This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/draw/engines/eevee/eevee_screen_raytrace.c

338 lines
13 KiB
C
Raw Normal View History

/*
* Copyright 2016, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Blender Institute
*
*/
/** \file eevee_screen_raytrace.c
* \ingroup draw_engine
*
* Screen space reflections and refractions techniques.
*/
#include "DRW_render.h"
#include "BLI_dynstr.h"
#include "BLI_string_utils.h"
#include "DEG_depsgraph_query.h"
#include "eevee_private.h"
#include "GPU_texture.h"
/* SSR shader variations */
enum {
SSR_RESOLVE = (1 << 0),
SSR_FULL_TRACE = (1 << 1),
SSR_AO = (1 << 3),
SSR_MAX_SHADER = (1 << 4),
};
static struct {
/* Screen Space Reflection */
struct GPUShader *ssr_sh[SSR_MAX_SHADER];
/* Theses are just references, not actually allocated */
struct GPUTexture *depth_src;
struct GPUTexture *color_src;
} e_data = {{NULL}}; /* Engine data */
extern char datatoc_ambient_occlusion_lib_glsl[];
extern char datatoc_common_view_lib_glsl[];
extern char datatoc_common_uniforms_lib_glsl[];
extern char datatoc_bsdf_common_lib_glsl[];
extern char datatoc_bsdf_sampling_lib_glsl[];
extern char datatoc_octahedron_lib_glsl[];
extern char datatoc_effect_ssr_frag_glsl[];
extern char datatoc_lightprobe_lib_glsl[];
extern char datatoc_raytrace_lib_glsl[];
static struct GPUShader *eevee_effects_screen_raytrace_shader_get(int options)
{
if (e_data.ssr_sh[options] == NULL) {
char *ssr_shader_str = BLI_string_joinN(
datatoc_common_view_lib_glsl,
datatoc_common_uniforms_lib_glsl,
datatoc_bsdf_common_lib_glsl,
datatoc_bsdf_sampling_lib_glsl,
datatoc_ambient_occlusion_lib_glsl,
datatoc_octahedron_lib_glsl,
datatoc_lightprobe_lib_glsl,
datatoc_raytrace_lib_glsl,
datatoc_effect_ssr_frag_glsl);
DynStr *ds_defines = BLI_dynstr_new();
BLI_dynstr_appendf(ds_defines, SHADER_DEFINES);
if (options & SSR_RESOLVE) {
BLI_dynstr_appendf(ds_defines, "#define STEP_RESOLVE\n");
}
else {
BLI_dynstr_appendf(ds_defines, "#define STEP_RAYTRACE\n");
BLI_dynstr_appendf(ds_defines, "#define PLANAR_PROBE_RAYTRACE\n");
}
if (options & SSR_FULL_TRACE) {
BLI_dynstr_appendf(ds_defines, "#define FULLRES\n");
}
if (options & SSR_AO) {
BLI_dynstr_appendf(ds_defines, "#define SSR_AO\n");
}
char *ssr_define_str = BLI_dynstr_get_cstring(ds_defines);
BLI_dynstr_free(ds_defines);
e_data.ssr_sh[options] = DRW_shader_create_fullscreen(ssr_shader_str, ssr_define_str);
MEM_freeN(ssr_shader_str);
MEM_freeN(ssr_define_str);
}
return e_data.ssr_sh[options];
}
int EEVEE_screen_raytrace_init(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata)
{
EEVEE_CommonUniformBuffer *common_data = &sldata->common_data;
EEVEE_StorageList *stl = vedata->stl;
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_TextureList *txl = vedata->txl;
EEVEE_EffectsInfo *effects = stl->effects;
const float *viewport_size = DRW_viewport_size_get();
const DRWContextState *draw_ctx = DRW_context_state_get();
const Scene *scene_eval = DEG_get_evaluated_scene(draw_ctx->depsgraph);
/* Compute pixel size, (shared with contact shadows) */
copy_v2_v2(common_data->ssr_pixelsize, viewport_size);
invert_v2(common_data->ssr_pixelsize);
if (scene_eval->eevee.flag & SCE_EEVEE_SSR_ENABLED) {
const bool use_refraction = (scene_eval->eevee.flag & SCE_EEVEE_SSR_REFRACTION) != 0;
if (use_refraction) {
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
/* TODO: Opti: Could be shared. */
DRW_texture_ensure_fullscreen_2D(&txl->refract_color, GPU_R11F_G11F_B10F, DRW_TEX_FILTER | DRW_TEX_MIPMAP);
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
GPU_framebuffer_ensure_config(&fbl->refract_fb, {
GPU_ATTACHMENT_NONE,
GPU_ATTACHMENT_TEXTURE(txl->refract_color)
});
}
const bool is_persp = DRW_viewport_is_persp_get();
if (effects->ssr_was_persp != is_persp) {
effects->ssr_was_persp = is_persp;
DRW_viewport_request_redraw();
EEVEE_temporal_sampling_reset(vedata);
stl->g_data->valid_double_buffer = false;
}
effects->reflection_trace_full = (scene_eval->eevee.flag & SCE_EEVEE_SSR_HALF_RESOLUTION) == 0;
common_data->ssr_thickness = scene_eval->eevee.ssr_thickness;
common_data->ssr_border_fac = scene_eval->eevee.ssr_border_fade;
common_data->ssr_firefly_fac = scene_eval->eevee.ssr_firefly_fac;
common_data->ssr_max_roughness = scene_eval->eevee.ssr_max_roughness;
common_data->ssr_quality = 1.0f - 0.95f * scene_eval->eevee.ssr_quality;
common_data->ssr_brdf_bias = 0.1f + common_data->ssr_quality * 0.6f; /* Range [0.1, 0.7]. */
if (common_data->ssr_firefly_fac < 1e-8f) {
common_data->ssr_firefly_fac = FLT_MAX;
}
const int divisor = (effects->reflection_trace_full) ? 1 : 2;
int tracing_res[2] = {(int)viewport_size[0] / divisor, (int)viewport_size[1] / divisor};
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
int size_fs[2] = {(int)viewport_size[0], (int)viewport_size[1]};
const bool high_qual_input = true; /* TODO dither low quality input */
const GPUTextureFormat format = (high_qual_input) ? GPU_RGBA16F : GPU_RGBA8;
/* MRT for the shading pass in order to output needed data for the SSR pass. */
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
effects->ssr_specrough_input = DRW_texture_pool_query_2D(size_fs[0], size_fs[1], format,
&draw_engine_eevee_type);
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
GPU_framebuffer_texture_attach(fbl->main_fb, effects->ssr_specrough_input, 2, 0);
/* Raytracing output */
effects->ssr_hit_output = DRW_texture_pool_query_2D(tracing_res[0], tracing_res[1], GPU_RG16I,
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
&draw_engine_eevee_type);
effects->ssr_pdf_output = DRW_texture_pool_query_2D(tracing_res[0], tracing_res[1], GPU_R16F,
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
&draw_engine_eevee_type);
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
GPU_framebuffer_ensure_config(&fbl->screen_tracing_fb, {
GPU_ATTACHMENT_NONE,
GPU_ATTACHMENT_TEXTURE(effects->ssr_hit_output),
GPU_ATTACHMENT_TEXTURE(effects->ssr_pdf_output)
});
/* Enable double buffering to be able to read previous frame color */
return EFFECT_SSR | EFFECT_NORMAL_BUFFER | EFFECT_DOUBLE_BUFFER | ((use_refraction) ? EFFECT_REFRACT : 0);
}
/* Cleanup to release memory */
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
GPU_FRAMEBUFFER_FREE_SAFE(fbl->screen_tracing_fb);
effects->ssr_specrough_input = NULL;
effects->ssr_hit_output = NULL;
effects->ssr_pdf_output = NULL;
return 0;
}
void EEVEE_screen_raytrace_cache_init(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata)
{
EEVEE_PassList *psl = vedata->psl;
EEVEE_StorageList *stl = vedata->stl;
EEVEE_TextureList *txl = vedata->txl;
EEVEE_EffectsInfo *effects = stl->effects;
LightCache *lcache = stl->g_data->light_cache;
struct GPUBatch *quad = DRW_cache_fullscreen_quad_get();
if ((effects->enabled_effects & EFFECT_SSR) != 0) {
int options = (effects->reflection_trace_full) ? SSR_FULL_TRACE : 0;
options |= ((effects->enabled_effects & EFFECT_GTAO) != 0) ? SSR_AO : 0;
struct GPUShader *trace_shader = eevee_effects_screen_raytrace_shader_get(options);
struct GPUShader *resolve_shader = eevee_effects_screen_raytrace_shader_get(SSR_RESOLVE | options);
/** Screen space raytracing overview
*
* Following Frostbite stochastic SSR.
*
2018-09-19 18:19:49 +02:00
* - First pass Trace rays across the depth buffer. The hit position and pdf are
* recorded in a RGBA16F render target for each ray (sample).
*
* - We downsample the previous frame color buffer.
*
2018-09-19 18:19:49 +02:00
* - For each final pixel, we gather neighbors rays and choose a color buffer
* mipmap for each ray using its pdf. (filtered importance sampling)
* We then evaluate the lighting from the probes and mix the results together.
*/
psl->ssr_raytrace = DRW_pass_create("SSR Raytrace", DRW_STATE_WRITE_COLOR);
DRWShadingGroup *grp = DRW_shgroup_create(trace_shader, psl->ssr_raytrace);
DRW_shgroup_uniform_texture_ref(grp, "depthBuffer", &e_data.depth_src);
DRW_shgroup_uniform_texture_ref(grp, "normalBuffer", &effects->ssr_normal_input);
DRW_shgroup_uniform_texture_ref(grp, "specroughBuffer", &effects->ssr_specrough_input);
DRW_shgroup_uniform_texture_ref(grp, "maxzBuffer", &txl->maxzbuffer);
DRW_shgroup_uniform_texture_ref(grp, "planarDepth", &vedata->txl->planar_depth);
DRW_shgroup_uniform_texture(grp, "utilTex", EEVEE_materials_get_util_tex());
DRW_shgroup_uniform_block(grp, "grid_block", sldata->grid_ubo);
DRW_shgroup_uniform_block(grp, "probe_block", sldata->probe_ubo);
DRW_shgroup_uniform_block(grp, "planar_block", sldata->planar_ubo);
DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo);
if (!effects->reflection_trace_full) {
DRW_shgroup_uniform_ivec2(grp, "halfresOffset", effects->ssr_halfres_ofs, 1);
}
DRW_shgroup_call_add(grp, quad, NULL);
psl->ssr_resolve = DRW_pass_create("SSR Resolve", DRW_STATE_WRITE_COLOR | DRW_STATE_ADDITIVE);
grp = DRW_shgroup_create(resolve_shader, psl->ssr_resolve);
DRW_shgroup_uniform_texture_ref(grp, "depthBuffer", &e_data.depth_src);
DRW_shgroup_uniform_texture_ref(grp, "normalBuffer", &effects->ssr_normal_input);
DRW_shgroup_uniform_texture_ref(grp, "specroughBuffer", &effects->ssr_specrough_input);
DRW_shgroup_uniform_texture_ref(grp, "probeCubes", &lcache->cube_tx.tex);
DRW_shgroup_uniform_texture_ref(grp, "probePlanars", &vedata->txl->planar_pool);
DRW_shgroup_uniform_texture_ref(grp, "planarDepth", &vedata->txl->planar_depth);
DRW_shgroup_uniform_texture_ref(grp, "hitBuffer", &effects->ssr_hit_output);
DRW_shgroup_uniform_texture_ref(grp, "pdfBuffer", &effects->ssr_pdf_output);
DRW_shgroup_uniform_texture_ref(grp, "prevColorBuffer", &txl->color_double_buffer);
DRW_shgroup_uniform_block(grp, "grid_block", sldata->grid_ubo);
DRW_shgroup_uniform_block(grp, "probe_block", sldata->probe_ubo);
DRW_shgroup_uniform_block(grp, "planar_block", sldata->planar_ubo);
DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo);
DRW_shgroup_uniform_int(grp, "neighborOffset", &effects->ssr_neighbor_ofs, 1);
if ((effects->enabled_effects & EFFECT_GTAO) != 0) {
DRW_shgroup_uniform_texture(grp, "utilTex", EEVEE_materials_get_util_tex());
DRW_shgroup_uniform_texture_ref(grp, "horizonBuffer", &effects->gtao_horizons);
}
DRW_shgroup_call_add(grp, quad, NULL);
}
}
void EEVEE_refraction_compute(EEVEE_ViewLayerData *UNUSED(sldata), EEVEE_Data *vedata)
{
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_TextureList *txl = vedata->txl;
EEVEE_StorageList *stl = vedata->stl;
EEVEE_EffectsInfo *effects = stl->effects;
if ((effects->enabled_effects & EFFECT_REFRACT) != 0) {
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
GPU_framebuffer_blit(fbl->main_fb, 0, fbl->refract_fb, 0, GPU_COLOR_BIT);
EEVEE_downsample_buffer(vedata, txl->refract_color, 9);
/* Restore */
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
GPU_framebuffer_bind(fbl->main_fb);
}
}
void EEVEE_reflection_compute(EEVEE_ViewLayerData *UNUSED(sldata), EEVEE_Data *vedata)
{
EEVEE_PassList *psl = vedata->psl;
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_StorageList *stl = vedata->stl;
EEVEE_TextureList *txl = vedata->txl;
EEVEE_EffectsInfo *effects = stl->effects;
if (((effects->enabled_effects & EFFECT_SSR) != 0) && stl->g_data->valid_double_buffer) {
DefaultTextureList *dtxl = DRW_viewport_texture_list_get();
e_data.depth_src = dtxl->depth;
DRW_stats_group_start("SSR");
/* Raytrace. */
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
GPU_framebuffer_bind(fbl->screen_tracing_fb);
DRW_draw_pass(psl->ssr_raytrace);
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
EEVEE_downsample_buffer(vedata, txl->color_double_buffer, 9);
/* Resolve at fullres */
int sample = (DRW_state_is_image_render()) ? effects->taa_render_sample : effects->taa_current_sample;
/* Doing a neighbor shift only after a few iteration. We wait for a prime number of cycles to avoid
* noise correlation. This reduces variance faster. */
effects->ssr_neighbor_ofs = ((sample / 5) % 8) * 4;
switch ((sample / 11) % 4) {
case 0:
effects->ssr_halfres_ofs[0] = 0;
effects->ssr_halfres_ofs[1] = 0;
break;
case 1:
effects->ssr_halfres_ofs[0] = 0;
effects->ssr_halfres_ofs[1] = 1;
break;
case 2:
effects->ssr_halfres_ofs[0] = 1;
effects->ssr_halfres_ofs[1] = 0;
break;
case 4:
effects->ssr_halfres_ofs[0] = 1;
effects->ssr_halfres_ofs[1] = 1;
break;
}
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
GPU_framebuffer_bind(fbl->main_color_fb);
DRW_draw_pass(psl->ssr_resolve);
/* Restore */
GPUFramebuffer: Refactor (Part 2) This refactor modernise the use of framebuffers. It also touches a lot of files so breaking down changes we have: - GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer. This allows to create and configure more FBO without the need to attach and detach texture at drawing time. - GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This allows to configure the framebuffer inside a context other than the one that will be rendering the framebuffer. We do the actual configuration when binding the FBO. We also Keep track of config validity and save drawbuffers state in the FBO. We remove the different bind/unbind functions. These make little sense now that we have separate contexts. - DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer ones to avoid another layer of abstraction. We move the DRW convenience functions to GPUFramebuffer instead and even add new ones. The MACRO GPU_framebuffer_ensure_config is pretty much all you need to create and config a GPUFramebuffer. - DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create functions to create textures for thoses framebuffers. Pool textures are now using default texture parameters for the texture type asked. - DRWManager: Make sure no framebuffer object is bound when doing cache filling. - GPUViewport: Add new color_only_fb and depth_only_fb along with FB API usage update. This let draw engines render to color/depth only target and without the need to attach/detach textures. - WM_window: Assert when a framebuffer is bound when changing context. This balance the fact we are not track ogl context inside GPUFramebuffer. - Eevee, Clay, Mode engines: Update to new API. This comes with a lot of code simplification. This also come with some cleanups in some engine codes.
2018-03-25 17:46:48 +02:00
GPU_framebuffer_bind(fbl->main_fb);
DRW_stats_group_end();
}
}
void EEVEE_screen_raytrace_free(void)
{
for (int i = 0; i < SSR_MAX_SHADER; ++i) {
DRW_SHADER_FREE_SAFE(e_data.ssr_sh[i]);
}
}