This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/simple_expr.c

925 lines
22 KiB
C
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2018 Blender Foundation, Alexander Gavrilov
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Alexander Gavrilov
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenlib/intern/simple_expr.c
* \ingroup bli
*/
#include <math.h>
#include <stdio.h>
#include <stddef.h>
#include <string.h>
#include <float.h>
#include <ctype.h>
#include <stdlib.h>
#include <fenv.h>
#include "MEM_guardedalloc.h"
#include "BLI_simple_expr.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_string_utils.h"
#include "BLI_utildefines.h"
#include "BLI_alloca.h"
#ifdef _MSC_VER
#pragma fenv_access (on)
#endif
/* Simple Expression Stack Machine ------------------------- */
typedef enum eSimpleExpr_Opcode {
/* Double constant: (-> dval) */
OPCODE_CONST,
/* 1 argument function call: (a -> func1(a)) */
OPCODE_FUNC1,
/* 2 argument function call: (a b -> func2(a,b)) */
OPCODE_FUNC2,
/* Parameter access: (-> params[ival]) */
OPCODE_PARAMETER,
/* Minimum of multiple inputs: (a b c... -> min); ival = arg count */
OPCODE_MIN,
/* Maximum of multiple inputs: (a b c... -> max); ival = arg count */
OPCODE_MAX,
/* Jump (pc += jmp_offset) */
OPCODE_JMP,
/* Pop and jump if zero: (a -> ); JUMP IF NOT a */
OPCODE_JMP_ELSE,
/* Jump if nonzero, or pop: (a -> a JUMP) IF a ELSE (a -> ) */
OPCODE_JMP_OR,
/* Jump if zero, or pop: (a -> a JUMP) IF NOT a ELSE (a -> ) */
OPCODE_JMP_AND,
/* For comparison chaining: (a b -> 0 JUMP) IF NOT func2(a,b) ELSE (a b -> b) */
OPCODE_CMP_CHAIN,
} eSimpleExpr_Opcode;
typedef double (*UnaryOpFunc)(double);
typedef double (*BinaryOpFunc)(double, double);
typedef struct SimpleExprOp {
eSimpleExpr_Opcode opcode;
int jmp_offset;
union {
int ival;
double dval;
void *ptr;
UnaryOpFunc func1;
BinaryOpFunc func2;
} arg;
} SimpleExprOp;
struct ParsedSimpleExpr {
int ops_count;
int max_stack;
SimpleExprOp ops[];
};
void BLI_simple_expr_free(ParsedSimpleExpr *expr)
{
if (expr != NULL) {
MEM_freeN(expr);
}
}
bool BLI_simple_expr_is_valid(ParsedSimpleExpr *expr)
{
return expr != NULL && expr->ops_count > 0;
}
bool BLI_simple_expr_is_constant(ParsedSimpleExpr *expr)
{
return expr != NULL && expr->ops_count == 1 && expr->ops[0].opcode == OPCODE_CONST;
}
/* Stack Machine Evaluation -------------------------------- */
eSimpleExpr_EvalStatus BLI_simple_expr_evaluate(ParsedSimpleExpr *expr, double *result, int num_params, const double *params)
{
*result = 0.0;
if (!BLI_simple_expr_is_valid(expr)) {
return SIMPLE_EXPR_INVALID;
}
#define FAIL_IF(condition) if (condition) { return SIMPLE_EXPR_FATAL_ERROR; }
/* Check the stack requirement is at least remotely sane and allocate on the actual stack. */
FAIL_IF(expr->max_stack <= 0 || expr->max_stack > 1000);
double *stack = BLI_array_alloca(stack, expr->max_stack);
/* Evaluate expression. */
SimpleExprOp *ops = expr->ops;
int sp = 0, pc;
feclearexcept(FE_ALL_EXCEPT);
for (pc = 0; pc >= 0 && pc < expr->ops_count; pc++) {
switch (ops[pc].opcode) {
/* Arithmetic */
case OPCODE_CONST:
FAIL_IF(sp >= expr->max_stack);
stack[sp++] = ops[pc].arg.dval;
break;
case OPCODE_PARAMETER:
FAIL_IF(sp >= expr->max_stack || ops[pc].arg.ival >= num_params);
stack[sp++] = params[ops[pc].arg.ival];
break;
case OPCODE_FUNC1:
FAIL_IF(sp < 1);
stack[sp - 1] = ops[pc].arg.func1(stack[sp - 1]);
break;
case OPCODE_FUNC2:
FAIL_IF(sp < 2);
stack[sp - 2] = ops[pc].arg.func2(stack[sp - 2], stack[sp - 1]);
sp--;
break;
case OPCODE_MIN:
FAIL_IF(sp < ops[pc].arg.ival);
for (int j = 1; j < ops[pc].arg.ival; j++, sp--) {
CLAMP_MAX(stack[sp - 2], stack[sp - 1]);
}
break;
case OPCODE_MAX:
FAIL_IF(sp < ops[pc].arg.ival);
for (int j = 1; j < ops[pc].arg.ival; j++, sp--) {
CLAMP_MIN(stack[sp - 2], stack[sp - 1]);
}
break;
/* Jumps */
case OPCODE_JMP:
pc += ops[pc].jmp_offset;
break;
case OPCODE_JMP_ELSE:
FAIL_IF(sp < 1);
if (!stack[--sp]) {
pc += ops[pc].jmp_offset;
}
break;
case OPCODE_JMP_OR:
case OPCODE_JMP_AND:
FAIL_IF(sp < 1);
if (!stack[sp - 1] == !(ops[pc].opcode == OPCODE_JMP_OR)) {
pc += ops[pc].jmp_offset;
}
else {
sp--;
}
break;
/* For chaining comparisons, i.e. "a < b < c" as "a < b and b < c" */
case OPCODE_CMP_CHAIN:
FAIL_IF(sp < 2);
/* If comparison fails, return 0 and jump to end. */
if (!ops[pc].arg.func2(stack[sp - 2], stack[sp - 1])) {
stack[sp - 2] = 0.0;
pc += ops[pc].jmp_offset;
}
/* Otherwise keep b on the stack and proceed. */
else {
stack[sp - 2] = stack[sp - 1];
}
sp--;
break;
default:
return SIMPLE_EXPR_FATAL_ERROR;
}
}
FAIL_IF(sp != 1 || pc != expr->ops_count);
#undef FAIL_IF
*result = stack[0];
/* Detect floating point evaluation errors. */
int flags = fetestexcept(FE_DIVBYZERO | FE_INVALID);
if (flags) {
return (flags & FE_INVALID) ? SIMPLE_EXPR_MATH_ERROR : SIMPLE_EXPR_DIV_BY_ZERO;
}
return SIMPLE_EXPR_SUCCESS;
}
/* Simple Expression Built-In Operations ------------------- */
static double op_negate(double arg) {
return -arg;
}
static double op_mul(double a, double b) {
return a * b;
}
static double op_div(double a, double b) {
return a / b;
}
static double op_add(double a, double b) {
return a + b;
}
static double op_sub(double a, double b) {
return a - b;
}
static double op_radians(double arg) {
return arg * M_PI / 180.0;
}
static double op_degrees(double arg) {
return arg * 180.0 / M_PI;
}
static double op_not(double a) {
return a ? 0.0 : 1.0;
}
static double op_eq(double a, double b) {
return a == b ? 1.0 : 0.0;
}
static double op_ne(double a, double b) {
return a != b ? 1.0 : 0.0;
}
static double op_lt(double a, double b) {
return a < b ? 1.0 : 0.0;
}
static double op_le(double a, double b) {
return a <= b ? 1.0 : 0.0;
}
static double op_gt(double a, double b) {
return a > b ? 1.0 : 0.0;
}
static double op_ge(double a, double b) {
return a >= b ? 1.0 : 0.0;
}
typedef struct BuiltinConstDef {
const char *name;
double value;
} BuiltinConstDef;
static BuiltinConstDef builtin_consts[] = {
{ "pi", M_PI },
{ "True", 1.0 },
{ "False", 0.0 },
{ NULL, 0.0 }
};
typedef struct BuiltinOpDef {
const char *name;
eSimpleExpr_Opcode op;
void *funcptr;
} BuiltinOpDef;
static BuiltinOpDef builtin_ops[] = {
{ "radians", OPCODE_FUNC1, op_radians },
{ "degrees", OPCODE_FUNC1, op_degrees },
{ "abs", OPCODE_FUNC1, abs },
{ "fabs", OPCODE_FUNC1, abs },
{ "floor", OPCODE_FUNC1, floor },
{ "ceil", OPCODE_FUNC1, ceil },
{ "trunc", OPCODE_FUNC1, trunc },
{ "int", OPCODE_FUNC1, trunc },
{ "sin", OPCODE_FUNC1, sin },
{ "cos", OPCODE_FUNC1, cos },
{ "tan", OPCODE_FUNC1, tan },
{ "asin", OPCODE_FUNC1, asin },
{ "acos", OPCODE_FUNC1, acos },
{ "atan", OPCODE_FUNC1, atan },
{ "atan2", OPCODE_FUNC2, atan2 },
{ "exp", OPCODE_FUNC1, exp },
{ "log", OPCODE_FUNC1, log },
{ "sqrt", OPCODE_FUNC1, sqrt },
{ "pow", OPCODE_FUNC2, pow },
{ "fmod", OPCODE_FUNC2, fmod },
{ NULL, OPCODE_CONST, NULL }
};
/* Simple Expression Parser State -------------------------- */
#define MAKE_CHAR2(a, b) (((a) << 8) | (b))
#define CHECK_ERROR(condition) if (!(condition)) { return false; }
/* For simplicity simple token types are represented by their own character;
* these are special identifiers for multi-character tokens. */
#define TOKEN_ID MAKE_CHAR2('I', 'D')
#define TOKEN_NUMBER MAKE_CHAR2('0', '0')
#define TOKEN_GE MAKE_CHAR2('>', '=')
#define TOKEN_LE MAKE_CHAR2('<', '=')
#define TOKEN_NE MAKE_CHAR2('!', '=')
#define TOKEN_EQ MAKE_CHAR2('=', '=')
#define TOKEN_AND MAKE_CHAR2('A', 'N')
#define TOKEN_OR MAKE_CHAR2('O', 'R')
#define TOKEN_NOT MAKE_CHAR2('N', 'O')
#define TOKEN_IF MAKE_CHAR2('I', 'F')
#define TOKEN_ELSE MAKE_CHAR2('E', 'L')
static const char *token_eq_characters = "!=><";
static const char *token_characters = "~`!@#$%^&*+-=/\\?:;<>(){}[]|.,\"'";
typedef struct KeywordTokenDef {
const char *name;
short token;
} KeywordTokenDef;
static KeywordTokenDef keyword_list[] = {
{ "and", TOKEN_AND },
{ "or", TOKEN_OR },
{ "not", TOKEN_NOT },
{ "if", TOKEN_IF },
{ "else", TOKEN_ELSE },
{ NULL, TOKEN_ID }
};
typedef struct SimpleExprParseState {
int param_count;
const char **param_names;
/* Original expression */
const char *expr;
const char *cur;
/* Current token */
short token;
char *tokenbuf;
double tokenval;
/* Opcode buffer */
int ops_count, max_ops, last_jmp;
SimpleExprOp *ops;
/* Stack space requirement tracking */
int stack_ptr, max_stack;
} SimpleExprParseState;
/* Reserve space for the specified number of operations in the buffer. */
static SimpleExprOp* parse_alloc_ops(SimpleExprParseState *state, int count)
{
if (state->ops_count + count > state->max_ops) {
state->max_ops = power_of_2_max_i(state->ops_count + count);
state->ops = MEM_reallocN(state->ops, state->max_ops * sizeof(SimpleExprOp));
}
SimpleExprOp *op = &state->ops[state->ops_count];
state->ops_count += count;
return op;
}
/* Add one operation and track stack usage. */
static SimpleExprOp* parse_add_op(SimpleExprParseState *state, eSimpleExpr_Opcode code, int stack_delta)
{
/* track evaluation stack depth */
state->stack_ptr += stack_delta;
CLAMP_MIN(state->stack_ptr, 0);
CLAMP_MIN(state->max_stack, state->stack_ptr);
/* allocate the new instruction */
SimpleExprOp *op = parse_alloc_ops(state, 1);
memset(op, 0, sizeof(SimpleExprOp));
op->opcode = code;
return op;
}
/* Add one jump operation and return an index for parse_set_jump. */
static int parse_add_jump(SimpleExprParseState *state, eSimpleExpr_Opcode code)
{
parse_add_op(state, code, -1);
return state->last_jmp = state->ops_count;
}
/* Set the jump offset in a previously added jump operation. */
static void parse_set_jump(SimpleExprParseState *state, int jump)
{
state->last_jmp = state->ops_count;
state->ops[jump - 1].jmp_offset = state->ops_count - jump;
}
/* Add a function call operation, applying constant folding when possible. */
static bool parse_add_func(SimpleExprParseState *state, eSimpleExpr_Opcode code, int args, void *funcptr)
{
SimpleExprOp *prev_ops = &state->ops[state->ops_count];
int jmp_gap = state->ops_count - state->last_jmp;
feclearexcept(FE_ALL_EXCEPT);
switch (code) {
case OPCODE_FUNC1:
CHECK_ERROR(args == 1);
if (jmp_gap >= 1 && prev_ops[-1].opcode == OPCODE_CONST) {
UnaryOpFunc func = funcptr;
double result = func(prev_ops[-1].arg.dval);
if (fetestexcept(FE_DIVBYZERO | FE_INVALID) == 0) {
prev_ops[-1].arg.dval = result;
return true;
}
}
break;
case OPCODE_FUNC2:
CHECK_ERROR(args == 2);
if (jmp_gap >= 2 && prev_ops[-2].opcode == OPCODE_CONST && prev_ops[-1].opcode == OPCODE_CONST) {
BinaryOpFunc func = funcptr;
double result = func(prev_ops[-2].arg.dval, prev_ops[-1].arg.dval);
if (fetestexcept(FE_DIVBYZERO | FE_INVALID) == 0) {
prev_ops[-2].arg.dval = result;
state->ops_count--;
state->stack_ptr--;
return true;
}
}
break;
default:
BLI_assert(false);
return false;
}
parse_add_op(state, code, 1-args)->arg.ptr = funcptr;
return true;
}
/* Extract the next token from raw characters. */
static bool parse_next_token(SimpleExprParseState *state)
{
/* Skip whitespace. */
while (isspace(*state->cur)) {
state->cur++;
}
/* End of string. */
if (*state->cur == 0) {
state->token = 0;
return true;
}
/* Floating point numbers. */
if (isdigit(*state->cur) || (state->cur[0] == '.' && isdigit(state->cur[1]))) {
char *end, *out = state->tokenbuf;
bool is_float = false;
while (isdigit(*state->cur))
*out++ = *state->cur++;
if (*state->cur == '.') {
is_float = true;
*out++ = *state->cur++;
while (isdigit(*state->cur))
*out++ = *state->cur++;
}
if (ELEM(*state->cur, 'e', 'E')) {
is_float = true;
*out++ = *state->cur++;
if (ELEM(*state->cur, '+', '-'))
*out++ = *state->cur++;
CHECK_ERROR(isdigit(*state->cur));
while (isdigit(*state->cur))
*out++ = *state->cur++;
}
*out = 0;
/* Forbid C-style octal constants. */
if (!is_float && state->tokenbuf[0] == '0') {
for (char *p = state->tokenbuf+1; *p; p++) {
if (*p != '0') {
return false;
}
}
}
state->token = TOKEN_NUMBER;
state->tokenval = strtod(state->tokenbuf, &end);
return (end == out);
}
/* ?= tokens */
if (state->cur[1] == '=' && strchr(token_eq_characters, state->cur[0])) {
state->token = MAKE_CHAR2(state->cur[0], state->cur[1]);
state->cur += 2;
return true;
}
/* Special characters (single character tokens) */
if (strchr(token_characters, *state->cur)) {
state->token = *state->cur++;
return true;
}
/* Identifiers */
if (isalpha(*state->cur) || ELEM(*state->cur, '_')) {
char *out = state->tokenbuf;
while (isalnum(*state->cur) || ELEM(*state->cur, '_'))
*out++ = *state->cur++;
*out = 0;
for (int i = 0; keyword_list[i].name; i++) {
if (STREQ(state->tokenbuf, keyword_list[i].name)) {
state->token = keyword_list[i].token;
return true;
}
}
state->token = TOKEN_ID;
return true;
}
return false;
}
/* Recursive Descent Parser -------------------------------- */
static bool parse_expr(SimpleExprParseState *state);
static int parse_function_args(SimpleExprParseState *state)
{
if (!parse_next_token(state) || state->token != '(' || !parse_next_token(state)) {
return -1;
}
int arg_count = 0;
for(;;) {
if (!parse_expr(state)) {
return -1;
}
arg_count++;
switch (state->token) {
case ',':
if (!parse_next_token(state)) {
return -1;
}
break;
case ')':
if (!parse_next_token(state)) {
return -1;
}
return arg_count;
default:
return -1;
}
}
}
static bool parse_unary(SimpleExprParseState *state)
{
int i;
switch (state->token) {
case '+':
return parse_next_token(state) && parse_unary(state);
case '-':
CHECK_ERROR(parse_next_token(state) && parse_unary(state));
parse_add_func(state, OPCODE_FUNC1, 1, op_negate);
return true;
case '(':
return parse_next_token(state) &&
parse_expr(state) &&
state->token == ')' &&
parse_next_token(state);
case TOKEN_NUMBER:
parse_add_op(state, OPCODE_CONST, 1)->arg.dval = state->tokenval;
return parse_next_token(state);
case TOKEN_ID:
/* Parameters: search in reverse order in case of duplicate names - the last one should win. */
for (i = state->param_count - 1; i >= 0; i--) {
if (STREQ(state->tokenbuf, state->param_names[i])) {
parse_add_op(state, OPCODE_PARAMETER, 1)->arg.ival = i;
return parse_next_token(state);
}
}
/* Ordinary builtin constants. */
for (i = 0; builtin_consts[i].name; i++) {
if (STREQ(state->tokenbuf, builtin_consts[i].name)) {
parse_add_op(state, OPCODE_CONST, 1)->arg.dval = builtin_consts[i].value;
return parse_next_token(state);
}
}
/* Ordinary builtin functions. */
for (i = 0; builtin_ops[i].name; i++) {
if (STREQ(state->tokenbuf, builtin_ops[i].name)) {
int args = parse_function_args(state);
return parse_add_func(state, builtin_ops[i].op, args, builtin_ops[i].funcptr);
}
}
/* Specially supported functions. */
if (STREQ(state->tokenbuf, "min")) {
int cnt = parse_function_args(state);
CHECK_ERROR(cnt > 0);
parse_add_op(state, OPCODE_MIN, 1-cnt)->arg.ival = cnt;
return true;
}
if (STREQ(state->tokenbuf, "max")) {
int cnt = parse_function_args(state);
CHECK_ERROR(cnt > 0);
parse_add_op(state, OPCODE_MAX, 1-cnt)->arg.ival = cnt;
return true;
}
return false;
default:
return false;
}
}
static bool parse_mul(SimpleExprParseState *state)
{
CHECK_ERROR(parse_unary(state));
for (;;) {
switch (state->token) {
case '*':
CHECK_ERROR(parse_next_token(state) && parse_unary(state));
parse_add_func(state, OPCODE_FUNC2, 2, op_mul);
break;
case '/':
CHECK_ERROR(parse_next_token(state) && parse_unary(state));
parse_add_func(state, OPCODE_FUNC2, 2, op_div);
break;
default:
return true;
}
}
}
static bool parse_add(SimpleExprParseState *state)
{
CHECK_ERROR(parse_mul(state));
for (;;) {
switch (state->token) {
case '+':
CHECK_ERROR(parse_next_token(state) && parse_mul(state));
parse_add_func(state, OPCODE_FUNC2, 2, op_add);
break;
case '-':
CHECK_ERROR(parse_next_token(state) && parse_mul(state));
parse_add_func(state, OPCODE_FUNC2, 2, op_sub);
break;
default:
return true;
}
}
}
static BinaryOpFunc parse_get_cmp_func(short token)
{
switch (token) {
case TOKEN_EQ:
return op_eq;
case TOKEN_NE:
return op_ne;
case '>':
return op_gt;
case TOKEN_GE:
return op_ge;
case '<':
return op_lt;
case TOKEN_LE:
return op_le;
default:
return NULL;
}
}
static bool parse_cmp_chain(SimpleExprParseState *state, BinaryOpFunc cur_func)
{
BinaryOpFunc next_func = parse_get_cmp_func(state->token);
if (next_func) {
parse_add_op(state, OPCODE_CMP_CHAIN, -1)->arg.func2 = cur_func;
int jump = state->last_jmp = state->ops_count;
CHECK_ERROR(parse_next_token(state) && parse_add(state));
CHECK_ERROR(parse_cmp_chain(state, next_func));
parse_set_jump(state, jump);
}
else {
parse_add_func(state, OPCODE_FUNC2, 2, cur_func);
}
return true;
}
static bool parse_cmp(SimpleExprParseState *state)
{
CHECK_ERROR(parse_add(state));
BinaryOpFunc func = parse_get_cmp_func(state->token);
if (func) {
CHECK_ERROR(parse_next_token(state) && parse_add(state));
return parse_cmp_chain(state, func);
}
return true;
}
static bool parse_not(SimpleExprParseState *state)
{
if (state->token == TOKEN_NOT) {
CHECK_ERROR(parse_next_token(state) && parse_not(state));
parse_add_func(state, OPCODE_FUNC1, 1, op_not);
return true;
}
return parse_cmp(state);
}
static bool parse_and(SimpleExprParseState *state)
{
CHECK_ERROR(parse_not(state));
if (state->token == TOKEN_AND) {
int jump = parse_add_jump(state, OPCODE_JMP_AND);
CHECK_ERROR(parse_next_token(state) && parse_and(state));
parse_set_jump(state, jump);
}
return true;
}
static bool parse_or(SimpleExprParseState *state)
{
CHECK_ERROR(parse_and(state));
if (state->token == TOKEN_OR) {
int jump = parse_add_jump(state, OPCODE_JMP_OR);
CHECK_ERROR(parse_next_token(state) && parse_or(state));
parse_set_jump(state, jump);
}
return true;
}
static bool parse_expr(SimpleExprParseState *state)
{
/* Temporarily set the constant expression evaluation barrier */
int prev_last_jmp = state->last_jmp;
int start = state->last_jmp = state->ops_count;
CHECK_ERROR(parse_or(state));
if (state->token == TOKEN_IF) {
/* Ternary IF expression in python requires swapping the
* main body with condition, so stash the body opcodes. */
int size = state->ops_count - start;
int bytes = size * sizeof(SimpleExprOp);
SimpleExprOp *body = MEM_mallocN(bytes, "driver if body");
memcpy(body, state->ops + start, bytes);
state->last_jmp = state->ops_count = start;
state->stack_ptr--;
/* Parse condition. */
if (!parse_next_token(state) || !parse_or(state) ||
state->token != TOKEN_ELSE || !parse_next_token(state))
{
MEM_freeN(body);
return false;
}
int jmp_else = parse_add_jump(state, OPCODE_JMP_ELSE);
/* Add body back. */
memcpy(parse_alloc_ops(state, size), body, bytes);
MEM_freeN(body);
state->stack_ptr++;
int jmp_end = parse_add_jump(state, OPCODE_JMP);
/* Parse the else block. */
parse_set_jump(state, jmp_else);
CHECK_ERROR(parse_expr(state));
parse_set_jump(state, jmp_end);
}
/* If no actual jumps happened, restore previous barrier */
else if (state->last_jmp == start) {
state->last_jmp = prev_last_jmp;
}
return true;
}
/* Main Parsing Function ----------------------------------- */
/* Compile the expression and return the result. */
ParsedSimpleExpr *BLI_simple_expr_parse(const char *expression, int num_params, const char **param_names)
{
/* Prepare the parser state. */
SimpleExprParseState state;
memset(&state, 0, sizeof(state));
state.cur = state.expr = expression;
state.param_count = num_params;
state.param_names = param_names;
state.tokenbuf = MEM_mallocN(strlen(expression) + 1, __func__);
state.max_ops = 16;
state.ops = MEM_mallocN(state.max_ops * sizeof(SimpleExprOp), __func__);
/* Parse the expression. */
ParsedSimpleExpr *expr;
if (parse_next_token(&state) && parse_expr(&state) && state.token == 0) {
BLI_assert(state.stack_ptr == 1);
int bytesize = sizeof(ParsedSimpleExpr) + state.ops_count * sizeof(SimpleExprOp);
expr = MEM_mallocN(bytesize, "ParsedSimpleExpr");
expr->ops_count = state.ops_count;
expr->max_stack = state.max_stack;
memcpy(expr->ops, state.ops, state.ops_count * sizeof(SimpleExprOp));
}
else {
/* Always return a non-NULL object so that parse failure can be cached. */
expr = MEM_callocN(sizeof(ParsedSimpleExpr), "ParsedSimpleExpr(empty)");
}
MEM_freeN(state.tokenbuf);
MEM_freeN(state.ops);
return expr;
}