This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/draw/intern/draw_manager_data.c

1677 lines
52 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
2019-01-23 11:29:18 +11:00
* Copyright 2016, Blender Foundation.
*/
/** \file
* \ingroup draw
*/
#include "draw_manager.h"
#include "BKE_anim.h"
#include "BKE_curve.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_paint.h"
#include "BKE_pbvh.h"
#include "DNA_curve_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meta_types.h"
#include "BLI_hash.h"
#include "BLI_link_utils.h"
#include "BLI_mempool.h"
#include "BLI_memblock.h"
#ifdef DRW_DEBUG_CULLING
# include "BLI_math_bits.h"
#endif
#include "GPU_buffers.h"
#include "intern/gpu_codegen.h"
/* -------------------------------------------------------------------- */
/** \name Uniform Buffer Object (DRW_uniformbuffer)
* \{ */
GPUUniformBuffer *DRW_uniformbuffer_create(int size, const void *data)
{
return GPU_uniformbuffer_create(size, data, NULL);
}
void DRW_uniformbuffer_update(GPUUniformBuffer *ubo, const void *data)
{
GPU_uniformbuffer_update(ubo, data);
}
void DRW_uniformbuffer_free(GPUUniformBuffer *ubo)
{
GPU_uniformbuffer_free(ubo);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Uniforms (DRW_shgroup_uniform)
* \{ */
static void drw_shgroup_uniform_create_ex(DRWShadingGroup *shgroup,
int loc,
DRWUniformType type,
const void *value,
int length,
int arraysize)
{
DRWUniform *uni = BLI_memblock_alloc(DST.vmempool->uniforms);
uni->location = loc;
uni->type = type;
uni->length = length;
uni->arraysize = arraysize;
switch (type) {
case DRW_UNIFORM_INT_COPY:
BLI_assert(length <= 2);
memcpy(uni->ivalue, value, sizeof(int) * length);
break;
case DRW_UNIFORM_FLOAT_COPY:
BLI_assert(length <= 2);
memcpy(uni->fvalue, value, sizeof(float) * length);
break;
default:
uni->pvalue = (const float *)value;
break;
}
BLI_LINKS_PREPEND(shgroup->uniforms, uni);
}
static void drw_shgroup_builtin_uniform(
DRWShadingGroup *shgroup, int builtin, const void *value, int length, int arraysize)
{
int loc = GPU_shader_get_builtin_uniform(shgroup->shader, builtin);
if (loc != -1) {
drw_shgroup_uniform_create_ex(shgroup, loc, DRW_UNIFORM_FLOAT, value, length, arraysize);
}
}
static void drw_shgroup_uniform(DRWShadingGroup *shgroup,
const char *name,
DRWUniformType type,
const void *value,
int length,
int arraysize)
{
int location;
if (ELEM(type, DRW_UNIFORM_BLOCK, DRW_UNIFORM_BLOCK_PERSIST)) {
location = GPU_shader_get_uniform_block(shgroup->shader, name);
}
else {
location = GPU_shader_get_uniform(shgroup->shader, name);
}
if (location == -1) {
/* Nice to enable eventually, for now eevee uses uniforms that might not exist. */
// BLI_assert(0);
return;
}
BLI_assert(arraysize > 0 && arraysize <= 16);
BLI_assert(length >= 0 && length <= 16);
drw_shgroup_uniform_create_ex(shgroup, location, type, value, length, arraysize);
/* If location is -2, the uniform has not yet been queried.
* We save the name for query just before drawing. */
if (location == -2 || DRW_DEBUG_USE_UNIFORM_NAME) {
int ofs = DST.uniform_names.buffer_ofs;
int max_len = DST.uniform_names.buffer_len - ofs;
size_t len = strlen(name) + 1;
if (len >= max_len) {
DST.uniform_names.buffer_len += MAX2(DST.uniform_names.buffer_len, len);
DST.uniform_names.buffer = MEM_reallocN(DST.uniform_names.buffer,
DST.uniform_names.buffer_len);
}
char *dst = DST.uniform_names.buffer + ofs;
memcpy(dst, name, len); /* Copies NULL terminator. */
DST.uniform_names.buffer_ofs += len;
shgroup->uniforms->name_ofs = ofs;
}
}
void DRW_shgroup_uniform_texture(DRWShadingGroup *shgroup, const char *name, const GPUTexture *tex)
{
BLI_assert(tex != NULL);
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_TEXTURE, tex, 0, 1);
}
2019-05-01 10:35:46 +10:00
/* Same as DRW_shgroup_uniform_texture but is guaranteed to be bound if shader does not change
* between shgrp. */
void DRW_shgroup_uniform_texture_persistent(DRWShadingGroup *shgroup,
const char *name,
const GPUTexture *tex)
{
BLI_assert(tex != NULL);
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_TEXTURE_PERSIST, tex, 0, 1);
}
void DRW_shgroup_uniform_block(DRWShadingGroup *shgroup,
const char *name,
const GPUUniformBuffer *ubo)
{
BLI_assert(ubo != NULL);
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_BLOCK, ubo, 0, 1);
}
2019-05-01 10:35:46 +10:00
/* Same as DRW_shgroup_uniform_block but is guaranteed to be bound if shader does not change
* between shgrp. */
void DRW_shgroup_uniform_block_persistent(DRWShadingGroup *shgroup,
const char *name,
const GPUUniformBuffer *ubo)
{
BLI_assert(ubo != NULL);
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_BLOCK_PERSIST, ubo, 0, 1);
}
void DRW_shgroup_uniform_texture_ref(DRWShadingGroup *shgroup, const char *name, GPUTexture **tex)
{
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_TEXTURE_REF, tex, 0, 1);
}
void DRW_shgroup_uniform_bool(DRWShadingGroup *shgroup,
const char *name,
const int *value,
int arraysize)
{
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_INT, value, 1, arraysize);
}
void DRW_shgroup_uniform_float(DRWShadingGroup *shgroup,
const char *name,
const float *value,
int arraysize)
{
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_FLOAT, value, 1, arraysize);
}
void DRW_shgroup_uniform_vec2(DRWShadingGroup *shgroup,
const char *name,
const float *value,
int arraysize)
{
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_FLOAT, value, 2, arraysize);
}
void DRW_shgroup_uniform_vec3(DRWShadingGroup *shgroup,
const char *name,
const float *value,
int arraysize)
{
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_FLOAT, value, 3, arraysize);
}
void DRW_shgroup_uniform_vec4(DRWShadingGroup *shgroup,
const char *name,
const float *value,
int arraysize)
{
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_FLOAT, value, 4, arraysize);
}
void DRW_shgroup_uniform_int(DRWShadingGroup *shgroup,
const char *name,
const int *value,
int arraysize)
{
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_INT, value, 1, arraysize);
}
void DRW_shgroup_uniform_ivec2(DRWShadingGroup *shgroup,
const char *name,
const int *value,
int arraysize)
{
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_INT, value, 2, arraysize);
}
void DRW_shgroup_uniform_ivec3(DRWShadingGroup *shgroup,
const char *name,
const int *value,
int arraysize)
{
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_INT, value, 3, arraysize);
}
void DRW_shgroup_uniform_ivec4(DRWShadingGroup *shgroup,
const char *name,
const int *value,
int arraysize)
{
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_INT, value, 4, arraysize);
}
void DRW_shgroup_uniform_mat3(DRWShadingGroup *shgroup, const char *name, const float (*value)[3])
{
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_FLOAT, (float *)value, 9, 1);
}
void DRW_shgroup_uniform_mat4(DRWShadingGroup *shgroup, const char *name, const float (*value)[4])
{
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_FLOAT, (float *)value, 16, 1);
}
/* Stores the int instead of a pointer. */
void DRW_shgroup_uniform_int_copy(DRWShadingGroup *shgroup, const char *name, const int value)
{
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_INT_COPY, &value, 1, 1);
}
void DRW_shgroup_uniform_bool_copy(DRWShadingGroup *shgroup, const char *name, const bool value)
{
int ival = value;
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_INT_COPY, &ival, 1, 1);
}
void DRW_shgroup_uniform_float_copy(DRWShadingGroup *shgroup, const char *name, const float value)
{
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_FLOAT_COPY, &value, 1, 1);
}
void DRW_shgroup_uniform_vec2_copy(DRWShadingGroup *shgroup, const char *name, const float *value)
{
drw_shgroup_uniform(shgroup, name, DRW_UNIFORM_FLOAT_COPY, value, 2, 1);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Draw Call (DRW_calls)
* \{ */
static void drw_call_calc_orco(Object *ob, float (*r_orcofacs)[3])
{
ID *ob_data = (ob) ? ob->data : NULL;
float *texcoloc = NULL;
float *texcosize = NULL;
if (ob_data != NULL) {
switch (GS(ob_data->name)) {
case ID_ME:
BKE_mesh_texspace_get_reference((Mesh *)ob_data, NULL, &texcoloc, NULL, &texcosize);
break;
case ID_CU: {
Curve *cu = (Curve *)ob_data;
if (cu->bb == NULL || (cu->bb->flag & BOUNDBOX_DIRTY)) {
BKE_curve_texspace_calc(cu);
}
texcoloc = cu->loc;
texcosize = cu->size;
break;
}
case ID_MB: {
MetaBall *mb = (MetaBall *)ob_data;
texcoloc = mb->loc;
texcosize = mb->size;
break;
}
default:
break;
}
}
if ((texcoloc != NULL) && (texcosize != NULL)) {
mul_v3_v3fl(r_orcofacs[1], texcosize, 2.0f);
invert_v3(r_orcofacs[1]);
sub_v3_v3v3(r_orcofacs[0], texcoloc, texcosize);
negate_v3(r_orcofacs[0]);
mul_v3_v3(r_orcofacs[0], r_orcofacs[1]); /* result in a nice MADD in the shader */
}
else {
copy_v3_fl(r_orcofacs[0], 0.0f);
copy_v3_fl(r_orcofacs[1], 1.0f);
}
}
static void drw_call_state_update_matflag(DRWCallState *state,
DRWShadingGroup *shgroup,
Object *ob)
{
uchar new_flags = ((state->matflag ^ shgroup->matflag) & shgroup->matflag);
/* HACK: Here we set the matflags bit to 1 when computing the value
* so that it's not recomputed for other drawcalls.
* This is the opposite of what draw_matrices_model_prepare() does. */
state->matflag |= shgroup->matflag;
if (new_flags & DRW_CALL_MODELINVERSE) {
if (ob) {
copy_m4_m4(state->modelinverse, ob->imat);
}
else {
invert_m4_m4(state->modelinverse, state->model);
}
}
/* Orco factors: We compute this at creation to not have to save the *ob_data */
if (new_flags & DRW_CALL_ORCOTEXFAC) {
drw_call_calc_orco(ob, state->orcotexfac);
}
if (new_flags & DRW_CALL_OBJECTINFO) {
state->ob_index = ob ? ob->index : 0;
uint random;
if (DST.dupli_source) {
random = DST.dupli_source->random_id;
}
else {
random = BLI_hash_int_2d(BLI_hash_string(ob->id.name + 2), 0);
}
state->ob_random = random * (1.0f / (float)0xFFFFFFFF);
}
}
static DRWCallState *drw_call_state_create(DRWShadingGroup *shgroup, float (*obmat)[4], Object *ob)
{
DRWCallState *state = BLI_memblock_alloc(DST.vmempool->states);
state->flag = 0;
state->matflag = 0;
/* Matrices */
if (obmat != NULL) {
copy_m4_m4(state->model, obmat);
if (ob && (ob->transflag & OB_NEG_SCALE)) {
state->flag |= DRW_CALL_NEGSCALE;
}
}
else {
unit_m4(state->model);
}
drw_call_state_update_matflag(state, shgroup, ob);
DRWCullingState *cull = BLI_memblock_alloc(DST.vmempool->cullstates);
state->culling = cull;
if (ob != NULL) {
float corner[3];
BoundBox *bbox = BKE_object_boundbox_get(ob);
/* Get BoundSphere center and radius from the BoundBox. */
mid_v3_v3v3(cull->bsphere.center, bbox->vec[0], bbox->vec[6]);
mul_v3_m4v3(corner, obmat, bbox->vec[0]);
mul_m4_v3(obmat, cull->bsphere.center);
cull->bsphere.radius = len_v3v3(cull->bsphere.center, corner);
}
else {
/* TODO(fclem) Bypass alloc if we can (see if eevee's
* probe visibility collection still works). */
/* Bypass test. */
cull->bsphere.radius = -1.0f;
}
return state;
}
static DRWCallState *drw_call_state_object(DRWShadingGroup *shgroup, float (*obmat)[4], Object *ob)
{
if (DST.ob_state == NULL) {
DST.ob_state = drw_call_state_create(shgroup, obmat, ob);
}
else {
/* If the DRWCallState is reused, add necessary matrices. */
drw_call_state_update_matflag(DST.ob_state, shgroup, ob);
}
return DST.ob_state;
}
void DRW_shgroup_call(DRWShadingGroup *shgroup, GPUBatch *geom, float (*obmat)[4])
{
BLI_assert(geom != NULL);
DRWCall *call = BLI_memblock_alloc(DST.vmempool->calls);
BLI_LINKS_APPEND(&shgroup->calls, call);
call->state = drw_call_state_create(shgroup, obmat, NULL);
call->batch = geom;
call->vert_first = 0;
call->vert_count = 0; /* Auto from batch. */
call->inst_count = 0;
#ifdef USE_GPU_SELECT
call->select_id = DST.select_id;
call->inst_selectid = NULL;
#endif
}
void DRW_shgroup_call_range(
DRWShadingGroup *shgroup, GPUBatch *geom, float (*obmat)[4], uint v_sta, uint v_count)
{
BLI_assert(geom != NULL);
BLI_assert(v_count);
DRWCall *call = BLI_memblock_alloc(DST.vmempool->calls);
BLI_LINKS_APPEND(&shgroup->calls, call);
call->state = drw_call_state_create(shgroup, obmat, NULL);
call->batch = geom;
call->vert_first = v_sta;
call->vert_count = v_count;
call->inst_count = 0;
#ifdef USE_GPU_SELECT
call->select_id = DST.select_id;
call->inst_selectid = NULL;
#endif
}
static void drw_shgroup_call_procedural_add_ex(DRWShadingGroup *shgroup,
GPUBatch *geom,
uint vert_count,
float (*obmat)[4])
{
DRWCall *call = BLI_memblock_alloc(DST.vmempool->calls);
BLI_LINKS_APPEND(&shgroup->calls, call);
call->state = drw_call_state_object(shgroup, obmat, NULL);
call->batch = geom;
call->vert_first = 0;
call->vert_count = vert_count;
call->inst_count = 0;
#ifdef USE_GPU_SELECT
call->select_id = DST.select_id;
call->inst_selectid = NULL;
#endif
}
void DRW_shgroup_call_procedural_points(DRWShadingGroup *shgroup,
uint point_len,
float (*obmat)[4])
{
struct GPUBatch *geom = drw_cache_procedural_points_get();
drw_shgroup_call_procedural_add_ex(shgroup, geom, point_len, obmat);
}
void DRW_shgroup_call_procedural_lines(DRWShadingGroup *shgroup,
uint line_count,
float (*obmat)[4])
{
struct GPUBatch *geom = drw_cache_procedural_lines_get();
drw_shgroup_call_procedural_add_ex(shgroup, geom, line_count * 2, obmat);
}
void DRW_shgroup_call_procedural_triangles(DRWShadingGroup *shgroup,
uint tria_count,
float (*obmat)[4])
{
struct GPUBatch *geom = drw_cache_procedural_triangles_get();
drw_shgroup_call_procedural_add_ex(shgroup, geom, tria_count * 3, obmat);
2018-06-07 14:49:54 +02:00
}
/* These calls can be culled and are optimized for redraw */
void DRW_shgroup_call_object_ex(DRWShadingGroup *shgroup,
GPUBatch *geom,
Object *ob,
bool bypass_culling)
{
BLI_assert(geom != NULL);
DRWCall *call = BLI_memblock_alloc(DST.vmempool->calls);
BLI_LINKS_APPEND(&shgroup->calls, call);
call->state = drw_call_state_object(shgroup, ob->obmat, ob);
call->batch = geom;
call->vert_first = 0;
call->vert_count = 0; /* Auto from batch. */
call->inst_count = 0;
#ifdef USE_GPU_SELECT
call->select_id = DST.select_id;
call->inst_selectid = NULL;
#endif
if (bypass_culling) {
/* NOTE this will disable culling for the whole object. */
call->state->culling->bsphere.radius = -1.0f;
}
}
void DRW_shgroup_call_object_with_callback(DRWShadingGroup *shgroup,
GPUBatch *geom,
Object *ob,
void *user_data)
{
BLI_assert(geom != NULL);
DRWCall *call = BLI_memblock_alloc(DST.vmempool->calls);
BLI_LINKS_APPEND(&shgroup->calls, call);
call->state = drw_call_state_object(shgroup, ob->obmat, ob);
call->state->culling->user_data = user_data;
call->batch = geom;
call->vert_first = 0;
call->vert_count = 0; /* Auto from batch. */
call->inst_count = 0;
#ifdef USE_GPU_SELECT
call->select_id = DST.select_id;
call->inst_selectid = NULL;
#endif
}
void DRW_shgroup_call_instances(DRWShadingGroup *shgroup,
GPUBatch *geom,
float (*obmat)[4],
uint count)
{
BLI_assert(geom != NULL);
DRWCall *call = BLI_memblock_alloc(DST.vmempool->calls);
BLI_LINKS_APPEND(&shgroup->calls, call);
call->state = drw_call_state_create(shgroup, obmat, NULL);
call->batch = geom;
call->vert_first = 0;
call->vert_count = 0; /* Auto from batch. */
call->inst_count = count;
#ifdef USE_GPU_SELECT
call->select_id = DST.select_id;
call->inst_selectid = NULL;
#endif
}
void DRW_shgroup_call_instances_with_attribs(DRWShadingGroup *shgroup,
struct GPUBatch *geom,
float (*obmat)[4],
struct GPUBatch *inst_attributes)
{
BLI_assert(geom != NULL);
BLI_assert(inst_attributes->verts[0] != NULL);
GPUVertBuf *buf_inst = inst_attributes->verts[0];
DRWCall *call = BLI_memblock_alloc(DST.vmempool->calls);
BLI_LINKS_APPEND(&shgroup->calls, call);
call->state = drw_call_state_create(shgroup, obmat, NULL);
call->batch = DRW_temp_batch_instance_request(DST.idatalist, buf_inst, geom);
call->vert_first = 0;
call->vert_count = 0; /* Auto from batch. */
call->inst_count = buf_inst->vertex_len;
#ifdef USE_GPU_SELECT
call->select_id = DST.select_id;
call->inst_selectid = NULL;
#endif
}
// #define SCULPT_DEBUG_BUFFERS
typedef struct DRWSculptCallbackData {
Object *ob;
DRWShadingGroup **shading_groups;
bool use_wire;
bool use_mats;
bool use_mask;
bool fast_mode; /* Set by draw manager. Do not init. */
#ifdef SCULPT_DEBUG_BUFFERS
int node_nr;
#endif
} DRWSculptCallbackData;
#ifdef SCULPT_DEBUG_BUFFERS
# define SCULPT_DEBUG_COLOR(id) (sculpt_debug_colors[id % 9])
static float sculpt_debug_colors[9][4] = {
{1.0f, 0.2f, 0.2f, 1.0f},
{0.2f, 1.0f, 0.2f, 1.0f},
{0.2f, 0.2f, 1.0f, 1.0f},
{1.0f, 1.0f, 0.2f, 1.0f},
{0.2f, 1.0f, 1.0f, 1.0f},
{1.0f, 0.2f, 1.0f, 1.0f},
{1.0f, 0.7f, 0.2f, 1.0f},
{0.2f, 1.0f, 0.7f, 1.0f},
{0.7f, 0.2f, 1.0f, 1.0f},
};
#endif
static void sculpt_draw_cb(DRWSculptCallbackData *scd, GPU_PBVH_Buffers *buffers)
{
GPUBatch *geom = GPU_pbvh_buffers_batch_get(buffers, scd->fast_mode, scd->use_wire);
short index = 0;
/* Meh... use_mask is a bit misleading here. */
if (scd->use_mask && !GPU_pbvh_buffers_has_mask(buffers)) {
return;
}
if (scd->use_mats) {
index = GPU_pbvh_buffers_material_index_get(buffers);
}
DRWShadingGroup *shgrp = scd->shading_groups[index];
if (geom != NULL && shgrp != NULL) {
#ifdef SCULPT_DEBUG_BUFFERS
/* Color each buffers in different colors. Only work in solid/Xray mode. */
shgrp = DRW_shgroup_create_sub(shgrp);
DRW_shgroup_uniform_vec3(shgrp, "materialDiffuseColor", SCULPT_DEBUG_COLOR(scd->node_nr++), 1);
#endif
/* DRW_shgroup_call_object_ex reuses matrices calculations for all the drawcalls of this
* object. */
DRW_shgroup_call_object_ex(shgrp, geom, scd->ob, true);
}
}
#ifdef SCULPT_DEBUG_BUFFERS
static void sculpt_debug_cb(void *user_data,
const float bmin[3],
const float bmax[3],
PBVHNodeFlags flag)
{
int *node_nr = (int *)user_data;
BoundBox bb;
BKE_boundbox_init_from_minmax(&bb, bmin, bmax);
# if 0 /* Nodes hierarchy. */
if (flag & PBVH_Leaf) {
DRW_debug_bbox(&bb, (float[4]){0.0f, 1.0f, 0.0f, 1.0f});
}
else {
DRW_debug_bbox(&bb, (float[4]){0.5f, 0.5f, 0.5f, 0.6f});
}
# else /* Color coded leaf bounds. */
if (flag & PBVH_Leaf) {
DRW_debug_bbox(&bb, SCULPT_DEBUG_COLOR((*node_nr)++));
}
# endif
}
#endif
static void drw_sculpt_generate_calls(DRWSculptCallbackData *scd, bool use_vcol)
{
/* XXX should be ensured before but sometime it's not... go figure (see T57040). */
PBVH *pbvh = BKE_sculpt_object_pbvh_ensure(DST.draw_ctx.depsgraph, scd->ob);
if (!pbvh) {
return;
}
float(*planes)[4] = NULL; /* TODO proper culling. */
scd->fast_mode = false;
const DRWContextState *drwctx = DRW_context_state_get();
if (drwctx->evil_C != NULL) {
Paint *p = BKE_paint_get_active_from_context(drwctx->evil_C);
if (p && (p->flags & PAINT_FAST_NAVIGATE)) {
scd->fast_mode = (drwctx->rv3d->rflag & RV3D_NAVIGATING) != 0;
}
}
BKE_pbvh_draw_cb(
pbvh, planes, NULL, use_vcol, (void (*)(void *, GPU_PBVH_Buffers *))sculpt_draw_cb, scd);
#ifdef SCULPT_DEBUG_BUFFERS
int node_nr = 0;
DRW_debug_modelmat(scd->ob->obmat);
BKE_pbvh_draw_debug_cb(
pbvh,
(void (*)(void *d, const float min[3], const float max[3], PBVHNodeFlags f))sculpt_debug_cb,
&node_nr);
#endif
}
void DRW_shgroup_call_sculpt(
DRWShadingGroup *shgroup, Object *ob, bool use_wire, bool use_mask, bool use_vcol)
{
DRWSculptCallbackData scd = {
.ob = ob,
.shading_groups = &shgroup,
.use_wire = use_wire,
.use_mats = false,
.use_mask = use_mask,
};
drw_sculpt_generate_calls(&scd, use_vcol);
}
void DRW_shgroup_call_sculpt_with_materials(DRWShadingGroup **shgroups, Object *ob, bool use_vcol)
{
DRWSculptCallbackData scd = {
.ob = ob,
.shading_groups = shgroups,
.use_wire = false,
.use_mats = true,
.use_mask = false,
};
drw_sculpt_generate_calls(&scd, use_vcol);
}
static GPUVertFormat inst_select_format = {0};
DRWCallBuffer *DRW_shgroup_call_buffer(DRWShadingGroup *shgroup,
struct GPUVertFormat *format,
GPUPrimType prim_type)
{
BLI_assert(ELEM(prim_type, GPU_PRIM_POINTS, GPU_PRIM_LINES, GPU_PRIM_TRI_FAN));
BLI_assert(format != NULL);
DRWCall *call = BLI_memblock_alloc(DST.vmempool->calls);
BLI_LINKS_APPEND(&shgroup->calls, call);
call->state = drw_call_state_create(shgroup, NULL, NULL);
GPUVertBuf *buf = DRW_temp_buffer_request(DST.idatalist, format, &call->vert_count);
call->batch = DRW_temp_batch_request(DST.idatalist, buf, prim_type);
call->vert_first = 0;
call->vert_count = 0;
call->inst_count = 0;
#ifdef USE_GPU_SELECT
if (G.f & G_FLAG_PICKSEL) {
/* Not actually used for rendering but alloced in one chunk. */
if (inst_select_format.attr_len == 0) {
GPU_vertformat_attr_add(&inst_select_format, "selectId", GPU_COMP_I32, 1, GPU_FETCH_INT);
}
call->inst_selectid = DRW_temp_buffer_request(
DST.idatalist, &inst_select_format, &call->vert_count);
}
#endif
return (DRWCallBuffer *)call;
}
DRWCallBuffer *DRW_shgroup_call_buffer_instance(DRWShadingGroup *shgroup,
struct GPUVertFormat *format,
GPUBatch *geom)
{
BLI_assert(geom != NULL);
BLI_assert(format != NULL);
DRWCall *call = BLI_memblock_alloc(DST.vmempool->calls);
BLI_LINKS_APPEND(&shgroup->calls, call);
call->state = drw_call_state_create(shgroup, NULL, NULL);
GPUVertBuf *buf = DRW_temp_buffer_request(DST.idatalist, format, &call->inst_count);
call->batch = DRW_temp_batch_instance_request(DST.idatalist, buf, geom);
call->vert_first = 0;
call->vert_count = 0; /* Auto from batch. */
call->inst_count = 0;
#ifdef USE_GPU_SELECT
if (G.f & G_FLAG_PICKSEL) {
/* Not actually used for rendering but alloced in one chunk. */
if (inst_select_format.attr_len == 0) {
GPU_vertformat_attr_add(&inst_select_format, "selectId", GPU_COMP_I32, 1, GPU_FETCH_INT);
}
call->inst_selectid = DRW_temp_buffer_request(
DST.idatalist, &inst_select_format, &call->inst_count);
}
#endif
return (DRWCallBuffer *)call;
}
void DRW_buffer_add_entry_array(DRWCallBuffer *callbuf, const void *attr[], uint attr_len)
{
DRWCall *call = (DRWCall *)callbuf;
const bool is_instance = call->batch->inst != NULL;
GPUVertBuf *buf = is_instance ? call->batch->inst : call->batch->verts[0];
uint count = is_instance ? call->inst_count++ : call->vert_count++;
const bool resize = (count == buf->vertex_alloc);
BLI_assert(attr_len == buf->format.attr_len);
UNUSED_VARS_NDEBUG(attr_len);
if (UNLIKELY(resize)) {
GPU_vertbuf_data_resize(buf, count + DRW_BUFFER_VERTS_CHUNK);
}
for (int i = 0; i < attr_len; ++i) {
GPU_vertbuf_attr_set(buf, i, count, attr[i]);
}
#ifdef USE_GPU_SELECT
if (G.f & G_FLAG_PICKSEL) {
if (UNLIKELY(resize)) {
GPU_vertbuf_data_resize(call->inst_selectid, count + DRW_BUFFER_VERTS_CHUNK);
}
GPU_vertbuf_attr_set(call->inst_selectid, 0, count, &DST.select_id);
}
#endif
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Shading Groups (DRW_shgroup)
* \{ */
static void drw_shgroup_init(DRWShadingGroup *shgroup, GPUShader *shader)
{
shgroup->uniforms = NULL;
int view_ubo_location = GPU_shader_get_uniform_block(shader, "viewBlock");
if (view_ubo_location != -1) {
drw_shgroup_uniform_create_ex(
shgroup, view_ubo_location, DRW_UNIFORM_BLOCK_PERSIST, G_draw.view_ubo, 0, 1);
}
else {
/* Only here to support builtin shaders. This should not be used by engines. */
/* TODO remove. */
DRWMatrixState *matstate = &DST.view_storage_cpy.matstate;
drw_shgroup_builtin_uniform(shgroup, GPU_UNIFORM_VIEW, matstate->viewmat, 16, 1);
drw_shgroup_builtin_uniform(shgroup, GPU_UNIFORM_VIEW_INV, matstate->viewinv, 16, 1);
drw_shgroup_builtin_uniform(shgroup, GPU_UNIFORM_VIEWPROJECTION, matstate->persmat, 16, 1);
drw_shgroup_builtin_uniform(shgroup, GPU_UNIFORM_VIEWPROJECTION_INV, matstate->persinv, 16, 1);
drw_shgroup_builtin_uniform(shgroup, GPU_UNIFORM_PROJECTION, matstate->winmat, 16, 1);
drw_shgroup_builtin_uniform(shgroup, GPU_UNIFORM_PROJECTION_INV, matstate->wininv, 16, 1);
drw_shgroup_builtin_uniform(
shgroup, GPU_UNIFORM_CAMERATEXCO, DST.view_storage_cpy.viewcamtexcofac, 4, 1);
}
/* Not supported. */
BLI_assert(GPU_shader_get_builtin_uniform(shader, GPU_UNIFORM_MODELVIEW_INV) == -1);
BLI_assert(GPU_shader_get_builtin_uniform(shader, GPU_UNIFORM_MODELVIEW) == -1);
BLI_assert(GPU_shader_get_builtin_uniform(shader, GPU_UNIFORM_NORMAL) == -1);
shgroup->model = GPU_shader_get_builtin_uniform(shader, GPU_UNIFORM_MODEL);
shgroup->modelinverse = GPU_shader_get_builtin_uniform(shader, GPU_UNIFORM_MODEL_INV);
shgroup->modelviewprojection = GPU_shader_get_builtin_uniform(shader, GPU_UNIFORM_MVP);
shgroup->orcotexfac = GPU_shader_get_builtin_uniform(shader, GPU_UNIFORM_ORCO);
shgroup->objectinfo = GPU_shader_get_builtin_uniform(shader, GPU_UNIFORM_OBJECT_INFO);
shgroup->callid = GPU_shader_get_builtin_uniform(shader, GPU_UNIFORM_CALLID);
shgroup->matflag = 0;
if (shgroup->modelinverse > -1) {
shgroup->matflag |= DRW_CALL_MODELINVERSE;
}
if (shgroup->modelviewprojection > -1) {
shgroup->matflag |= DRW_CALL_MODELVIEWPROJECTION;
}
if (shgroup->orcotexfac > -1) {
shgroup->matflag |= DRW_CALL_ORCOTEXFAC;
}
if (shgroup->objectinfo > -1) {
shgroup->matflag |= DRW_CALL_OBJECTINFO;
}
}
static DRWShadingGroup *drw_shgroup_create_ex(struct GPUShader *shader, DRWPass *pass)
{
DRWShadingGroup *shgroup = BLI_memblock_alloc(DST.vmempool->shgroups);
BLI_LINKS_APPEND(&pass->shgroups, shgroup);
shgroup->shader = shader;
shgroup->state_extra = 0;
shgroup->state_extra_disable = ~0x0;
shgroup->stencil_mask = 0;
shgroup->calls.first = NULL;
shgroup->calls.last = NULL;
shgroup->tfeedback_target = NULL;
shgroup->pass_parent = pass;
return shgroup;
}
static DRWShadingGroup *drw_shgroup_material_create_ex(GPUPass *gpupass, DRWPass *pass)
{
if (!gpupass) {
/* Shader compilation error */
return NULL;
}
GPUShader *sh = GPU_pass_shader_get(gpupass);
if (!sh) {
/* Shader not yet compiled */
return NULL;
}
DRWShadingGroup *grp = drw_shgroup_create_ex(sh, pass);
return grp;
}
static DRWShadingGroup *drw_shgroup_material_inputs(DRWShadingGroup *grp,
struct GPUMaterial *material)
{
ListBase *inputs = GPU_material_get_inputs(material);
/* Converting dynamic GPUInput to DRWUniform */
for (GPUInput *input = inputs->first; input; input = input->next) {
/* Textures */
if (input->source == GPU_SOURCE_TEX) {
GPUTexture *tex = NULL;
if (input->ima) {
GPUTexture **tex_ref = BLI_memblock_alloc(DST.vmempool->images);
*tex_ref = tex = GPU_texture_from_blender(input->ima, input->iuser, GL_TEXTURE_2D);
GPU_texture_ref(tex);
}
else {
/* Color Ramps */
tex = *input->coba;
}
if (input->bindtex) {
drw_shgroup_uniform_create_ex(grp, input->shaderloc, DRW_UNIFORM_TEXTURE, tex, 0, 1);
}
}
}
GPUUniformBuffer *ubo = GPU_material_uniform_buffer_get(material);
if (ubo != NULL) {
DRW_shgroup_uniform_block(grp, GPU_UBO_BLOCK_NAME, ubo);
}
return grp;
}
GPUVertFormat *DRW_shgroup_instance_format_array(const DRWInstanceAttrFormat attrs[],
int arraysize)
{
GPUVertFormat *format = MEM_callocN(sizeof(GPUVertFormat), "GPUVertFormat");
for (int i = 0; i < arraysize; ++i) {
GPU_vertformat_attr_add(format,
attrs[i].name,
(attrs[i].type == DRW_ATTR_INT) ? GPU_COMP_I32 : GPU_COMP_F32,
attrs[i].components,
(attrs[i].type == DRW_ATTR_INT) ? GPU_FETCH_INT : GPU_FETCH_FLOAT);
}
return format;
}
DRWShadingGroup *DRW_shgroup_material_create(struct GPUMaterial *material, DRWPass *pass)
{
GPUPass *gpupass = GPU_material_get_pass(material);
DRWShadingGroup *shgroup = drw_shgroup_material_create_ex(gpupass, pass);
if (shgroup) {
drw_shgroup_init(shgroup, GPU_pass_shader_get(gpupass));
drw_shgroup_material_inputs(shgroup, material);
}
return shgroup;
}
DRWShadingGroup *DRW_shgroup_create(struct GPUShader *shader, DRWPass *pass)
{
DRWShadingGroup *shgroup = drw_shgroup_create_ex(shader, pass);
drw_shgroup_init(shgroup, shader);
return shgroup;
}
DRWShadingGroup *DRW_shgroup_transform_feedback_create(struct GPUShader *shader,
DRWPass *pass,
GPUVertBuf *tf_target)
{
BLI_assert(tf_target != NULL);
DRWShadingGroup *shgroup = drw_shgroup_create_ex(shader, pass);
drw_shgroup_init(shgroup, shader);
shgroup->tfeedback_target = tf_target;
return shgroup;
}
/**
* State is added to #Pass.state while drawing.
* Use to temporarily enable draw options.
*/
void DRW_shgroup_state_enable(DRWShadingGroup *shgroup, DRWState state)
{
shgroup->state_extra |= state;
}
void DRW_shgroup_state_disable(DRWShadingGroup *shgroup, DRWState state)
{
shgroup->state_extra_disable &= ~state;
}
2018-05-11 07:48:52 +02:00
void DRW_shgroup_stencil_mask(DRWShadingGroup *shgroup, uint mask)
{
BLI_assert(mask <= 255);
shgroup->stencil_mask = mask;
}
bool DRW_shgroup_is_empty(DRWShadingGroup *shgroup)
{
return shgroup->calls.first == NULL;
}
DRWShadingGroup *DRW_shgroup_create_sub(DRWShadingGroup *shgroup)
{
/* Remove this assertion if needed but implement the other cases first! */
DRWShadingGroup *shgroup_new = BLI_memblock_alloc(DST.vmempool->shgroups);
*shgroup_new = *shgroup;
shgroup_new->uniforms = NULL;
shgroup_new->calls.first = NULL;
shgroup_new->calls.last = NULL;
BLI_LINKS_INSERT_AFTER(&shgroup->pass_parent->shgroups, shgroup, shgroup_new);
return shgroup_new;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name View (DRW_view)
* \{ */
/* Extract the 8 corners from a Projection Matrix.
* Although less accurate, this solution can be simplified as follows:
* BKE_boundbox_init_from_minmax(&bbox, (const float[3]){-1.0f, -1.0f, -1.0f}, (const
* float[3]){1.0f, 1.0f, 1.0f}); for (int i = 0; i < 8; i++) {mul_project_m4_v3(projinv,
* bbox.vec[i]);}
*/
static void draw_frustum_boundbox_calc(const float (*viewinv)[4],
const float (*projmat)[4],
BoundBox *r_bbox)
{
float left, right, bottom, top, near, far;
bool is_persp = projmat[3][3] == 0.0f;
#if 0 /* Equivalent to this but it has accuracy problems. */
BKE_boundbox_init_from_minmax(
&bbox, (const float[3]){-1.0f, -1.0f, -1.0f}, (const float[3]){1.0f, 1.0f, 1.0f});
for (int i = 0; i < 8; i++) {
mul_project_m4_v3(projinv, bbox.vec[i]);
}
#endif
projmat_dimensions(projmat, &left, &right, &bottom, &top, &near, &far);
if (is_persp) {
left *= near;
right *= near;
bottom *= near;
top *= near;
}
r_bbox->vec[0][2] = r_bbox->vec[3][2] = r_bbox->vec[7][2] = r_bbox->vec[4][2] = -near;
r_bbox->vec[0][0] = r_bbox->vec[3][0] = left;
r_bbox->vec[4][0] = r_bbox->vec[7][0] = right;
r_bbox->vec[0][1] = r_bbox->vec[4][1] = bottom;
r_bbox->vec[7][1] = r_bbox->vec[3][1] = top;
/* Get the coordinates of the far plane. */
if (is_persp) {
float sca_far = far / near;
left *= sca_far;
right *= sca_far;
bottom *= sca_far;
top *= sca_far;
}
r_bbox->vec[1][2] = r_bbox->vec[2][2] = r_bbox->vec[6][2] = r_bbox->vec[5][2] = -far;
r_bbox->vec[1][0] = r_bbox->vec[2][0] = left;
r_bbox->vec[6][0] = r_bbox->vec[5][0] = right;
r_bbox->vec[1][1] = r_bbox->vec[5][1] = bottom;
r_bbox->vec[2][1] = r_bbox->vec[6][1] = top;
/* Transform into world space. */
for (int i = 0; i < 8; i++) {
mul_m4_v3(viewinv, r_bbox->vec[i]);
}
}
static void draw_frustum_culling_planes_calc(const BoundBox *bbox, float (*frustum_planes)[4])
{
/* TODO See if planes_from_projmat cannot do the job. */
/* Compute clip planes using the world space frustum corners. */
for (int p = 0; p < 6; p++) {
int q, r, s;
switch (p) {
case 0:
q = 1;
r = 2;
s = 3;
break; /* -X */
case 1:
q = 0;
r = 4;
s = 5;
break; /* -Y */
case 2:
q = 1;
r = 5;
s = 6;
break; /* +Z (far) */
case 3:
q = 2;
r = 6;
s = 7;
break; /* +Y */
case 4:
q = 0;
r = 3;
s = 7;
break; /* -Z (near) */
default:
q = 4;
r = 7;
s = 6;
break; /* +X */
}
normal_quad_v3(frustum_planes[p], bbox->vec[p], bbox->vec[q], bbox->vec[r], bbox->vec[s]);
/* Increase precision and use the mean of all 4 corners. */
frustum_planes[p][3] = -dot_v3v3(frustum_planes[p], bbox->vec[p]);
frustum_planes[p][3] += -dot_v3v3(frustum_planes[p], bbox->vec[q]);
frustum_planes[p][3] += -dot_v3v3(frustum_planes[p], bbox->vec[r]);
frustum_planes[p][3] += -dot_v3v3(frustum_planes[p], bbox->vec[s]);
frustum_planes[p][3] *= 0.25f;
}
}
static void draw_frustum_bound_sphere_calc(const BoundBox *bbox,
const float (*viewinv)[4],
const float (*projmat)[4],
const float (*projinv)[4],
BoundSphere *bsphere)
{
/* Extract Bounding Sphere */
if (projmat[3][3] != 0.0f) {
/* Orthographic */
/* The most extreme points on the near and far plane. (normalized device coords). */
const float *nearpoint = bbox->vec[0];
const float *farpoint = bbox->vec[6];
/* just use median point */
mid_v3_v3v3(bsphere->center, farpoint, nearpoint);
bsphere->radius = len_v3v3(bsphere->center, farpoint);
}
else if (projmat[2][0] == 0.0f && projmat[2][1] == 0.0f) {
/* Perspective with symmetrical frustum. */
/* We obtain the center and radius of the circumscribed circle of the
* isosceles trapezoid composed by the diagonals of the near and far clipping plane */
/* center of each clipping plane */
float mid_min[3], mid_max[3];
mid_v3_v3v3(mid_min, bbox->vec[3], bbox->vec[4]);
mid_v3_v3v3(mid_max, bbox->vec[2], bbox->vec[5]);
/* square length of the diagonals of each clipping plane */
float a_sq = len_squared_v3v3(bbox->vec[3], bbox->vec[4]);
float b_sq = len_squared_v3v3(bbox->vec[2], bbox->vec[5]);
/* distance squared between clipping planes */
float h_sq = len_squared_v3v3(mid_min, mid_max);
float fac = (4 * h_sq + b_sq - a_sq) / (8 * h_sq);
/* The goal is to get the smallest sphere,
* not the sphere that passes through each corner */
CLAMP(fac, 0.0f, 1.0f);
interp_v3_v3v3(bsphere->center, mid_min, mid_max, fac);
/* distance from the center to one of the points of the far plane (1, 2, 5, 6) */
bsphere->radius = len_v3v3(bsphere->center, bbox->vec[1]);
}
else {
/* Perspective with asymmetrical frustum. */
/* We put the sphere center on the line that goes from origin
* to the center of the far clipping plane. */
/* Detect which of the corner of the far clipping plane is the farthest to the origin */
float nfar[4]; /* most extreme far point in NDC space */
float farxy[2]; /* farpoint projection onto the near plane */
float farpoint[3] = {0.0f}; /* most extreme far point in camera coordinate */
float nearpoint[3]; /* most extreme near point in camera coordinate */
float farcenter[3] = {0.0f}; /* center of far cliping plane in camera coordinate */
float F = -1.0f, N; /* square distance of far and near point to origin */
float f, n; /* distance of far and near point to z axis. f is always > 0 but n can be < 0 */
float e, s; /* far and near clipping distance (<0) */
float c; /* slope of center line = distance of far clipping center
* to z axis / far clipping distance. */
float z; /* projection of sphere center on z axis (<0) */
/* Find farthest corner and center of far clip plane. */
float corner[3] = {1.0f, 1.0f, 1.0f}; /* in clip space */
for (int i = 0; i < 4; i++) {
float point[3];
mul_v3_project_m4_v3(point, projinv, corner);
float len = len_squared_v3(point);
if (len > F) {
copy_v3_v3(nfar, corner);
copy_v3_v3(farpoint, point);
F = len;
}
add_v3_v3(farcenter, point);
/* rotate by 90 degree to walk through the 4 points of the far clip plane */
float tmp = corner[0];
corner[0] = -corner[1];
corner[1] = tmp;
}
/* the far center is the average of the far clipping points */
mul_v3_fl(farcenter, 0.25f);
/* the extreme near point is the opposite point on the near clipping plane */
copy_v3_fl3(nfar, -nfar[0], -nfar[1], -1.0f);
mul_v3_project_m4_v3(nearpoint, projinv, nfar);
/* this is a frustum projection */
N = len_squared_v3(nearpoint);
e = farpoint[2];
s = nearpoint[2];
/* distance to view Z axis */
f = len_v2(farpoint);
/* get corresponding point on the near plane */
mul_v2_v2fl(farxy, farpoint, s / e);
/* this formula preserve the sign of n */
sub_v2_v2(nearpoint, farxy);
n = f * s / e - len_v2(nearpoint);
c = len_v2(farcenter) / e;
/* the big formula, it simplifies to (F-N)/(2(e-s)) for the symmetric case */
z = (F - N) / (2.0f * (e - s + c * (f - n)));
bsphere->center[0] = farcenter[0] * z / e;
bsphere->center[1] = farcenter[1] * z / e;
bsphere->center[2] = z;
bsphere->radius = len_v3v3(bsphere->center, farpoint);
/* Transform to world space. */
mul_m4_v3(viewinv, bsphere->center);
}
}
static void draw_matrix_state_from_view(DRWMatrixState *mstate,
const float viewmat[4][4],
const float winmat[4][4])
{
/* If only one the matrices is negative, then the
* polygon winding changes and we don't want that. */
BLI_assert(is_negative_m4(viewmat) != is_negative_m4(winmat));
copy_m4_m4(mstate->viewmat, viewmat);
invert_m4_m4(mstate->viewinv, mstate->viewmat);
copy_m4_m4(mstate->winmat, winmat);
invert_m4_m4(mstate->wininv, mstate->winmat);
mul_m4_m4m4(mstate->persmat, winmat, viewmat);
invert_m4_m4(mstate->persinv, mstate->persmat);
}
/* Create a view with culling. */
DRWView *DRW_view_create(const float viewmat[4][4],
const float winmat[4][4],
const float (*culling_viewmat)[4],
const float (*culling_winmat)[4],
DRWCallVisibilityFn *visibility_fn)
{
DRWView *view = BLI_memblock_alloc(DST.vmempool->views);
if (DST.primary_view_ct < MAX_CULLED_VIEWS) {
view->culling_mask = 1u << DST.primary_view_ct++;
}
else {
view->culling_mask = 0u;
}
view->clip_planes_len = 0;
view->visibility_fn = visibility_fn;
view->parent = NULL;
/* TODO move elsewhere */
if (DST.view_default) {
copy_v4_v4(view->storage.viewcamtexcofac, DST.view_default->storage.viewcamtexcofac);
}
DRW_view_update(view, viewmat, winmat, culling_viewmat, culling_winmat);
return view;
}
/* Create a view with culling done by another view. */
DRWView *DRW_view_create_sub(const DRWView *parent_view,
const float viewmat[4][4],
const float winmat[4][4])
{
BLI_assert(parent_view && parent_view->parent == NULL);
DRWView *view = BLI_memblock_alloc(DST.vmempool->views);
/* Perform copy. */
*view = *parent_view;
view->parent = (DRWView *)parent_view;
/* TODO move elsewhere */
if (DST.view_default) {
copy_v4_v4(view->storage.viewcamtexcofac, DST.view_default->storage.viewcamtexcofac);
}
DRW_view_update_sub(view, viewmat, winmat);
return view;
}
/**
* DRWView Update:
* This is meant to be done on existing views when rendering in a loop and there is no
* need to allocate more DRWViews.
**/
/* Update matrices of a view created with DRW_view_create_sub. */
void DRW_view_update_sub(DRWView *view, const float viewmat[4][4], const float winmat[4][4])
{
BLI_assert(view->parent != NULL);
DRWMatrixState *mstate = &view->storage.matstate;
view->is_dirty = true;
draw_matrix_state_from_view(mstate, viewmat, winmat);
}
/* Update matrices of a view created with DRW_view_create. */
void DRW_view_update(DRWView *view,
const float viewmat[4][4],
const float winmat[4][4],
const float (*culling_viewmat)[4],
const float (*culling_winmat)[4])
{
/* DO NOT UPDATE THE DEFAULT VIEW.
* Create subviews instead, or a copy. */
BLI_assert(view != DST.view_default);
BLI_assert(view->parent == NULL);
DRWMatrixState *mstate = &view->storage.matstate;
view->is_dirty = true;
draw_matrix_state_from_view(mstate, viewmat, winmat);
/* Prepare frustum culling. */
#ifdef DRW_DEBUG_CULLING
static float mv[MAX_CULLED_VIEWS][4][4], mw[MAX_CULLED_VIEWS][4][4];
/* Select view here. */
if (view->culling_mask != 0) {
uint index = bitscan_forward_uint(view->culling_mask);
if (G.debug_value == 0) {
copy_m4_m4(mv[index], culling_viewmat ? culling_viewmat : viewmat);
copy_m4_m4(mw[index], culling_winmat ? culling_winmat : winmat);
}
else {
culling_winmat = mw[index];
culling_viewmat = mv[index];
}
}
#endif
float wininv[4][4];
if (culling_winmat) {
winmat = culling_winmat;
invert_m4_m4(wininv, winmat);
}
else {
copy_m4_m4(wininv, mstate->wininv);
}
float viewinv[4][4];
if (culling_viewmat) {
viewmat = culling_viewmat;
invert_m4_m4(viewinv, viewmat);
}
else {
copy_m4_m4(viewinv, mstate->viewinv);
}
draw_frustum_boundbox_calc(viewinv, winmat, &view->frustum_corners);
draw_frustum_culling_planes_calc(&view->frustum_corners, view->frustum_planes);
draw_frustum_bound_sphere_calc(
&view->frustum_corners, viewinv, winmat, wininv, &view->frustum_bsphere);
#ifdef DRW_DEBUG_CULLING
if (G.debug_value != 0) {
DRW_debug_sphere(
view->frustum_bsphere.center, view->frustum_bsphere.radius, (const float[4]){1, 1, 0, 1});
DRW_debug_bbox(&view->frustum_corners, (const float[4]){1, 1, 0, 1});
}
#endif
}
/* Return default view if it is a viewport render. */
const DRWView *DRW_view_default_get(void)
{
return DST.view_default;
}
/* MUST only be called once per render and only in render mode. Sets default view. */
void DRW_view_default_set(DRWView *view)
{
BLI_assert(DST.view_default == NULL);
DST.view_default = view;
}
/**
* This only works if DRWPasses have been tagged with DRW_STATE_CLIP_PLANES,
* and if the shaders have support for it (see usage of gl_ClipDistance).
*/
void DRW_view_clip_planes_set(DRWView *view, float (*planes)[4], int plane_len)
{
BLI_assert(plane_len <= MAX_CLIP_PLANES);
view->clip_planes_len = plane_len;
if (plane_len > 0) {
memcpy(view->storage.clipplanes, planes, sizeof(float) * 4 * plane_len);
}
}
/* Return world space frustum corners. */
void DRW_view_frustum_corners_get(const DRWView *view, BoundBox *corners)
{
memcpy(corners, &view->frustum_corners, sizeof(view->frustum_corners));
}
/* Return world space frustum sides as planes.
* See draw_frustum_culling_planes_calc() for the plane order. */
void DRW_view_frustum_planes_get(const DRWView *view, float planes[6][4])
{
memcpy(planes, &view->frustum_planes, sizeof(view->frustum_planes));
}
bool DRW_view_is_persp_get(const DRWView *view)
{
view = (view) ? view : DST.view_active;
return view->storage.matstate.winmat[3][3] == 0.0f;
}
float DRW_view_near_distance_get(const DRWView *view)
{
view = (view) ? view : DST.view_active;
const float(*projmat)[4] = view->storage.matstate.winmat;
if (DRW_view_is_persp_get(view)) {
return -projmat[3][2] / (projmat[2][2] - 1.0f);
}
else {
return -(projmat[3][2] + 1.0f) / projmat[2][2];
}
}
float DRW_view_far_distance_get(const DRWView *view)
{
view = (view) ? view : DST.view_active;
const float(*projmat)[4] = view->storage.matstate.winmat;
if (DRW_view_is_persp_get(view)) {
return -projmat[3][2] / (projmat[2][2] + 1.0f);
}
else {
return -(projmat[3][2] - 1.0f) / projmat[2][2];
}
}
void DRW_view_viewmat_get(const DRWView *view, float mat[4][4], bool inverse)
{
view = (view) ? view : DST.view_active;
const DRWMatrixState *state = &view->storage.matstate;
copy_m4_m4(mat, (inverse) ? state->viewinv : state->viewmat);
}
void DRW_view_winmat_get(const DRWView *view, float mat[4][4], bool inverse)
{
view = (view) ? view : DST.view_active;
const DRWMatrixState *state = &view->storage.matstate;
copy_m4_m4(mat, (inverse) ? state->wininv : state->winmat);
}
void DRW_view_persmat_get(const DRWView *view, float mat[4][4], bool inverse)
{
view = (view) ? view : DST.view_active;
const DRWMatrixState *state = &view->storage.matstate;
copy_m4_m4(mat, (inverse) ? state->persinv : state->persmat);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Passes (DRW_pass)
* \{ */
DRWPass *DRW_pass_create(const char *name, DRWState state)
{
DRWPass *pass = BLI_memblock_alloc(DST.vmempool->passes);
pass->state = state;
if (((G.debug_value > 20) && (G.debug_value < 30)) || (G.debug & G_DEBUG)) {
BLI_strncpy(pass->name, name, MAX_PASS_NAME);
}
pass->shgroups.first = NULL;
pass->shgroups.last = NULL;
return pass;
}
bool DRW_pass_is_empty(DRWPass *pass)
{
for (DRWShadingGroup *shgroup = pass->shgroups.first; shgroup; shgroup = shgroup->next) {
if (!DRW_shgroup_is_empty(shgroup)) {
return false;
}
}
return true;
}
void DRW_pass_state_set(DRWPass *pass, DRWState state)
{
pass->state = state;
}
void DRW_pass_state_add(DRWPass *pass, DRWState state)
{
pass->state |= state;
}
void DRW_pass_state_remove(DRWPass *pass, DRWState state)
{
pass->state &= ~state;
}
void DRW_pass_foreach_shgroup(DRWPass *pass,
void (*callback)(void *userData, DRWShadingGroup *shgrp),
void *userData)
{
for (DRWShadingGroup *shgroup = pass->shgroups.first; shgroup; shgroup = shgroup->next) {
callback(userData, shgroup);
}
}
typedef struct ZSortData {
const float *axis;
const float *origin;
} ZSortData;
static int pass_shgroup_dist_sort(void *thunk, const void *a, const void *b)
{
const ZSortData *zsortdata = (ZSortData *)thunk;
const DRWShadingGroup *shgrp_a = (const DRWShadingGroup *)a;
const DRWShadingGroup *shgrp_b = (const DRWShadingGroup *)b;
const DRWCall *call_a = (DRWCall *)shgrp_a->calls.first;
const DRWCall *call_b = (DRWCall *)shgrp_b->calls.first;
if (call_a == NULL) {
return -1;
}
if (call_b == NULL) {
return -1;
}
float tmp[3];
sub_v3_v3v3(tmp, zsortdata->origin, call_a->state->model[3]);
const float a_sq = dot_v3v3(zsortdata->axis, tmp);
sub_v3_v3v3(tmp, zsortdata->origin, call_b->state->model[3]);
const float b_sq = dot_v3v3(zsortdata->axis, tmp);
if (a_sq < b_sq) {
return 1;
}
else if (a_sq > b_sq) {
return -1;
}
else {
/* If there is a depth prepass put it before */
if ((shgrp_a->state_extra & DRW_STATE_WRITE_DEPTH) != 0) {
return -1;
}
else if ((shgrp_b->state_extra & DRW_STATE_WRITE_DEPTH) != 0) {
return 1;
}
else {
return 0;
}
}
}
/* ------------------ Shading group sorting --------------------- */
#define SORT_IMPL_LINKTYPE DRWShadingGroup
#define SORT_IMPL_USE_THUNK
#define SORT_IMPL_FUNC shgroup_sort_fn_r
#include "../../blenlib/intern/list_sort_impl.h"
#undef SORT_IMPL_FUNC
#undef SORT_IMPL_USE_THUNK
#undef SORT_IMPL_LINKTYPE
/**
* Sort Shading groups by decreasing Z of their first draw call.
2018-09-19 18:19:49 +02:00
* This is useful for order dependent effect such as transparency.
2019-03-19 15:17:46 +11:00
*/
void DRW_pass_sort_shgroup_z(DRWPass *pass)
{
const float(*viewinv)[4] = DST.view_active->storage.matstate.viewinv;
ZSortData zsortdata = {viewinv[2], viewinv[3]};
if (pass->shgroups.first && pass->shgroups.first->next) {
pass->shgroups.first = shgroup_sort_fn_r(
pass->shgroups.first, pass_shgroup_dist_sort, &zsortdata);
/* Find the next last */
DRWShadingGroup *last = pass->shgroups.first;
while ((last = last->next)) {
/* Do nothing */
}
pass->shgroups.last = last;
}
}
/** \} */