This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/nodes/NOD_geometry.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

98 lines
4.1 KiB
C++
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include "BKE_node.h"
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
extern struct bNodeTreeType *ntreeType_Geometry;
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
void register_node_tree_type_geo(void);
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
void register_node_type_geo_group(void);
void register_node_type_geo_custom_group(bNodeType *ntype);
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
2021-02-07 17:21:21 -06:00
void register_node_type_geo_align_rotation_to_vector(void);
void register_node_type_geo_attribute_clamp(void);
2021-02-07 17:21:21 -06:00
void register_node_type_geo_attribute_color_ramp(void);
void register_node_type_geo_attribute_combine_xyz(void);
2021-02-07 17:21:21 -06:00
void register_node_type_geo_attribute_compare(void);
void register_node_type_geo_attribute_convert(void);
void register_node_type_geo_attribute_curve_map(void);
void register_node_type_geo_attribute_fill(void);
void register_node_type_geo_attribute_map_range(void);
2021-02-07 17:21:21 -06:00
void register_node_type_geo_attribute_math(void);
void register_node_type_geo_attribute_mix(void);
void register_node_type_geo_attribute_proximity(void);
2021-02-07 17:21:21 -06:00
void register_node_type_geo_attribute_randomize(void);
void register_node_type_geo_attribute_separate_xyz(void);
void register_node_type_geo_attribute_transfer(void);
2021-02-07 17:21:21 -06:00
void register_node_type_geo_attribute_vector_math(void);
void register_node_type_geo_attribute_vector_rotate(void);
void register_node_type_geo_attribute_remove(void);
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
void register_node_type_geo_boolean(void);
void register_node_type_geo_bounding_box(void);
2021-02-07 17:21:21 -06:00
void register_node_type_geo_collection_info(void);
void register_node_type_geo_convex_hull(void);
void register_node_type_geo_curve_length(void);
void register_node_type_geo_curve_to_mesh(void);
void register_node_type_geo_curve_to_points(void);
void register_node_type_geo_curve_resample(void);
void register_node_type_geo_curve_reverse(void);
void register_node_type_geo_curve_subdivide(void);
void register_node_type_geo_delete_geometry(void);
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
void register_node_type_geo_edge_split(void);
void register_node_type_geo_input_material(void);
2021-02-07 17:21:21 -06:00
void register_node_type_geo_is_viewport(void);
void register_node_type_geo_join_geometry(void);
void register_node_type_geo_material_assign(void);
void register_node_type_geo_material_replace(void);
void register_node_type_geo_mesh_primitive_circle(void);
void register_node_type_geo_mesh_primitive_cone(void);
void register_node_type_geo_mesh_primitive_cube(void);
void register_node_type_geo_mesh_primitive_cylinder(void);
void register_node_type_geo_mesh_primitive_grid(void);
void register_node_type_geo_mesh_primitive_ico_sphere(void);
void register_node_type_geo_mesh_primitive_line(void);
void register_node_type_geo_mesh_primitive_uv_sphere(void);
void register_node_type_geo_mesh_to_curve(void);
2021-02-07 17:21:21 -06:00
void register_node_type_geo_object_info(void);
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
void register_node_type_geo_point_distribute(void);
void register_node_type_geo_point_instance(void);
2021-02-07 17:21:21 -06:00
void register_node_type_geo_point_rotate(void);
void register_node_type_geo_point_scale(void);
2021-02-07 17:21:21 -06:00
void register_node_type_geo_point_separate(void);
void register_node_type_geo_point_translate(void);
void register_node_type_geo_points_to_volume(void);
void register_node_type_geo_raycast(void);
2021-02-07 17:21:21 -06:00
void register_node_type_geo_sample_texture(void);
void register_node_type_geo_select_by_material(void);
void register_node_type_geo_separate_components(void);
void register_node_type_geo_subdivide(void);
void register_node_type_geo_subdivision_surface(void);
void register_node_type_geo_switch(void);
2021-02-07 17:21:21 -06:00
void register_node_type_geo_transform(void);
void register_node_type_geo_triangulate(void);
void register_node_type_geo_volume_to_mesh(void);
#ifdef __cplusplus
}
#endif