This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/interface/interface_regions.c

68 lines
1.8 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2008 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup edinterface
*
* General Interface Region Code
*
* \note Most logic is now in 'interface_region_*.c'
2011-02-27 20:29:51 +00:00
*/
#include "BLI_utildefines.h"
#include "MEM_guardedalloc.h"
#include "BLI_listbase.h"
#include "BKE_context.h"
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#include "BKE_screen.h"
#include "WM_api.h"
2.5: WM Compositing * Triple Buffer is now more complete: - Proper handling of window resize, duplicate, etc. - It now uses 3x3 textures (or less) if the power of two sizes do not match well. That still has a worst case wast of 23.4%, but better than 300%. - It can also use the ARB/NV/EXT_texture_rectangle extension now, which may be supported on hardware that does not support ARB_texture_non_power_of_two. - Gesture, menu and brushe redraws now require no redraws at all from the area regions. So even on a high poly scene just moving the paint cursor or opening a menu should be fast. * Testing can be done by setting the "Window Draw Method" in the User Preferences in the outliner. "Overlap" is still default, since "Triple Buffer" has not been tested on computers other than mine, would like to avoid crashing Blender on startup in case there is a common bug, but it's ready for testing now. - For reference "Full" draws the full window each time. - "Triple Buffer" should work for both swap copy and swap exchange systems, the latter still need the -E command line option for "Overlap". - Resizing and going fullscreen still gives flicker here but no more than "Full" drawing. * Partial Redraw was added. ED_region_tag_redraw_partial takes a rect in window coordinates to define a subarea of the region. On region draw it will then set glScissor to a smaller area, and ar->drawrct will always be set to either the partial or full window rect. The latter can then be used for clipping in the 3D view or clipping interface drawing. Neither is implemented yet.
2009-01-23 03:52:52 +00:00
#include "wm_draw.h"
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
#include "ED_screen.h"
#include "interface_regions_intern.h"
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
ARegion *ui_region_temp_add(bScreen *sc)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
ARegion *ar;
2012-03-30 01:51:25 +00:00
ar = MEM_callocN(sizeof(ARegion), "area region");
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
BLI_addtail(&sc->regionbase, ar);
2012-03-30 01:51:25 +00:00
ar->regiontype = RGN_TYPE_TEMPORARY;
ar->alignment = RGN_ALIGN_FLOAT;
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
return ar;
}
void ui_region_temp_remove(bContext *C, bScreen *sc, ARegion *ar)
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
{
wmWindow *win = CTX_wm_window(C);
Main Workspace Integration This commit does the main integration of workspaces, which is a design we agreed on during the 2.8 UI workshop (see https://wiki.blender.org/index.php/Dev:2.8/UI/Workshop_Writeup) Workspaces should generally be stable, I'm not aware of any remaining bugs (or I've forgotten them :) ). If you find any, let me know! (Exception: mode switching button might get out of sync with actual mode in some cases, would consider that a limitation/ToDo. Needs to be resolved at some point.) == Main Changes/Features * Introduces the new Workspaces as data-blocks. * Allow storing a number of custom workspaces as part of the user configuration. Needs further work to allow adding and deleting individual workspaces. * Bundle a default workspace configuration with Blender (current screen-layouts converted to workspaces). * Pressing button to add a workspace spawns a menu to select between "Duplicate Current" and the workspaces from the user configuration. If no workspaces are stored in the user configuration, the default workspaces are listed instead. * Store screen-layouts (`bScreen`) per workspace. * Store an active screen-layout per workspace. Changing the workspace will enable this layout. * Store active mode in workspace. Changing the workspace will also enter the mode of the new workspace. (Note that we still store the active mode in the object, moving this completely to workspaces is a separate project.) * Store an active render layer per workspace. * Moved mode switch from 3D View header to Info Editor header. * Store active scene in window (not directly workspace related, but overlaps quite a bit). * Removed 'Use Global Scene' User Preference option. * Compatibility with old files - a new workspace is created for every screen-layout of old files. Old Blender versions should be able to read files saved with workspace support as well. * Default .blend only contains one workspace ("General"). * Support appending workspaces. Opening files without UI and commandline rendering should work fine. Note that the UI is temporary! We plan to introduce a new global topbar that contains the workspace options and tabs for switching workspaces. == Technical Notes * Workspaces are data-blocks. * Adding and removing `bScreen`s should be done through `ED_workspace_layout` API now. * A workspace can be active in multiple windows at the same time. * The mode menu (which is now in the Info Editor header) doesn't display "Grease Pencil Edit" mode anymore since its availability depends on the active editor. Will be fixed by making Grease Pencil an own object type (as planned). * The button to change the active workspace object mode may get out of sync with the mode of the active object. Will either be resolved by moving mode out of object data, or we'll disable workspace modes again (there's a `#define USE_WORKSPACE_MODE` for that). * Screen-layouts (`bScreen`) are IDs and thus stored in a main list-base. Had to add a wrapper `WorkSpaceLayout` so we can store them in a list-base within workspaces, too. On the long run we could completely replace `bScreen` by workspace structs. * `WorkSpace` types use some special compiler trickery to allow marking structs and struct members as private. BKE_workspace API should be used for accessing those. * Added scene operators `SCENE_OT_`. Was previously done through screen operators. == BPY API Changes * Removed `Screen.scene`, added `Window.scene` * Removed `UserPreferencesView.use_global_scene` * Added `Context.workspace`, `Window.workspace` and `BlendData.workspaces` * Added `bpy.types.WorkSpace` containing `screens`, `object_mode` and `render_layer` * Added Screen.layout_name for the layout name that'll be displayed in the UI (may differ from internal name) == What's left? * There are a few open design questions (T50521). We should find the needed answers and implement them. * Allow adding and removing individual workspaces from workspace configuration (needs UI design). * Get the override system ready and support overrides per workspace. * Support custom UI setups as part of workspaces (hidden panels, hidden buttons, customizable toolbars, etc). * Allow enabling add-ons per workspace. * Support custom workspace keymaps. * Remove special exception for workspaces in linking code (so they're always appended, never linked). Depends on a few things, so best to solve later. * Get the topbar done. * Workspaces need a proper icon, current one is just a placeholder :) Reviewed By: campbellbarton, mont29 Tags: #user_interface, #bf_blender_2.8 Maniphest Tasks: T50521 Differential Revision: https://developer.blender.org/D2451
2017-06-01 19:56:58 +02:00
BLI_assert(ar->regiontype == RGN_TYPE_TEMPORARY);
BLI_assert(BLI_findindex(&sc->regionbase, ar) != -1);
if (win)
wm_draw_region_clear(win, ar);
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
ED_region_exit(C, ar);
2012-03-30 01:51:25 +00:00
BKE_area_region_free(NULL, ar); /* NULL: no spacetype */
Port of part of the Interface code to 2.50. This is based on the current trunk version, so these files should not need merges. There's two things (clipboard and intptr_t) that are missing in 2.50 and commented out with XXX 2.48, these can be enabled again once trunk is merged into this branch. Further this is not all interface code, there are many parts commented out: * interface.c: nearly all button types, missing: links, chartab, keyevent. * interface_draw.c: almost all code, with some small exceptions. * interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators, making it non-blocking. * interface_regions: this is a part of interface.c, split off, contains code to create regions for tooltips, menus, pupmenu (that one is crashing currently), color chooser, basically regions with buttons which is fairly independent of core interface code. * interface_panel.c and interface_icons.c: not ported over, so no panels and icons yet. Panels should probably become (free floating) regions? * text.c: (formerly language.c) for drawing text and translation. this works but is using bad globals still and could be cleaned up. Header Files: * ED_datafiles.h now has declarations for datatoc_ files, so those extern declarations can be #included instead of repeated. * The user interface code is in UI_interface.h and other UI_* files. Core: * The API for creating blocks, buttons, etc is nearly the same still. Blocks are now created per region instead of per area. * The code was made non-blocking, which means that any changes and redraws should be possible while editing a button. That means though that we need some sort of persistence even though the blender model is to recreate buttons for each redraw. So when a new block is created, some matching happens to find out which buttons correspond to buttons in the previously created block, and for activated buttons some data is then copied over to the new button. * Added UI_init/UI_init_userdef/UI_exit functions that should initialize code in this module, instead of multiple function calls in the windowmanager. * Removed most static/globals from interface.c. * Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it would integrate here? * Currently only full window redraws are used, this should become per region and maybe per button later. Operators: * Events are currently handled through two operators: button activate and menu handle. Operators may not be the best way to implement this, since there are currently some issues with events being missed, but they can become a special handler type instead, this should not be a big change. * The button activate operator runs as long as a button is active, and will handle all interaction with that button until the button is not activated anymore. This means clicking, text editing, number dragging, opening menu blocks, etc. * Since this operator has to be non-blocking, the ui_do_but code needed to made non-blocking. That means variables that were previously on the stack, now need to be stored away in a struct such that they can be accessed again when the operator receives more events. * Additionally the place in the ui_do_but code indicated the state, now that needs to be set explicit in order to handle the right events in the right state. So an activated button can be in one of these states: init, highlight, wait_flash, wait_release, wait_key_event, num_editing, text_editing, text_selecting, block_open, exit. * For each button type an ui_apply_but_* function has also been separated out from ui_do_but. This makes it possible to continuously apply the button as text is being typed for example, and there is an option in the code to enable this. Since the code non-blocking and can deal with the button being deleted even, it should be safe to do this. * When editing text, dragging numbers, etc, the actual data (but->poin) is not being edited, since that would mean data is being edited without correct updates happening, while some other part of blender may be accessing that data in the meantime. So data values, strings, vectors are written to a temporary location and only flush in the apply function. Regions: * Menus, color chooser, tooltips etc all create screen level regions. Such menu blocks give a handle to the button that creates it, which will contain the results of the menu block once a MESSAGE event is received from that menu block. * For this type of menu block the coordinates used to be in window space. They are still created that way and ui_positionblock still works with window coordinates, but after that the block and buttons are brought back to region coordinates since these are now contained in a region. * The flush/overdraw frontbuffer drawing code was removed, the windowmanager should have enough information with these screen level regions to have full control over what gets drawn when and to then do correct compositing. Testing: * The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
BLI_freelinkN(&sc->regionbase, ar);
}