This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/object.c

1685 lines
33 KiB
C
Raw Normal View History

2002-10-12 11:37:38 +00:00
/* object.c MIXED MODEL
*
* jan 95
*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <string.h>
#include <math.h>
#include <stdio.h>
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
2002-10-12 11:37:38 +00:00
#ifdef WIN32
#include "BLI_winstuff.h"
#endif
#include "MEM_guardedalloc.h"
#include "DNA_action_types.h"
#include "DNA_armature_types.h"
#include "DNA_camera_types.h"
#include "DNA_constraint_types.h"
#include "DNA_curve_types.h"
#include "DNA_group_types.h"
#include "DNA_ika_types.h"
#include "DNA_ipo_types.h"
#include "DNA_lamp_types.h"
#include "DNA_lattice_types.h"
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_screen_types.h"
#include "DNA_space_types.h"
#include "DNA_texture_types.h"
#include "DNA_userdef_types.h"
#include "DNA_view3d_types.h"
#include "DNA_world_types.h"
#include "BKE_armature.h"
#include "BKE_action.h"
#include "BKE_deform.h"
#include "BKE_nla.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "BLI_editVert.h"
#include "BKE_utildefines.h"
#include "BKE_bad_level_calls.h"
#include "BKE_main.h"
#include "BKE_global.h"
#include "BKE_object.h"
#include "BKE_blender.h"
#include "BKE_screen.h"
#include "BKE_ipo.h"
#include "BKE_ika.h"
#include "BKE_library.h"
#include "BKE_mesh.h"
#include "BKE_curve.h"
#include "BKE_mball.h"
#include "BKE_effect.h"
#include "BKE_sca.h"
#include "BPY_extern.h"
#include "BKE_displist.h"
#include "BKE_property.h"
#include "BKE_anim.h"
#include "BKE_group.h"
#include "BKE_lattice.h"
#include "BKE_constraint.h"
#include "BKE_scene.h"
/* Local function protos */
static void solve_parenting (Object *ob, Object *par, float slowmat[][4], int simul);
float originmat[3][3]; /* na where_is_object(), kan her en der gebruikt worden */
Object workob;
void clear_workob(void)
{
memset(&workob, 0, sizeof(Object));
workob.size[0]= workob.size[1]= workob.size[2]= 1.0;
}
void copy_baseflags()
{
Base *base= G.scene->base.first;
while(base) {
base->object->flag= base->flag;
base= base->next;
}
}
void copy_objectflags()
{
Base *base= G.scene->base.first;
while(base) {
base->flag= base->object->flag;
base= base->next;
}
}
void update_base_layer(Object *ob)
{
Base *base= G.scene->base.first;
while (base) {
if (base->object == ob) base->lay= ob->lay;
base= base->next;
}
}
/* niet object zelf vrijgeven */
void free_object(Object *ob)
{
int a;
/* specifieke data loskoppelen */
if(ob->data) {
ID *id= ob->data;
id->us--;
if(id->us==0) {
if(ob->type==OB_MESH) unlink_mesh(ob->data);
else if(ob->type==OB_CURVE) unlink_curve(ob->data);
else if(ob->type==OB_MBALL) unlink_mball(ob->data);
}
ob->data= 0;
}
for(a=0; a<ob->totcol; a++) {
if(ob->mat[a]) ob->mat[a]->id.us--;
}
if(ob->mat) MEM_freeN(ob->mat);
ob->mat= 0;
if(ob->bb) MEM_freeN(ob->bb);
ob->bb= 0;
if(ob->path) free_path(ob->path);
ob->path= 0;
if(ob->ipo) ob->ipo->id.us--;
if(ob->action) ob->action->id.us--;
if(ob->defbase.first)
BLI_freelistN(&ob->defbase);
if(ob->pose) {
clear_pose(ob->pose);
MEM_freeN(ob->pose);
}
free_effects(&ob->effect);
BLI_freelistN(&ob->network);
free_properties(&ob->prop);
free_sensors(&ob->sensors);
free_controllers(&ob->controllers);
free_actuators(&ob->actuators);
free_constraints(&ob->constraints);
free_constraint_channels(&ob->constraintChannels);
free_nlastrips(&ob->nlastrips);
freedisplist(&ob->disp);
BPY_free_scriptlink(&ob->scriptlink);
}
void unlink_object(Object *ob)
{
Object *obt;
Material *mat;
World *wrld;
bScreen *sc;
Scene *sce;
Curve *cu;
Tex *tex;
Group *group;
int a;
unlink_controllers(&ob->controllers);
unlink_actuators(&ob->actuators);
/* alle objecten aflopen: parents en bevels */
obt= G.main->object.first;
while(obt) {
if(obt->id.lib==0) {
if(obt->parent==ob) {
obt->parent= 0;
if(ob->type==OB_LATTICE) freedisplist(&obt->disp);
}
if(obt->track==ob) obt->track= 0;
if ELEM(obt->type, OB_CURVE, OB_FONT) {
cu= obt->data;
if(cu->bevobj==ob) cu->bevobj= 0;
if(cu->textoncurve==ob) cu->textoncurve= 0;
}
if(obt->type==OB_IKA) {
Ika *ika= obt->data;
Deform *def= ika->def;
if(ika->parent==ob) ika->parent= 0;
a= ika->totdef;
while(a--) {
if(def->ob==ob) {
ika->totdef= 0;
MEM_freeN(ika->def);
ika->def= 0;
break;
}
def++;
}
}
sca_remove_ob_poin(obt, ob);
}
obt= obt->id.next;
}
/* materialen */
mat= G.main->mat.first;
while(mat) {
for(a=0; a<8; a++) {
if(mat->mtex[a] && ob==mat->mtex[a]->object) {
/* eigenlijk testen op lib */
mat->mtex[a]->object= 0;
}
}
mat= mat->id.next;
}
/* textures */
tex= G.main->tex.first;
while(tex) {
if(tex->env) {
if(tex->env->object == ob) tex->env->object= 0;
}
tex= tex->id.next;
}
/* mballs */
if(ob->type==OB_MBALL) {
obt= find_basis_mball(ob);
if(obt) freedisplist(&obt->disp);
}
/* worlds */
wrld= G.main->world.first;
while(wrld) {
if(wrld->id.lib==0) {
for(a=0; a<6; a++) {
if(wrld->mtex[a] && ob==wrld->mtex[a]->object)
wrld->mtex[a]->object =0;
}
}
wrld= wrld->id.next;
}
/* scene's */
sce= G.main->scene.first;
while(sce) {
if(sce->id.lib==0) {
if(sce->camera==ob) sce->camera= 0;
}
sce= sce->id.next;
}
/* keys */
/* screens */
sc= G.main->screen.first;
while(sc) {
ScrArea *sa= sc->areabase.first;
while(sa) {
SpaceLink *sl;
for (sl= sa->spacedata.first; sl; sl= sl->next) {
if(sl->spacetype==SPACE_VIEW3D) {
View3D *v3d= (View3D*) sl;
if(v3d->camera==ob) {
v3d->camera= 0;
if(v3d->persp>1) v3d->persp= 1;
}
if(v3d->localvd && v3d->localvd->camera==ob ) {
v3d->localvd->camera= 0;
if(v3d->localvd->persp>1) v3d->localvd->persp= 1;
}
}
}
sa= sa->next;
}
sc= sc->id.next;
}
/* groups */
group= G.main->group.first;
while(group) {
rem_from_group(group, ob);
group= group->id.next;
}
}
int exist_object(Object *obtest)
{
Object *ob;
ob= G.main->object.first;
while(ob) {
if(ob==obtest) return 1;
ob= ob->id.next;
}
return 0;
}
void *add_camera()
{
Camera *cam;
cam= alloc_libblock(&G.main->camera, ID_CA, "Camera");
cam->lens= 35.0f;
cam->clipsta= 0.1f;
cam->clipend= 100.0f;
cam->drawsize= 0.5f;
cam->netsta= 0.5f;
cam->netend= 10.0f;
cam->hold= 50;
return cam;
}
Camera *copy_camera(Camera *cam)
{
Camera *camn;
camn= copy_libblock(cam);
id_us_plus((ID *)camn->ipo);
BPY_copy_scriptlink(&camn->scriptlink);
return camn;
}
void make_local_camera(Camera *cam)
{
Object *ob;
Camera *camn;
int local=0, lib=0;
/* - zijn er alleen lib users: niet doen
* - zijn er alleen locale users: flag zetten
* - mixed: copy
*/
if(cam->id.lib==0) return;
if(cam->id.us==1) {
cam->id.lib= 0;
cam->id.flag= LIB_LOCAL;
new_id(0, (ID *)cam, 0);
return;
}
ob= G.main->object.first;
while(ob) {
if(ob->data==cam) {
if(ob->id.lib) lib= 1;
else local= 1;
}
ob= ob->id.next;
}
if(local && lib==0) {
cam->id.lib= 0;
cam->id.flag= LIB_LOCAL;
new_id(0, (ID *)cam, 0);
}
else if(local && lib) {
camn= copy_camera(cam);
camn->id.us= 0;
ob= G.main->object.first;
while(ob) {
if(ob->data==cam) {
if(ob->id.lib==0) {
ob->data= camn;
camn->id.us++;
cam->id.us--;
}
}
ob= ob->id.next;
}
}
}
void *add_lamp(void)
{
Lamp *la;
la= alloc_libblock(&G.main->lamp, ID_LA, "Lamp");
la->r= la->g= la->b= 1.0;
la->haint= la->energy= 1.0;
la->dist= 20.0f;
la->spotsize= 45.0f;
la->spotblend= 0.15f;
la->att2= 1.0f;
la->mode= LA_SHAD;
la->bufsize= 512;
la->clipsta= 0.5f;
la->clipend= 40.0f;
la->shadspotsize= 45.0f;
la->samp= 3;
la->bias= 1.0f;
la->soft= 3.0f;
return la;
}
Lamp *copy_lamp(Lamp *la)
{
Lamp *lan;
int a;
lan= copy_libblock(la);
for(a=0; a<8; a++) {
if(lan->mtex[a]) {
lan->mtex[a]= MEM_mallocN(sizeof(MTex), "copylamptex");
memcpy(lan->mtex[a], la->mtex[a], sizeof(MTex));
id_us_plus((ID *)lan->mtex[a]->tex);
}
}
id_us_plus((ID *)lan->ipo);
BPY_copy_scriptlink(&la->scriptlink);
return lan;
}
void make_local_lamp(Lamp *la)
{
Object *ob;
Lamp *lan;
int local=0, lib=0;
/* - zijn er alleen lib users: niet doen
* - zijn er alleen locale users: flag zetten
* - mixed: copy
*/
if(la->id.lib==0) return;
if(la->id.us==1) {
la->id.lib= 0;
la->id.flag= LIB_LOCAL;
new_id(0, (ID *)la, 0);
return;
}
ob= G.main->object.first;
while(ob) {
if(ob->data==la) {
if(ob->id.lib) lib= 1;
else local= 1;
}
ob= ob->id.next;
}
if(local && lib==0) {
la->id.lib= 0;
la->id.flag= LIB_LOCAL;
new_id(0, (ID *)la, 0);
}
else if(local && lib) {
lan= copy_lamp(la);
lan->id.us= 0;
ob= G.main->object.first;
while(ob) {
if(ob->data==la) {
if(ob->id.lib==0) {
ob->data= lan;
lan->id.us++;
la->id.us--;
}
}
ob= ob->id.next;
}
}
}
void free_camera(Camera *ca)
{
BPY_free_scriptlink(&ca->scriptlink);
}
void free_lamp(Lamp *la)
{
MTex *mtex;
int a;
/* scriptlinks */
BPY_free_scriptlink(&la->scriptlink);
for(a=0; a<8; a++) {
mtex= la->mtex[a];
if(mtex && mtex->tex) mtex->tex->id.us--;
if(mtex) MEM_freeN(mtex);
}
la->ipo= 0;
}
void *add_wave()
{
return 0;
}
/* *************************************************** */
static void *add_obdata_from_type(int type)
{
switch (type) {
case OB_MESH: G.totmesh++; return add_mesh();
case OB_CURVE: G.totcurve++; return add_curve(OB_CURVE);
case OB_SURF: G.totcurve++; return add_curve(OB_SURF);
case OB_FONT: return add_curve(OB_FONT);
case OB_MBALL: return add_mball();
case OB_CAMERA: return add_camera();
case OB_LAMP: G.totlamp++; return add_lamp();
case OB_IKA: return add_ika();
case OB_LATTICE: return add_lattice();
case OB_WAVE: return add_wave();
case OB_ARMATURE: return add_armature();
case OB_EMPTY: return NULL;
default:
printf("add_obdata_from_type: Internal error, bad type: %d\n", type);
return NULL;
}
}
static char *get_obdata_defname(int type)
{
switch (type) {
case OB_MESH: return "Mesh";
case OB_CURVE: return "Curve";
case OB_SURF: return "Surf";
case OB_FONT: return "Font";
case OB_MBALL: return "Mball";
case OB_CAMERA: return "Camera";
case OB_LAMP: return "Lamp";
case OB_IKA: return "Ika";
case OB_LATTICE: return "Lattice";
case OB_WAVE: return "Wave";
case OB_ARMATURE: return "Armature";
case OB_EMPTY: return "Empty";
default:
printf("get_obdata_defname: Internal error, bad type: %d\n", type);
return "Empty";
}
}
/* algemene add: in G.scene, met layer uit area en default naam */
/* maakt alle minimaal nodige datablokken aan, zonder vertices etc. */
Object *add_object(int type)
{
Object *ob;
Base *base;
char name[32];
if (G.obpose)
exit_posemode(1);
strcpy(name, get_obdata_defname(type));
ob= alloc_libblock(&G.main->object, ID_OB, name);
G.totobj++;
/* default object vars */
ob->type= type;
/* ob->transflag= OB_QUAT; */
QuatOne(ob->quat);
QuatOne(ob->dquat);
ob->col[0]= ob->col[1]= ob->col[2]= 0.0;
ob->col[3]= 1.0;
ob->loc[0]= ob->loc[1]= ob->loc[2]= 0.0;
ob->rot[0]= ob->rot[1]= ob->rot[2]= 0.0;
ob->size[0]= ob->size[1]= ob->size[2]= 1.0;
Mat4One(ob->parentinv);
Mat4One(ob->obmat);
ob->dt= OB_SHADED;
if(U.flag & MAT_ON_OB) ob->colbits= -1;
if(type==OB_CAMERA || type==OB_LAMP) {
ob->trackflag= OB_NEGZ;
ob->upflag= OB_POSY;
}
else {
ob->trackflag= OB_POSY;
ob->upflag= OB_POSZ;
}
ob->ipoflag = OB_OFFS_OB+OB_OFFS_PARENT;
ob->dupon= 1; ob->dupoff= 0;
ob->dupsta= 1; ob->dupend= 100;
/* Gameengine defaults*/
ob->mass= ob->inertia= 1.0f;
ob->formfactor= 0.4f;
ob->damping= 0.04f;
ob->rdamping= 0.1f;
ob->anisotropicFriction[0] = 1.0f;
ob->anisotropicFriction[1] = 1.0f;
ob->anisotropicFriction[2] = 1.0f;
ob->gameflag= OB_PROP;
ob->data= add_obdata_from_type(type);
ob->lay= G.scene->lay;
base= scene_add_base(G.scene, ob);
scene_select_base(G.scene, base);
return ob;
}
void base_init_from_view3d(Base *base, View3D *v3d)
{
Object *ob= base->object;
if (v3d->localview) {
base->lay= ob->lay= v3d->layact + v3d->lay;
VECCOPY(ob->loc, v3d->cursor);
} else {
base->lay= ob->lay= v3d->layact;
VECCOPY(ob->loc, G.scene->cursor);
}
v3d->viewquat[0]= -v3d->viewquat[0];
if (ob->transflag & OB_QUAT) {
QUATCOPY(ob->quat, v3d->viewquat);
} else {
QuatToEul(v3d->viewquat, ob->rot);
}
v3d->viewquat[0]= -v3d->viewquat[0];
}
Object *copy_object(Object *ob)
{
Object *obn;
int a;
bConstraintChannel *actcon;
obn= copy_libblock(ob);
if(ob->totcol) {
obn->mat= MEM_dupallocN(ob->mat);
}
if(ob->bb) obn->bb= MEM_dupallocN(ob->bb);
obn->path= 0;
obn->flag &= ~OB_FROMGROUP;
copy_effects(&obn->effect, &ob->effect);
obn->network.first= obn->network.last= 0;
BPY_copy_scriptlink(&ob->scriptlink);
copy_properties(&obn->prop, &ob->prop);
copy_sensors(&obn->sensors, &ob->sensors);
copy_controllers(&obn->controllers, &ob->controllers);
copy_actuators(&obn->actuators, &ob->actuators);
copy_pose(&obn->pose, ob->pose, 1);
copy_defgroups(&obn->defbase, &ob->defbase);
copy_nlastrips(&obn->nlastrips, &ob->nlastrips);
copy_constraints (&obn->constraints, &ob->constraints);
actcon = clone_constraint_channels (&obn->constraintChannels, &ob->constraintChannels, ob->activecon);
/* If the active constraint channel was in this list, update it */
if (actcon)
obn->activecon = actcon;
/* usernummers ophogen */
id_us_plus((ID *)obn->data);
id_us_plus((ID *)obn->ipo);
id_us_plus((ID *)obn->action);
for(a=0; a<obn->totcol; a++) id_us_plus((ID *)obn->mat[a]);
obn->disp.first= obn->disp.last= 0;
return obn;
}
void expand_local_object(Object *ob)
{
int a;
id_lib_extern((ID *)ob->action);
id_lib_extern((ID *)ob->ipo);
id_lib_extern((ID *)ob->data);
for(a=0; a<ob->totcol; a++) {
id_lib_extern((ID *)ob->mat[a]);
}
}
void make_local_object(Object *ob)
{
Object *obn;
Scene *sce;
Base *base;
int local=0, lib=0;
/* - zijn er alleen lib users: niet doen
* - zijn er alleen locale users: flag zetten
* - mixed: copy
*/
if(ob->id.lib==0) return;
if(ob->id.us==1) {
ob->id.lib= 0;
ob->id.flag= LIB_LOCAL;
new_id(0, (ID *)ob, 0);
}
else {
sce= G.main->scene.first;
while(sce) {
base= sce->base.first;
while(base) {
if(base->object==ob) {
if(sce->id.lib) lib++;
else local++;
break;
}
base= base->next;
}
sce= sce->id.next;
}
if(local && lib==0) {
ob->id.lib= 0;
ob->id.flag= LIB_LOCAL;
new_id(0, (ID *)ob, 0);
}
else if(local && lib) {
obn= copy_object(ob);
obn->id.us= 0;
sce= G.main->scene.first;
while(sce) {
if(sce->id.lib==0) {
base= sce->base.first;
while(base) {
if(base->object==ob) {
base->object= obn;
obn->id.us++;
ob->id.us--;
}
base= base->next;
}
}
sce= sce->id.next;
}
}
}
expand_local_object(ob);
}
/* *************** CALC ****************** */
/* er zit ook een tijdberekening in de drawobject() */
float bluroffs= 0.0;
int no_speed_curve= 0;
void set_mblur_offs(int blur)
{
bluroffs= R.r.blurfac*((float)blur);
bluroffs/= (float)R.r.osa;
}
void disable_speed_curve(int val)
{
no_speed_curve= val;
}
float bsystem_time(Object *ob, Object *par, float cfra, float ofs)
{
/* geeft float terug ( zie ook frame_to_float in ipo.c) */
if(no_speed_curve==0) if(ob && ob->ipo) cfra= calc_ipo_time(ob->ipo, cfra);
/* tweede field */
if(R.flag & R_SEC_FIELD) {
if(R.r.mode & R_FIELDSTILL); else cfra+= .5;
}
/* motion blur */
cfra+= bluroffs;
/* global time */
cfra*= G.scene->r.framelen;
/* ofset frames */
if(ob && (ob->ipoflag & OB_OFFS_PARENT)) {
if((ob->partype & PARSLOW)==0) cfra-= ob->sf;
}
cfra-= ofs;
return cfra;
}
void object_to_mat3(Object *ob, float mat[][3]) /* no parent */
{
float smat[3][3], vec[3];
float rmat[3][3];
float q1[4];
/* size */
if(ob->ipo) {
vec[0]= ob->size[0]+ob->dsize[0];
vec[1]= ob->size[1]+ob->dsize[1];
vec[2]= ob->size[2]+ob->dsize[2];
SizeToMat3(vec, smat);
}
else {
SizeToMat3(ob->size, smat);
}
/* rot */
if(ob->transflag & OB_QUAT) {
if(ob->ipo) {
QuatMul(q1, ob->quat, ob->dquat);
QuatToMat3(q1, rmat);
}
else {
QuatToMat3(ob->quat, rmat);
}
}
else {
if(ob->ipo) {
vec[0]= ob->rot[0]+ob->drot[0];
vec[1]= ob->rot[1]+ob->drot[1];
vec[2]= ob->rot[2]+ob->drot[2];
EulToMat3(vec, rmat);
}
else {
EulToMat3(ob->rot, rmat);
}
}
Mat3MulMat3(mat, rmat, smat);
}
void object_to_mat4(Object *ob, float mat[][4])
{
float tmat[3][3];
object_to_mat3(ob, tmat);
Mat4CpyMat3(mat, tmat);
VECCOPY(mat[3], ob->loc);
if(ob->ipo) {
mat[3][0]+= ob->dloc[0];
mat[3][1]+= ob->dloc[1];
mat[3][2]+= ob->dloc[2];
}
}
int enable_cu_speed= 1;
void ob_parcurve(Object *ob, Object *par, float mat[][4])
{
Curve *cu;
float q[4], vec[4], dir[3], *quat, x1, ctime;
Mat4One(mat);
cu= par->data;
if(cu->path==0 || cu->path->data==0) calc_curvepath(par);
if(cu->path==0) return;
/* uitzondering afvangen: curve paden die als duplicator worden gebruikt */
if(enable_cu_speed) {
ctime= bsystem_time(ob, par, (float)G.scene->r.cfra, 0.0);
if(calc_ipo_spec(cu->ipo, CU_SPEED, &ctime)==0) {
ctime /= cu->pathlen;
CLAMP(ctime, 0.0, 1.0);
}
}
else {
ctime= G.scene->r.cfra - ob->sf;
ctime /= cu->pathlen;
CLAMP(ctime, 0.0, 1.0);
}
if( where_on_path(par, ctime, vec, dir) ) {
if(cu->flag & CU_FOLLOW) {
quat= vectoquat(dir, ob->trackflag, ob->upflag);
Normalise(dir);
q[0]= (float)cos(0.5*vec[3]);
x1= (float)sin(0.5*vec[3]);
q[1]= -x1*dir[0];
q[2]= -x1*dir[1];
q[3]= -x1*dir[2];
QuatMul(quat, q, quat);
QuatToMat4(quat, mat);
}
VECCOPY(mat[3], vec);
}
}
void ob_parbone(Object *ob, Object *par, float mat[][4])
{
Bone *bone;
bArmature *arm;
Mat4One(mat);
arm=get_armature(par);
if (!arm)
return;
/* Make sure the bone is still valid */
bone = get_named_bone(arm, ob->parsubstr);
if (!bone){
printf ("Lost bone %s\n", ob->parsubstr);
return;
}
apply_pose_armature(arm, par->pose, 1); /* Hopefully can set doit parameter in the future */
where_is_bone (par, bone);
/* Translate by negative bone */
get_objectspace_bone_matrix(bone, mat, 0, 1);
}
void ob_parlimb(Object *ob, Object *par, float mat[][4])
{
Ika *ika;
Limb *li;
float ang=0.0;
int cur=0;
/* in lokale ob space */
Mat4One(mat);
ika= par->data;
li= ika->limbbase.first;
while(li) {
ang+= li->alpha;
if(cur==ob->par1 || li->next==0) break;
cur++;
li= li->next;
}
mat[0][0]= (float)cos(ang);
mat[1][0]= (float)-sin(ang);
mat[0][1]= (float)sin(ang);
mat[1][1]= (float)cos(ang);
mat[3][0]= li->eff[0];
mat[3][1]= li->eff[1];
}
void give_parvert(Object *par, int nr, float *vec)
{
Mesh *me;
MVert *mvert;
EditVert *eve;
/* extern ListBase editNurb; already in bad lev calls */
Nurb *nu;
Curve *cu;
BPoint *bp;
DispList *dl;
BezTriple *bezt;
float *fp;
int a, count;
vec[0]=vec[1]=vec[2]= 0.0;
if(par->type==OB_MESH) {
if(par==G.obedit) {
if(nr >= G.totvert) nr= 0;
count= 0;
eve= G.edve.first;
while(eve) {
if(count==nr) {
memcpy(vec, eve->co, 12);
break;
}
eve= eve->next;
count++;
}
}
else {
me= par->data;
if(me->totvert) {
if(nr >= me->totvert) nr= 0;
/* is er deform */
dl= find_displist(&par->disp, DL_VERTS);
if(dl) {
fp= dl->verts+3*nr;
VECCOPY(vec, fp);
}
else {
mvert= me->mvert + nr;
VECCOPY(vec, mvert->co);
}
}
}
}
else if ELEM(par->type, OB_CURVE, OB_SURF) {
cu= par->data;
nu= cu->nurb.first;
if(par==G.obedit) nu= editNurb.first;
count= 0;
while(nu) {
if((nu->type & 7)==CU_BEZIER) {
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
if(count==nr) {
VECCOPY(vec, bezt->vec[1]);
break;
}
count++;
bezt++;
}
}
else {
bp= nu->bp;
a= nu->pntsu*nu->pntsv;
while(a--) {
if(count==nr) {
memcpy(vec, bp->vec, 12);
break;
}
count++;
bp++;
}
}
nu= nu->next;
}
}
else if(par->type==OB_IKA) {
Ika *ika= par->data;
Limb *li= ika->limbbase.first;
int cur= 1;
if(nr) {
while(li) {
if(cur==nr || li->next==0) break;
cur++;
li= li->next;
}
vec[0]= li->eff[0];
vec[1]= li->eff[1];
}
}
else return;
}
void ob_parvert3(Object *ob, Object *par, float mat[][4])
{
float cmat[3][3], v1[3], v2[3], v3[3], q[4];
/* in lokale ob space */
Mat4One(mat);
if ELEM3(par->type, OB_MESH, OB_SURF, OB_CURVE) {
give_parvert(par, ob->par1, v1);
give_parvert(par, ob->par2, v2);
give_parvert(par, ob->par3, v3);
triatoquat(v1, v2, v3, q);
QuatToMat3(q, cmat);
Mat4CpyMat3(mat, cmat);
if(ob->type==OB_CURVE) {
VECCOPY(mat[3], v1);
}
else {
VecAddf(mat[3], v1, v2);
VecAddf(mat[3], mat[3], v3);
VecMulf(mat[3], 0.3333333f);
}
}
}
static int no_parent_ipo=0;
void set_no_parent_ipo(int val)
{
no_parent_ipo= val;
}
static float timefac= 1.0; /* 50 Hz, dtime:2 */
void set_dtime(int dtime)
{
timefac= ((float)(dtime-1))/2.0f;
}
static int during_script_flag=0;
void disable_where_script(short on)
{
during_script_flag= on;
}
int during_script(void) {
return during_script_flag;
}
void where_is_object_time(Object *ob, float ctime)
{
Object *par;
float *fp1, *fp2, slowmat[4][4] = MAT4_UNITY;
float stime, fac1, fac2;
int a;
int pop;
/* nieuwe versie: correcte parent+vertexparent en track+parent */
/* deze berekent alleen de directe relatie met de parent en track */
/* hij is sneller, maar moet wel de timeoffs in de gaten houden */
if(ob==0) return;
if( ctime != ob->ctime) {
ob->ctime= ctime;
if(ob->ipo) {
stime= bsystem_time(ob, 0, ctime, 0.0);
calc_ipo(ob->ipo, stime);
execute_ipo((ID *)ob, ob->ipo);
}
}
if(ob->type==OB_IKA) {
Ika *ika= ob->data;
if(ika->parent) where_is_object_time(ika->parent, ctime);
}
if(ob->parent) {
par= ob->parent;
if(ob->ipoflag & OB_OFFS_PARENT) ctime-= ob->sf;
pop= 0;
if(no_parent_ipo==0 && ctime != par->ctime) {
// alleen voor ipo systemen?
pushdata(par, sizeof(Object));
pop= 1;
where_is_object_time(par, ctime);
}
solve_parenting(ob, par, slowmat, 0);
if(pop) {
poplast(par);
}
if(ob->partype & PARSLOW) {
// framerate meetellen
fac1= (float)(timefac/(1.0+ fabs(ob->sf)));
if(fac1>=1.0) return;
fac2= 1.0f-fac1;
fp1= ob->obmat[0];
fp2= slowmat[0];
for(a=0; a<16; a++, fp1++, fp2++) {
fp1[0]= fac1*fp1[0] + fac2*fp2[0];
}
}
}
else {
object_to_mat4(ob, ob->obmat);
}
/* Handle tracking */
if(ob->track) {
if( ctime != ob->track->ctime) where_is_object_time(ob->track, ctime);
solve_tracking (ob, ob->track->obmat);
}
solve_constraints (ob, TARGET_OBJECT, NULL, ctime);
if(ob->scriptlink.totscript && !during_script()) {
BPY_do_pyscript((ID *)ob, SCRIPT_REDRAW);
}
}
static void solve_parenting (Object *ob, Object *par, float slowmat[][4], int simul)
{
float totmat[4][4];
float tmat[4][4];
float obmat[4][4];
float vec[3];
int ok;
object_to_mat4(ob, obmat);
if(ob->partype & PARSLOW) Mat4CpyMat4(slowmat, ob->obmat);
switch(ob->partype & PARTYPE) {
case PAROBJECT:
ok= 0;
if(par->type==OB_CURVE) {
if( ((Curve *)par->data)->flag & CU_PATH ) {
ob_parcurve(ob, par, tmat);
ok= 1;
}
}
if(ok) Mat4MulSerie(totmat, par->obmat, tmat,
NULL, NULL, NULL, NULL, NULL, NULL);
else Mat4CpyMat4(totmat, par->obmat);
break;
case PARBONE:
ob_parbone(ob, par, tmat);
Mat4MulSerie(totmat, par->obmat, tmat,
NULL, NULL, NULL, NULL, NULL, NULL);
break;
case PARLIMB:
ob_parlimb(ob, par, tmat);
Mat4MulSerie(totmat, par->obmat, tmat,
NULL, NULL, NULL, NULL, NULL, NULL);
break;
case PARVERT1:
Mat4One(totmat);
if (simul){
VECCOPY(totmat[3], par->obmat[3]);
}
else{
give_parvert(par, ob->par1, vec);
VecMat4MulVecfl(totmat[3], par->obmat, vec);
}
break;
case PARVERT3:
ob_parvert3(ob, par, tmat);
Mat4MulSerie(totmat, par->obmat, tmat,
NULL, NULL, NULL, NULL, NULL, NULL);
break;
case PARSKEL:
#if 0
if (ob!=G.obedit)
Mat4One(totmat);
else
Mat4CpyMat4(totmat, par->obmat);
break;
#else
Mat4CpyMat4(totmat, par->obmat);
#endif
}
// totaal
Mat4MulSerie(tmat, totmat, ob->parentinv,
NULL, NULL, NULL, NULL, NULL, NULL);
Mat4MulSerie(ob->obmat, tmat, obmat,
NULL, NULL, NULL, NULL, NULL, NULL);
if (simul){
}
else{
// >>>>>>>>>>>>>>>>>>
// dit is een extern bruikbare originmat
Mat3CpyMat4(originmat, tmat);
// origin, voor hulplijntje
if( (ob->partype & 15)==PARSKEL ) {
VECCOPY(ob->orig, par->obmat[3]);
}
else {
VECCOPY(ob->orig, totmat[3]);
}
}
}
void solve_tracking (Object *ob, float targetmat[][4])
{
float *quat;
float vec[3];
float totmat[3][3];
float tmat[4][4];
VecSubf(vec, ob->obmat[3], targetmat[3]);
quat= vectoquat(vec, ob->trackflag, ob->upflag);
QuatToMat3(quat, totmat);
if(ob->parent && (ob->transflag & OB_POWERTRACK)) {
/* 'tijdelijk' : parent info wissen */
object_to_mat4(ob, tmat);
tmat[0][3]= ob->obmat[0][3];
tmat[1][3]= ob->obmat[1][3];
tmat[2][3]= ob->obmat[2][3];
tmat[3][0]= ob->obmat[3][0];
tmat[3][1]= ob->obmat[3][1];
tmat[3][2]= ob->obmat[3][2];
tmat[3][3]= ob->obmat[3][3];
}
else Mat4CpyMat4(tmat, ob->obmat);
Mat4MulMat34(ob->obmat, totmat, tmat);
}
void where_is_object(Object *ob)
{
/* deze zijn gememcopied */
if(ob->flag & OB_FROMDUPLI) return;
where_is_object_time(ob, (float)G.scene->r.cfra);
}
void where_is_object_simul(Object *ob)
/* It seems that this function is only called
for a lamp that is the child of another object */
{
Object *par;
Ipo *ipo;
float *fp1, *fp2;
float slowmat[4][4];
float fac1, fac2;
int a;
/* nieuwe versie: correcte parent+vertexparent en track+parent */
/* deze berekent alleen de directe relatie met de parent en track */
/* GEEN TIMEOFFS */
/* geen ipo! (ivm dloc en realtime-ipos) */
ipo= ob->ipo;
ob->ipo= NULL;
if(ob->parent) {
par= ob->parent;
solve_parenting(ob, par, slowmat, 1);
if(ob->partype & PARSLOW) {
fac1= (float)(1.0/(1.0+ fabs(ob->sf)));
fac2= 1.0f-fac1;
fp1= ob->obmat[0];
fp2= slowmat[0];
for(a=0; a<16; a++, fp1++, fp2++) {
fp1[0]= fac1*fp1[0] + fac2*fp2[0];
}
}
}
else {
object_to_mat4(ob, ob->obmat);
}
if(ob->track)
solve_tracking(ob, ob->track->obmat);
solve_constraints(ob, TARGET_OBJECT, NULL, G.scene->r.cfra);
/* LET OP!!! */
ob->ipo= ipo;
}
extern void Mat4BlendMat4(float out[][4], float dst[][4], float src[][4], float srcweight);
void solve_constraints (Object *ob, short obtype, void *obdata, float ctime)
{
bConstraint *con;
float tmat[4][4], focusmat[4][4], lastmat[4][4];
int i, clear=1, tot=0;
float a;
float aquat[4], quat[4];
float aloc[3], loc[3];
float asize[3], size[3];
float oldmat[4][4];
float smat[3][3], rmat[3][3], mat[3][3];
float enf;
for (con = ob->constraints.first; con; con=con->next){
/* Clear accumulators if necessary*/
if (clear){
clear=0;
a=0;
tot=0;
memset(aquat, 0, sizeof(float)*4);
memset(aloc, 0, sizeof(float)*3);
memset(asize, 0, sizeof(float)*3);
}
/* Check this constraint only if it has some enforcement */
// if (con->enforce > 0)
if (!(con->flag & CONSTRAINT_DISABLE))
{
if (con->enforce==0)
enf = 0.001f;
enf = con->enforce;
/* Get the targetmat */
get_constraint_target(con, obtype, obdata, tmat, size, ctime);
Mat4CpyMat4(focusmat, tmat);
/* Extract the components & accumulate */
Mat4ToQuat(focusmat, quat);
VECCOPY(loc, focusmat[3]);
a+=enf;
tot++;
for(i=0; i<3; i++){
aquat[i+1]+=(quat[i+1]) * enf;
aloc[i]+=(loc[i]) * enf;
asize[i]+=(size[i]-1.0f) * enf;
}
aquat[0]+=(quat[0])*enf;
Mat4CpyMat4(lastmat, focusmat);
}
/* If the next constraint is not the same type (or there isn't one),
* then evaluate the accumulator & request a clear */
if ((!con->next)||(con->next && con->next->type!=con->type))
{
clear=1;
Mat4CpyMat4(oldmat, ob->obmat);
/* If we have several inputs, do a blend of them */
if (tot){
if (tot>1){
if (a){
for (i=0; i<3; i++){
asize[i]=1.0f + (asize[i]/(a));
aloc[i]=(aloc[i]/a);
}
NormalQuat(aquat);
QuatToMat3(aquat, rmat);
SizeToMat3(asize, smat);
Mat3MulMat3(mat, rmat, smat);
Mat4CpyMat3(focusmat, mat);
VECCOPY(focusmat[3], aloc);
evaluate_constraint(con, ob, obtype, obdata, focusmat);
}
}
/* If we only have one, blend with the current obmat */
else{
float solution[4][4];
float delta[4][4];
float imat[4][4];
float identity[4][4];
float worldmat[4][4];
if (con->type!=CONSTRAINT_TYPE_KINEMATIC){
/* If we're not an IK constraint, solve the constraint then blend it to the previous one */
evaluate_constraint(con, ob, obtype, obdata, lastmat);
Mat4CpyMat4 (solution, ob->obmat);
/* Interpolate the enforcement */
Mat4Invert (imat, oldmat);
Mat4MulMat4 (delta, solution, imat);
Mat4One(identity);
Mat4BlendMat4(delta, identity, delta, a);
Mat4MulMat4 (ob->obmat, delta, oldmat);
}
else{
/* Interpolate the target between the chain's unconstrained endpoint and the effector loc */
if (obtype==TARGET_BONE){
get_objectspace_bone_matrix(obdata, oldmat, 1, 1);
Mat4MulMat4(worldmat, oldmat, ob->parent->obmat);
Mat4BlendMat4(focusmat, worldmat, lastmat, a);
evaluate_constraint(con, ob, obtype, obdata, focusmat);
}
}
}
}
}
}
}
void what_does_parent1(Object *par, int partype, int par1, int par2, int par3)
{
clear_workob();
Mat4One(workob.parentinv);
workob.parent= par;
if(par)
workob.track= par->track; /* LET OP: NIET ECHT NETJES */
workob.partype= partype;
workob.par1= par1;
workob.par2= par2;
workob.par3= par3;
if (par){
workob.constraints.first = par->constraints.first;
workob.constraints.last = par->constraints.last;
}
where_is_object(&workob);
}
void what_does_parent(Object *ob)
{
clear_workob();
Mat4One(workob.obmat);
Mat4One(workob.parentinv);
workob.parent= ob->parent;
workob.track= ob->track;
workob.trackflag= ob->trackflag;
workob.upflag= ob->upflag;
workob.partype= ob->partype;
workob.par1= ob->par1;
workob.par2= ob->par2;
workob.par3= ob->par3;
workob.constraints.first = ob->constraints.first;
workob.constraints.last = ob->constraints.last;
strcpy (workob.parsubstr, ob->parsubstr);
where_is_object(&workob);
}
BoundBox *unit_boundbox()
{
BoundBox *bb;
bb= MEM_mallocN(sizeof(BoundBox), "bb");
bb->vec[0][0]=bb->vec[1][0]=bb->vec[2][0]=bb->vec[3][0]= -1.0;
bb->vec[4][0]=bb->vec[5][0]=bb->vec[6][0]=bb->vec[7][0]= 1.0;
bb->vec[0][1]=bb->vec[1][1]=bb->vec[4][1]=bb->vec[5][1]= -1.0;
bb->vec[2][1]=bb->vec[3][1]=bb->vec[6][1]=bb->vec[7][1]= 1.0;
bb->vec[0][2]=bb->vec[3][2]=bb->vec[4][2]=bb->vec[7][2]= -1.0;
bb->vec[1][2]=bb->vec[2][2]=bb->vec[5][2]=bb->vec[6][2]= 1.0;
return bb;
}
void minmax_object(Object *ob, float *min, float *max)
{
BoundBox bb;
Mesh *me;
Curve *cu;
float vec[3];
int a;
switch(ob->type) {
case OB_CURVE:
case OB_FONT:
case OB_SURF:
cu= ob->data;
if(cu->bb==0) tex_space_curve(cu);
bb= *(cu->bb);
for(a=0; a<8; a++) {
Mat4MulVecfl(ob->obmat, bb.vec[a]);
DO_MINMAX(bb.vec[a], min, max);
}
break;
case OB_MESH:
me= get_mesh(ob);
if(me) {
if(me->bb==0) tex_space_mesh(me);
bb= *(me->bb);
for(a=0; a<8; a++) {
Mat4MulVecfl(ob->obmat, bb.vec[a]);
DO_MINMAX(bb.vec[a], min, max);
}
}
if(min[0] < max[0] ) break;
/* else here no break!!!, mesh can be zero sized */
default:
DO_MINMAX(ob->obmat[3], min, max);
VECCOPY(vec, ob->obmat[3]);
VecAddf(vec, vec, ob->size);
DO_MINMAX(vec, min, max);
VECCOPY(vec, ob->obmat[3]);
VecSubf(vec, vec, ob->size);
DO_MINMAX(vec, min, max);
break;
}
}