[0]; | ||
|  | 		v1[1] = vec1->vec[1]; | ||
|  | 
 | ||
|  | 		v2[0] = vec2->vec[0]; | ||
|  | 		v2[1] = vec2->vec[1]; | ||
|  | 
 | ||
|  | 		v3[0] = vec3->vec[0]; | ||
|  | 		v3[1] = vec3->vec[1]; | ||
|  | 
 | ||
|  | 		return PyFloat_FromDouble( AreaF2Dfl(v1, v2, v3) ); | ||
|  | 	} | ||
|  | 	else { | ||
|  | 		PyErr_SetString( PyExc_TypeError, "only 2D,3D vectors are supported\n" ); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | } | ||
|  | //#############################DEPRECATED################################
 | ||
|  | //#######################################################################
 | ||
|  | //----------------------------------Mathutils.CopyMat() -----------------
 | ||
|  | //copies a matrix into a new matrix
 | ||
|  | PyObject *M_Mathutils_CopyMat(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	PyObject *matrix = NULL; | ||
|  | 	static char warning = 1; | ||
|  | 
 | ||
|  | 	if( warning ) { | ||
|  | 		printf("Mathutils.CopyMat(): deprecated :use Mathutils.Matrix() to copy matrices\n"); | ||
|  | 		--warning; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	matrix = M_Mathutils_Matrix(self, args); | ||
|  | 	if(matrix == NULL) | ||
|  | 		return NULL; //error string already set if we get here
 | ||
|  | 	else | ||
|  | 		return matrix; | ||
|  | } | ||
|  | //----------------------------------Mathutils.CopyVec() -----------------
 | ||
|  | //makes a new vector that is a copy of the input
 | ||
|  | PyObject *M_Mathutils_CopyVec(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	PyObject *vec = NULL; | ||
|  | 	static char warning = 1; | ||
|  | 
 | ||
|  | 	if( warning ) { | ||
|  | 		printf("Mathutils.CopyVec(): Deprecated: use Mathutils.Vector() to copy vectors\n"); | ||
|  | 		--warning; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	vec = M_Mathutils_Vector(self, args); | ||
|  | 	if(vec == NULL) | ||
|  | 		return NULL; //error string already set if we get here
 | ||
|  | 	else | ||
|  | 		return vec; | ||
|  | } | ||
|  | //----------------------------------Mathutils.CopyQuat() --------------
 | ||
|  | //Copies a quaternion to a new quat
 | ||
|  | PyObject *M_Mathutils_CopyQuat(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	PyObject *quat = NULL; | ||
|  | 	static char warning = 1; | ||
|  | 
 | ||
|  | 	if( warning ) { | ||
|  | 		printf("Mathutils.CopyQuat(): Deprecated: use Mathutils.Quaternion() to copy vectors\n"); | ||
|  | 		--warning; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	quat = M_Mathutils_Quaternion(self, args); | ||
|  | 	if(quat == NULL) | ||
|  | 		return NULL; //error string already set if we get here
 | ||
|  | 	else | ||
|  | 		return quat; | ||
|  | } | ||
|  | //----------------------------------Mathutils.CopyEuler() ---------------
 | ||
|  | //copies a euler to a new euler
 | ||
|  | PyObject *M_Mathutils_CopyEuler(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	PyObject *eul = NULL; | ||
|  | 	static char warning = 1; | ||
|  | 
 | ||
|  | 	if( warning ) { | ||
|  | 		printf("Mathutils.CopyEuler(): deprecated:use Mathutils.Euler() to copy vectors\n"); | ||
|  | 		--warning; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	eul = M_Mathutils_Euler(self, args); | ||
|  | 	if(eul == NULL) | ||
|  | 		return NULL; //error string already set if we get here
 | ||
|  | 	else | ||
|  | 		return eul; | ||
|  | } | ||
|  | //----------------------------------Mathutils.RotateEuler() ------------
 | ||
|  | //rotates a euler a certain amount and returns the result
 | ||
|  | //should return a unique euler rotation (i.e. no 720 degree pitches :)
 | ||
|  | PyObject *M_Mathutils_RotateEuler(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	EulerObject *Eul = NULL; | ||
|  | 	float angle; | ||
|  | 	char *axis; | ||
|  | 	static char warning = 1; | ||
|  | 
 | ||
|  | 	if( warning ) { | ||
|  | 		printf("Mathutils.RotateEuler(): Deprecated:use Euler.rotate() to rotate a euler\n"); | ||
|  | 		--warning; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if(!PyArg_ParseTuple(args, "O!fs", &euler_Type, &Eul, &angle, &axis)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError, "Mathutils.RotateEuler(): expected euler type & float & string"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	Euler_Rotate(Eul, Py_BuildValue("fs", angle, axis)); | ||
|  | 	Py_RETURN_NONE; | ||
|  | } | ||
|  | //----------------------------------Mathutils.MatMultVec() --------------
 | ||
|  | //COLUMN VECTOR Multiplication (Matrix X Vector)
 | ||
|  | PyObject *M_Mathutils_MatMultVec(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	MatrixObject *mat = NULL; | ||
|  | 	VectorObject *vec = NULL; | ||
|  | 	static char warning = 1; | ||
|  | 
 | ||
|  | 	if( warning ) { | ||
|  | 		printf("Mathutils.MatMultVec(): Deprecated: use matrix * vec to perform column vector multiplication\n"); | ||
|  | 		--warning; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	//get pyObjects
 | ||
|  | 	if(!PyArg_ParseTuple(args, "O!O!", &matrix_Type, &mat, &vector_Type, &vec)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError, "Mathutils.MatMultVec(): MatMultVec() expects a matrix and a vector object - in that order\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return column_vector_multiplication(mat, vec); | ||
|  | } | ||
|  | //----------------------------------Mathutils.VecMultMat() ---------------
 | ||
|  | //ROW VECTOR Multiplication - Vector X Matrix
 | ||
|  | PyObject *M_Mathutils_VecMultMat(PyObject * self, PyObject * args) | ||
|  | { | ||
|  | 	MatrixObject *mat = NULL; | ||
|  | 	VectorObject *vec = NULL; | ||
|  | 	static char warning = 1; | ||
|  | 
 | ||
|  | 	if( warning ) { | ||
|  | 		printf("Mathutils.VecMultMat(): Deprecated: use vec * matrix to perform row vector multiplication\n"); | ||
|  | 		--warning; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	//get pyObjects
 | ||
|  | 	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec, &matrix_Type, &mat)) { | ||
|  | 		PyErr_SetString(PyExc_TypeError, "Mathutils.VecMultMat(): VecMultMat() expects a vector and matrix object - in that order\n"); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return row_vector_multiplication(vec, mat); | ||
|  | } | ||
|  | 
 | ||
|  | /* Utility functions */ | ||
|  | 
 | ||
|  | /*---------------------- EXPP_FloatsAreEqual -------------------------
 | ||
|  |   Floating point comparisons  | ||
|  |   floatStep = number of representable floats allowable in between | ||
|  |    float A and float B to be considered equal. */ | ||
|  | int EXPP_FloatsAreEqual(float A, float B, int floatSteps) | ||
|  | { | ||
|  | 	int a, b, delta; | ||
|  |     assert(floatSteps > 0 && floatSteps < (4 * 1024 * 1024)); | ||
|  |     a = *(int*)&A; | ||
|  |     if (a < 0)	 | ||
|  | 		a = 0x80000000 - a; | ||
|  |     b = *(int*)&B; | ||
|  |     if (b < 0)	 | ||
|  | 		b = 0x80000000 - b; | ||
|  |     delta = abs(a - b); | ||
|  |     if (delta <= floatSteps)	 | ||
|  | 		return 1; | ||
|  |     return 0; | ||
|  | } | ||
|  | /*---------------------- EXPP_VectorsAreEqual -------------------------
 | ||
|  |   Builds on EXPP_FloatsAreEqual to test vectors */ | ||
|  | int EXPP_VectorsAreEqual(float *vecA, float *vecB, int size, int floatSteps){ | ||
|  | 
 | ||
|  | 	int x; | ||
|  | 	for (x=0; x< size; x++){ | ||
|  | 		if (EXPP_FloatsAreEqual(vecA[x], vecB[x], floatSteps) == 0) | ||
|  | 			return 0; | ||
|  | 	} | ||
|  | 	return 1; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | //#######################################################################
 | ||
|  | //#############################DEPRECATED################################
 |