This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/math_geom.c

3098 lines
77 KiB
C
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
* The Original Code is: some of this file.
*
* ***** END GPL LICENSE BLOCK *****
* */
2011-02-27 20:37:56 +00:00
/** \file blender/blenlib/intern/math_geom.c
* \ingroup bli
*/
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_memarena.h"
#include "BLI_utildefines.h"
/********************************** Polygons *********************************/
void cent_tri_v3(float cent[3], const float v1[3], const float v2[3], const float v3[3])
{
cent[0]= 0.33333f*(v1[0]+v2[0]+v3[0]);
cent[1]= 0.33333f*(v1[1]+v2[1]+v3[1]);
cent[2]= 0.33333f*(v1[2]+v2[2]+v3[2]);
}
void cent_quad_v3(float cent[3], const float v1[3], const float v2[3], const float v3[3], const float v4[3])
{
cent[0]= 0.25f*(v1[0]+v2[0]+v3[0]+v4[0]);
cent[1]= 0.25f*(v1[1]+v2[1]+v3[1]+v4[1]);
cent[2]= 0.25f*(v1[2]+v2[2]+v3[2]+v4[2]);
}
float normal_tri_v3(float n[3], const float v1[3], const float v2[3], const float v3[3])
{
float n1[3],n2[3];
n1[0]= v1[0]-v2[0];
n2[0]= v2[0]-v3[0];
n1[1]= v1[1]-v2[1];
n2[1]= v2[1]-v3[1];
n1[2]= v1[2]-v2[2];
n2[2]= v2[2]-v3[2];
n[0]= n1[1]*n2[2]-n1[2]*n2[1];
n[1]= n1[2]*n2[0]-n1[0]*n2[2];
n[2]= n1[0]*n2[1]-n1[1]*n2[0];
return normalize_v3(n);
}
float normal_quad_v3(float n[3], const float v1[3], const float v2[3], const float v3[3], const float v4[3])
{
/* real cross! */
float n1[3],n2[3];
n1[0]= v1[0]-v3[0];
n1[1]= v1[1]-v3[1];
n1[2]= v1[2]-v3[2];
n2[0]= v2[0]-v4[0];
n2[1]= v2[1]-v4[1];
n2[2]= v2[2]-v4[2];
n[0]= n1[1]*n2[2]-n1[2]*n2[1];
n[1]= n1[2]*n2[0]-n1[0]*n2[2];
n[2]= n1[0]*n2[1]-n1[1]*n2[0];
return normalize_v3(n);
}
float area_tri_v2(const float v1[2], const float v2[2], const float v3[2])
{
return 0.5f * fabsf((v1[0]-v2[0])*(v2[1]-v3[1]) + (v1[1]-v2[1])*(v3[0]-v2[0]));
}
float area_tri_signed_v2(const float v1[2], const float v2[2], const float v3[2])
{
return 0.5f * ((v1[0]-v2[0])*(v2[1]-v3[1]) + (v1[1]-v2[1])*(v3[0]-v2[0]));
}
float area_quad_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3]) /* only convex Quadrilaterals */
{
float len, vec1[3], vec2[3], n[3];
sub_v3_v3v3(vec1, v2, v1);
sub_v3_v3v3(vec2, v4, v1);
cross_v3_v3v3(n, vec1, vec2);
len= normalize_v3(n);
sub_v3_v3v3(vec1, v4, v3);
sub_v3_v3v3(vec2, v2, v3);
cross_v3_v3v3(n, vec1, vec2);
len+= normalize_v3(n);
return (len/2.0f);
}
float area_tri_v3(const float v1[3], const float v2[3], const float v3[3]) /* Triangles */
{
float len, vec1[3], vec2[3], n[3];
sub_v3_v3v3(vec1, v3, v2);
sub_v3_v3v3(vec2, v1, v2);
cross_v3_v3v3(n, vec1, vec2);
len= normalize_v3(n);
return (len/2.0f);
}
float area_poly_v3(int nr, float verts[][3], const float normal[3])
{
float x, y, z, area, max;
float *cur, *prev;
int a, px=0, py=1;
/* first: find dominant axis: 0==X, 1==Y, 2==Z
* don't use 'axis_dominant_v3()' because we need max axis too */
x= fabsf(normal[0]);
y= fabsf(normal[1]);
z= fabsf(normal[2]);
max = MAX3(x, y, z);
if(max==y) py=2;
else if(max==x) {
px=1;
py= 2;
}
/* The Trapezium Area Rule */
prev= verts[nr-1];
cur= verts[0];
area= 0;
for(a=0; a<nr; a++) {
area+= (cur[px]-prev[px])*(cur[py]+prev[py]);
prev= verts[a];
cur= verts[a+1];
}
return fabsf(0.5f * area / max);
}
/********************************* Distance **********************************/
/* distance v1 to line v2-v3 */
/* using Hesse formula, NO LINE PIECE! */
float dist_to_line_v2(const float v1[2], const float v2[2], const float v3[2])
{
float a[2],deler;
a[0]= v2[1]-v3[1];
a[1]= v3[0]-v2[0];
deler= (float)sqrt(a[0]*a[0]+a[1]*a[1]);
if(deler== 0.0f) return 0;
return fabsf((v1[0]-v2[0])*a[0]+(v1[1]-v2[1])*a[1])/deler;
}
/* distance v1 to line-piece v2-v3 */
float dist_to_line_segment_v2(const float v1[2], const float v2[2], const float v3[2])
{
float labda, rc[2], pt[2], len;
rc[0]= v3[0]-v2[0];
rc[1]= v3[1]-v2[1];
len= rc[0]*rc[0]+ rc[1]*rc[1];
if(len==0.0f) {
rc[0]= v1[0]-v2[0];
rc[1]= v1[1]-v2[1];
return (float)(sqrt(rc[0]*rc[0]+ rc[1]*rc[1]));
}
labda= (rc[0]*(v1[0]-v2[0]) + rc[1]*(v1[1]-v2[1]))/len;
if(labda <= 0.0f) {
pt[0]= v2[0];
pt[1]= v2[1];
}
else if(labda >= 1.0f) {
pt[0]= v3[0];
pt[1]= v3[1];
}
else {
pt[0]= labda*rc[0]+v2[0];
pt[1]= labda*rc[1]+v2[1];
}
rc[0]= pt[0]-v1[0];
rc[1]= pt[1]-v1[1];
return sqrtf(rc[0]*rc[0]+ rc[1]*rc[1]);
}
/* point closest to v1 on line v2-v3 in 2D */
void closest_to_line_segment_v2(float close_r[2], const float p[2], const float l1[2], const float l2[2])
{
float lambda, cp[2];
lambda= closest_to_line_v2(cp,p, l1, l2);
if(lambda <= 0.0f)
copy_v2_v2(close_r, l1);
else if(lambda >= 1.0f)
copy_v2_v2(close_r, l2);
else
copy_v2_v2(close_r, cp);
}
/* point closest to v1 on line v2-v3 in 3D */
void closest_to_line_segment_v3(float close_r[3], const float v1[3], const float v2[3], const float v3[3])
{
float lambda, cp[3];
lambda= closest_to_line_v3(cp,v1, v2, v3);
if(lambda <= 0.0f)
copy_v3_v3(close_r, v2);
else if(lambda >= 1.0f)
copy_v3_v3(close_r, v3);
else
copy_v3_v3(close_r, cp);
}
/* find the closest point on a plane to another point and store it in close_r
* close_r: return coordinate
* plane_co: a point on the plane
* plane_no_unit: the plane's normal, and d is the last number in the plane equation 0 = ax + by + cz + d
* pt: the point that you want the nearest of
*/
// const float norm[3], const float coord[3], const float point[3], float dst_r[3]
void closest_to_plane_v3(float close_r[3], const float plane_co[3], const float plane_no_unit[3], const float pt[3])
{
float temp[3];
float dotprod;
sub_v3_v3v3(temp, pt, plane_co);
dotprod= dot_v3v3(temp, plane_no_unit);
close_r[0] = pt[0] - (plane_no_unit[0] * dotprod);
close_r[1] = pt[1] - (plane_no_unit[1] * dotprod);
close_r[2] = pt[2] - (plane_no_unit[2] * dotprod);
}
/* signed distance from the point to the plane in 3D */
float dist_to_plane_normalized_v3(const float p[3], const float plane_co[3], const float plane_no_unit[3])
{
float plane_co_other[3];
add_v3_v3v3(plane_co_other, plane_co, plane_no_unit);
return line_point_factor_v3(p, plane_co, plane_co_other);
}
float dist_to_plane_v3(const float p[3], const float plane_co[3], const float plane_no[3])
{
float plane_no_unit[3];
float plane_co_other[3];
normalize_v3_v3(plane_no_unit, plane_no);
add_v3_v3v3(plane_co_other, plane_co, plane_no_unit);
return line_point_factor_v3(p, plane_co, plane_co_other);
}
/* distance v1 to line-piece v2-v3 in 3D */
float dist_to_line_segment_v3(const float v1[3], const float v2[3], const float v3[3])
{
float closest[3];
closest_to_line_segment_v3(closest, v1, v2, v3);
return len_v3v3(closest, v1);
}
/******************************* Intersection ********************************/
/* intersect Line-Line, shorts */
int isect_line_line_v2_int(const int v1[2], const int v2[2], const int v3[2], const int v4[2])
{
float div, labda, mu;
div= (float)((v2[0]-v1[0])*(v4[1]-v3[1])-(v2[1]-v1[1])*(v4[0]-v3[0]));
if(div==0.0f) return ISECT_LINE_LINE_COLINEAR;
labda= ((float)(v1[1]-v3[1])*(v4[0]-v3[0])-(v1[0]-v3[0])*(v4[1]-v3[1]))/div;
mu= ((float)(v1[1]-v3[1])*(v2[0]-v1[0])-(v1[0]-v3[0])*(v2[1]-v1[1]))/div;
if(labda>=0.0f && labda<=1.0f && mu>=0.0f && mu<=1.0f) {
if(labda==0.0f || labda==1.0f || mu==0.0f || mu==1.0f) return ISECT_LINE_LINE_EXACT;
return ISECT_LINE_LINE_CROSS;
}
return ISECT_LINE_LINE_NONE;
}
/* intersect Line-Line, floats */
int isect_line_line_v2(const float v1[2], const float v2[2], const float v3[2], const float v4[2])
{
float div, labda, mu;
div= (v2[0]-v1[0])*(v4[1]-v3[1])-(v2[1]-v1[1])*(v4[0]-v3[0]);
if(div==0.0f) return ISECT_LINE_LINE_COLINEAR;
labda= ((float)(v1[1]-v3[1])*(v4[0]-v3[0])-(v1[0]-v3[0])*(v4[1]-v3[1]))/div;
mu= ((float)(v1[1]-v3[1])*(v2[0]-v1[0])-(v1[0]-v3[0])*(v2[1]-v1[1]))/div;
if(labda>=0.0f && labda<=1.0f && mu>=0.0f && mu<=1.0f) {
if(labda==0.0f || labda==1.0f || mu==0.0f || mu==1.0f) return ISECT_LINE_LINE_EXACT;
return ISECT_LINE_LINE_CROSS;
}
return ISECT_LINE_LINE_NONE;
}
/* get intersection point of two 2D segments and return intersection type:
* -1: colliniar
* 1: intersection
*/
int isect_seg_seg_v2_point(const float v1[2], const float v2[2], const float v3[2], const float v4[2], float vi[2])
{
float a1, a2, b1, b2, c1, c2, d;
float u, v;
const float eps= 0.000001f;
a1= v2[0]-v1[0];
b1= v4[0]-v3[0];
c1= v1[0]-v4[0];
a2= v2[1]-v1[1];
b2= v4[1]-v3[1];
c2= v1[1]-v4[1];
d= a1*b2-a2*b1;
if(d==0) {
if(a1*c2-a2*c1==0.0f && b1*c2-b2*c1==0.0f) { /* equal lines */
float a[2], b[2], c[2];
float u2;
if(len_v2v2(v1, v2)==0.0f) {
if(len_v2v2(v3, v4)>eps) {
/* use non-point segment as basis */
SWAP(const float *, v1, v3);
SWAP(const float *, v2, v4);
} else { /* both of segments are points */
if(equals_v2v2(v1, v3)) { /* points are equal */
copy_v2_v2(vi, v1);
return 1;
}
/* two different points */
return -1;
}
}
sub_v2_v2v2(a, v3, v1);
sub_v2_v2v2(b, v2, v1);
sub_v2_v2v2(c, v2, v1);
u= dot_v2v2(a, b) / dot_v2v2(c, c);
sub_v2_v2v2(a, v4, v1);
u2= dot_v2v2(a, b) / dot_v2v2(c, c);
if(u>u2) SWAP(float, u, u2);
if(u>1.0f+eps || u2<-eps) return -1; /* non-ovlerlapping segments */
2012-02-27 10:35:39 +00:00
else if(maxf(0.0f, u) == minf(1.0f, u2)) { /* one common point: can return result */
interp_v2_v2v2(vi, v1, v2, maxf(0, u));
return 1;
}
}
/* lines are colliniar */
return -1;
}
u= (c2*b1-b2*c1)/d;
v= (c1*a2-a1*c2)/d;
if(u>=-eps && u<=1.0f+eps && v>=-eps && v<=1.0f+eps) { /* intersection */
interp_v2_v2v2(vi, v1, v2, u);
return 1;
}
/* out of segment intersection */
return -1;
}
int isect_line_sphere_v3(const float l1[3], const float l2[3],
const float sp[3], const float r,
float r_p1[3], float r_p2[3])
{
/* l1: coordinates (point of line)
* l2: coordinates (point of line)
* sp, r: coordinates and radius (sphere)
* r_p1, r_p2: return intersection coordinates
*/
/* adapted for use in blender by Campbell Barton - 2011
*
* atelier iebele abel - 2001
* atelier@iebele.nl
* http://www.iebele.nl
*
* sphere_line_intersection function adapted from:
* http://astronomy.swin.edu.au/pbourke/geometry/sphereline
* Paul Bourke pbourke@swin.edu.au
*/
const float ldir[3]= {
l2[0] - l1[0],
l2[1] - l1[1],
l2[2] - l1[2]
};
const float a= dot_v3v3(ldir, ldir);
const float b= 2.0f *
(ldir[0] * (l1[0] - sp[0]) +
ldir[1] * (l1[1] - sp[1]) +
ldir[2] * (l1[2] - sp[2]));
const float c=
dot_v3v3(sp, sp) +
dot_v3v3(l1, l1) -
(2.0f * dot_v3v3(sp, l1)) -
(r * r);
const float i = b * b - 4.0f * a * c;
float mu;
if (i < 0.0f) {
/* no intersections */
return 0;
}
else if (i == 0.0f) {
/* one intersection */
mu = -b / (2.0f * a);
madd_v3_v3v3fl(r_p1, l1, ldir, mu);
return 1;
}
2011-08-19 16:21:29 +00:00
else if (i > 0.0f) {
const float i_sqrt= sqrt(i); /* avoid calc twice */
/* first intersection */
mu = (-b + i_sqrt) / (2.0f * a);
madd_v3_v3v3fl(r_p1, l1, ldir, mu);
/* second intersection */
mu = (-b - i_sqrt) / (2.0f * a);
madd_v3_v3v3fl(r_p2, l1, ldir, mu);
return 2;
}
else {
/* math domain error - nan */
return -1;
}
}
/* keep in sync with isect_line_sphere_v3 */
int isect_line_sphere_v2(const float l1[2], const float l2[2],
const float sp[2], const float r,
float r_p1[2], float r_p2[2])
{
const float ldir[2]= {
l2[0] - l1[0],
l2[1] - l1[1]
};
const float a= dot_v2v2(ldir, ldir);
const float b= 2.0f *
(ldir[0] * (l1[0] - sp[0]) +
ldir[1] * (l1[1] - sp[1]));
const float c=
dot_v2v2(sp, sp) +
dot_v2v2(l1, l1) -
(2.0f * dot_v2v2(sp, l1)) -
(r * r);
const float i = b * b - 4.0f * a * c;
float mu;
if (i < 0.0f) {
/* no intersections */
return 0;
}
else if (i == 0.0f) {
/* one intersection */
mu = -b / (2.0f * a);
madd_v2_v2v2fl(r_p1, l1, ldir, mu);
return 1;
}
2011-08-19 16:21:29 +00:00
else if (i > 0.0f) {
const float i_sqrt= sqrt(i); /* avoid calc twice */
/* first intersection */
mu = (-b + i_sqrt) / (2.0f * a);
madd_v2_v2v2fl(r_p1, l1, ldir, mu);
/* second intersection */
mu = (-b - i_sqrt) / (2.0f * a);
madd_v2_v2v2fl(r_p2, l1, ldir, mu);
return 2;
}
else {
/* math domain error - nan */
return -1;
}
}
/*
* -1: colliniar
* 1: intersection
*/
static short IsectLLPt2Df(const float x0, const float y0, const float x1, const float y1,
const float x2, const float y2, const float x3, const float y3, float *xi,float *yi)
{
/*
* this function computes the intersection of the sent lines
* and returns the intersection point, note that the function assumes
* the lines intersect. the function can handle vertical as well
* as horizontal lines. note the function isn't very clever, it simply
* applies the math, but we don't need speed since this is a
* pre-processing step
*/
float c1,c2, // constants of linear equations
det_inv, // the inverse of the determinant of the coefficient
m1,m2; // the slopes of each line
/*
* compute slopes, note the cludge for infinity, however, this will
* be close enough
*/
if (fabs(x1-x0) > 0.000001)
m1 = (y1-y0) / (x1-x0);
else
return -1; /*m1 = (float) 1e+10;*/ // close enough to infinity
if (fabs(x3-x2) > 0.000001)
m2 = (y3-y2) / (x3-x2);
else
return -1; /*m2 = (float) 1e+10;*/ // close enough to infinity
if (fabs(m1-m2) < 0.000001)
return -1; /* parallel lines */
// compute constants
c1 = (y0-m1*x0);
c2 = (y2-m2*x2);
// compute the inverse of the determinate
det_inv = 1.0f / (-m1 + m2);
// use Kramers rule to compute xi and yi
*xi= ((-c2 + c1) *det_inv);
*yi= ((m2*c1 - m1*c2) *det_inv);
return 1;
} // end Intersect_Lines
/* point in tri */
int isect_point_tri_v2(const float pt[2], const float v1[2], const float v2[2], const float v3[2])
{
if (line_point_side_v2(v1,v2,pt)>=0.0f) {
if (line_point_side_v2(v2,v3,pt)>=0.0f) {
if (line_point_side_v2(v3,v1,pt)>=0.0f) {
return 1;
}
}
} else {
if (! (line_point_side_v2(v2,v3,pt)>=0.0f)) {
if (! (line_point_side_v2(v3,v1,pt)>=0.0f)) {
return -1;
}
}
}
return 0;
}
/* point in quad - only convex quads */
int isect_point_quad_v2(const float pt[2], const float v1[2], const float v2[2], const float v3[2], const float v4[2])
{
if (line_point_side_v2(v1,v2,pt)>=0.0f) {
if (line_point_side_v2(v2,v3,pt)>=0.0f) {
if (line_point_side_v2(v3,v4,pt)>=0.0f) {
if (line_point_side_v2(v4,v1,pt)>=0.0f) {
return 1;
}
}
}
} else {
if (! (line_point_side_v2(v2,v3,pt)>=0.0f)) {
if (! (line_point_side_v2(v3,v4,pt)>=0.0f)) {
if (! (line_point_side_v2(v4,v1,pt)>=0.0f)) {
return -1;
}
}
}
}
return 0;
}
/* moved from effect.c
* test if the line starting at p1 ending at p2 intersects the triangle v0..v2
* return non zero if it does
*/
int isect_line_tri_v3(const float p1[3], const float p2[3],
const float v0[3], const float v1[3], const float v2[3],
float *r_lambda, float r_uv[2])
{
float p[3], s[3], d[3], e1[3], e2[3], q[3];
float a, f, u, v;
sub_v3_v3v3(e1, v1, v0);
sub_v3_v3v3(e2, v2, v0);
sub_v3_v3v3(d, p2, p1);
cross_v3_v3v3(p, d, e2);
a = dot_v3v3(e1, p);
if ((a > -0.000001f) && (a < 0.000001f)) return 0;
f = 1.0f/a;
sub_v3_v3v3(s, p1, v0);
u = f * dot_v3v3(s, p);
if ((u < 0.0f)||(u > 1.0f)) return 0;
cross_v3_v3v3(q, s, e1);
v = f * dot_v3v3(d, q);
if ((v < 0.0f)||((u + v) > 1.0f)) return 0;
*r_lambda = f * dot_v3v3(e2, q);
if ((*r_lambda < 0.0f)||(*r_lambda > 1.0f)) return 0;
if(r_uv) {
r_uv[0]= u;
r_uv[1]= v;
}
return 1;
}
/* moved from effect.c
* test if the ray starting at p1 going in d direction intersects the triangle v0..v2
* return non zero if it does
*/
int isect_ray_tri_v3(const float p1[3], const float d[3],
const float v0[3], const float v1[3], const float v2[3],
float *r_lambda, float r_uv[2])
{
float p[3], s[3], e1[3], e2[3], q[3];
float a, f, u, v;
sub_v3_v3v3(e1, v1, v0);
sub_v3_v3v3(e2, v2, v0);
cross_v3_v3v3(p, d, e2);
a = dot_v3v3(e1, p);
/* note: these values were 0.000001 in 2.4x but for projection snapping on
* a human head (1BU==1m), subsurf level 2, this gave many errors - campbell */
if ((a > -0.00000001f) && (a < 0.00000001f)) return 0;
f = 1.0f/a;
sub_v3_v3v3(s, p1, v0);
u = f * dot_v3v3(s, p);
if ((u < 0.0f)||(u > 1.0f)) return 0;
cross_v3_v3v3(q, s, e1);
v = f * dot_v3v3(d, q);
if ((v < 0.0f)||((u + v) > 1.0f)) return 0;
*r_lambda = f * dot_v3v3(e2, q);
if ((*r_lambda < 0.0f)) return 0;
if(r_uv) {
r_uv[0]= u;
r_uv[1]= v;
}
return 1;
}
int isect_ray_plane_v3(const float p1[3], const float d[3],
const float v0[3], const float v1[3], const float v2[3],
float *r_lambda, const int clip)
{
float p[3], s[3], e1[3], e2[3], q[3];
2011-05-08 10:29:40 +00:00
float a, f;
/* float u, v; */ /*UNUSED*/
sub_v3_v3v3(e1, v1, v0);
sub_v3_v3v3(e2, v2, v0);
cross_v3_v3v3(p, d, e2);
a = dot_v3v3(e1, p);
/* note: these values were 0.000001 in 2.4x but for projection snapping on
* a human head (1BU==1m), subsurf level 2, this gave many errors - campbell */
if ((a > -0.00000001f) && (a < 0.00000001f)) return 0;
f = 1.0f/a;
sub_v3_v3v3(s, p1, v0);
2011-05-08 10:29:40 +00:00
/* u = f * dot_v3v3(s, p); */ /*UNUSED*/
cross_v3_v3v3(q, s, e1);
2011-05-08 10:29:40 +00:00
/* v = f * dot_v3v3(d, q); */ /*UNUSED*/
*r_lambda = f * dot_v3v3(e2, q);
if (clip && (*r_lambda < 0.0f)) return 0;
return 1;
}
int isect_ray_tri_epsilon_v3(const float p1[3], const float d[3],
const float v0[3], const float v1[3], const float v2[3],
float *r_lambda, float uv[2], const float epsilon)
{
float p[3], s[3], e1[3], e2[3], q[3];
float a, f, u, v;
sub_v3_v3v3(e1, v1, v0);
sub_v3_v3v3(e2, v2, v0);
cross_v3_v3v3(p, d, e2);
a = dot_v3v3(e1, p);
if (a == 0.0f) return 0;
f = 1.0f/a;
sub_v3_v3v3(s, p1, v0);
u = f * dot_v3v3(s, p);
if ((u < -epsilon)||(u > 1.0f+epsilon)) return 0;
cross_v3_v3v3(q, s, e1);
v = f * dot_v3v3(d, q);
if ((v < -epsilon)||((u + v) > 1.0f+epsilon)) return 0;
*r_lambda = f * dot_v3v3(e2, q);
if ((*r_lambda < 0.0f)) return 0;
if(uv) {
uv[0]= u;
uv[1]= v;
}
return 1;
}
int isect_ray_tri_threshold_v3(const float p1[3], const float d[3],
const float v0[3], const float v1[3], const float v2[3],
float *r_lambda, float r_uv[2], const float threshold)
{
float p[3], s[3], e1[3], e2[3], q[3];
float a, f, u, v;
float du = 0, dv = 0;
sub_v3_v3v3(e1, v1, v0);
sub_v3_v3v3(e2, v2, v0);
cross_v3_v3v3(p, d, e2);
a = dot_v3v3(e1, p);
if ((a > -0.000001f) && (a < 0.000001f)) return 0;
f = 1.0f/a;
sub_v3_v3v3(s, p1, v0);
cross_v3_v3v3(q, s, e1);
*r_lambda = f * dot_v3v3(e2, q);
if ((*r_lambda < 0.0f)) return 0;
u = f * dot_v3v3(s, p);
v = f * dot_v3v3(d, q);
if (u < 0) du = u;
if (u > 1) du = u - 1;
if (v < 0) dv = v;
if (v > 1) dv = v - 1;
if (u > 0 && v > 0 && u + v > 1)
{
float t = u + v - 1;
du = u - t/2;
dv = v - t/2;
}
mul_v3_fl(e1, du);
mul_v3_fl(e2, dv);
if (dot_v3v3(e1, e1) + dot_v3v3(e2, e2) > threshold * threshold)
{
return 0;
}
if(r_uv) {
r_uv[0]= u;
r_uv[1]= v;
}
return 1;
}
int isect_line_plane_v3(float out[3], const float l1[3], const float l2[3], const float plane_co[3], const float plane_no[3], const short no_flip)
{
float l_vec[3]; /* l1 -> l2 normalized vector */
float p_no[3]; /* 'plane_no' normalized */
float dot;
sub_v3_v3v3(l_vec, l2, l1);
normalize_v3(l_vec);
normalize_v3_v3(p_no, plane_no);
dot= dot_v3v3(l_vec, p_no);
if(dot == 0.0f) {
return 0;
}
else {
float l1_plane[3]; /* line point aligned with the plane */
float dist; /* 'plane_no' aligned distance to the 'plane_co' */
2012-03-01 12:20:18 +00:00
/* for predictable flipping since the plane is only used to
* define a direction, ignore its flipping and aligned with 'l_vec' */
if(dot < 0.0f) {
dot= -dot;
negate_v3(p_no);
}
add_v3_v3v3(l1_plane, l1, p_no);
dist = line_point_factor_v3(plane_co, l1, l1_plane);
/* treat line like a ray, when 'no_flip' is set */
if(no_flip && dist < 0.0f) {
dist= -dist;
}
mul_v3_fl(l_vec, dist / dot);
add_v3_v3v3(out, l1, l_vec);
return 1;
}
}
/* note: return normal isnt unit length */
void isect_plane_plane_v3(float r_isect_co[3], float r_isect_no[3],
const float plane_a_co[3], const float plane_a_no[3],
const float plane_b_co[3], const float plane_b_no[3])
{
float plane_a_co_other[3];
cross_v3_v3v3(r_isect_no, plane_a_no, plane_b_no); /* direction is simply the cross product */
cross_v3_v3v3(plane_a_co_other, plane_a_no, r_isect_no);
add_v3_v3(plane_a_co_other, plane_a_co);
isect_line_plane_v3(r_isect_co, plane_a_co, plane_a_co_other, plane_b_co, plane_b_no, FALSE);
}
/* Adapted from the paper by Kasper Fauerby */
/* "Improved Collision detection and Response" */
static int getLowestRoot(const float a, const float b, const float c, const float maxR, float *root)
{
// Check if a solution exists
float determinant = b*b - 4.0f*a*c;
// If determinant is negative it means no solutions.
if (determinant >= 0.0f)
{
// calculate the two roots: (if determinant == 0 then
// x1==x2 but lets disregard that slight optimization)
float sqrtD = (float)sqrt(determinant);
float r1 = (-b - sqrtD) / (2.0f*a);
float r2 = (-b + sqrtD) / (2.0f*a);
// Sort so x1 <= x2
if (r1 > r2)
SWAP(float, r1, r2);
// Get lowest root:
if (r1 > 0.0f && r1 < maxR)
{
*root = r1;
return 1;
}
// It is possible that we want x2 - this can happen
// if x1 < 0
if (r2 > 0.0f && r2 < maxR)
{
*root = r2;
return 1;
}
}
// No (valid) solutions
return 0;
}
int isect_sweeping_sphere_tri_v3(
const float p1[3], const float p2[3], const float radius,
const float v0[3], const float v1[3], const float v2[3],
float *r_lambda, float ipoint[3])
{
float e1[3], e2[3], e3[3], point[3], vel[3], /*dist[3],*/ nor[3], temp[3], bv[3];
float a, b, c, d, e, x, y, z, radius2=radius*radius;
2011-01-08 12:43:44 +00:00
float elen2,edotv,edotbv,nordotv;
float newLambda;
int found_by_sweep=0;
sub_v3_v3v3(e1,v1,v0);
sub_v3_v3v3(e2,v2,v0);
sub_v3_v3v3(vel,p2,p1);
/*---test plane of tri---*/
cross_v3_v3v3(nor,e1,e2);
normalize_v3(nor);
/* flip normal */
if(dot_v3v3(nor,vel)>0.0f) negate_v3(nor);
a=dot_v3v3(p1,nor)-dot_v3v3(v0,nor);
nordotv=dot_v3v3(nor,vel);
if (fabsf(nordotv) < 0.000001f)
{
if(fabsf(a) >= radius) {
return 0;
}
}
else
{
float t0=(-a+radius)/nordotv;
float t1=(-a-radius)/nordotv;
if(t0>t1)
SWAP(float, t0, t1);
if(t0>1.0f || t1<0.0f) return 0;
/* clamp to [0,1] */
CLAMP(t0, 0.0f, 1.0f);
CLAMP(t1, 0.0f, 1.0f);
/*---test inside of tri---*/
/* plane intersection point */
point[0] = p1[0] + vel[0]*t0 - nor[0]*radius;
point[1] = p1[1] + vel[1]*t0 - nor[1]*radius;
point[2] = p1[2] + vel[2]*t0 - nor[2]*radius;
/* is the point in the tri? */
a=dot_v3v3(e1,e1);
b=dot_v3v3(e1,e2);
c=dot_v3v3(e2,e2);
sub_v3_v3v3(temp,point,v0);
d=dot_v3v3(temp,e1);
e=dot_v3v3(temp,e2);
x=d*c-e*b;
y=e*a-d*b;
z=x+y-(a*c-b*b);
if(z <= 0.0f && (x >= 0.0f && y >= 0.0f))
{
2012-02-27 10:35:39 +00:00
//(((unsigned int)z)& ~(((unsigned int)x)|((unsigned int)y))) & 0x80000000) {
*r_lambda=t0;
copy_v3_v3(ipoint,point);
return 1;
}
}
*r_lambda=1.0f;
/*---test points---*/
2011-01-08 12:43:44 +00:00
a=dot_v3v3(vel,vel);
/*v0*/
sub_v3_v3v3(temp,p1,v0);
b=2.0f*dot_v3v3(vel,temp);
c=dot_v3v3(temp,temp)-radius2;
if(getLowestRoot(a, b, c, *r_lambda, r_lambda))
{
copy_v3_v3(ipoint,v0);
found_by_sweep=1;
}
/*v1*/
sub_v3_v3v3(temp,p1,v1);
b=2.0f*dot_v3v3(vel,temp);
c=dot_v3v3(temp,temp)-radius2;
if(getLowestRoot(a, b, c, *r_lambda, r_lambda))
{
copy_v3_v3(ipoint,v1);
found_by_sweep=1;
}
/*v2*/
sub_v3_v3v3(temp,p1,v2);
b=2.0f*dot_v3v3(vel,temp);
c=dot_v3v3(temp,temp)-radius2;
if(getLowestRoot(a, b, c, *r_lambda, r_lambda))
{
copy_v3_v3(ipoint,v2);
found_by_sweep=1;
}
/*---test edges---*/
sub_v3_v3v3(e3,v2,v1); //wasnt yet calculated
/*e1*/
sub_v3_v3v3(bv,v0,p1);
elen2 = dot_v3v3(e1,e1);
edotv = dot_v3v3(e1,vel);
edotbv = dot_v3v3(e1,bv);
a=elen2*(-dot_v3v3(vel,vel))+edotv*edotv;
b=2.0f*(elen2*dot_v3v3(vel,bv)-edotv*edotbv);
c=elen2*(radius2-dot_v3v3(bv,bv))+edotbv*edotbv;
if(getLowestRoot(a, b, c, *r_lambda, &newLambda))
{
e=(edotv*newLambda-edotbv)/elen2;
if(e >= 0.0f && e <= 1.0f)
{
*r_lambda = newLambda;
copy_v3_v3(ipoint,e1);
mul_v3_fl(ipoint,e);
add_v3_v3(ipoint, v0);
found_by_sweep=1;
}
}
/*e2*/
/*bv is same*/
elen2 = dot_v3v3(e2,e2);
edotv = dot_v3v3(e2,vel);
edotbv = dot_v3v3(e2,bv);
a=elen2*(-dot_v3v3(vel,vel))+edotv*edotv;
b=2.0f*(elen2*dot_v3v3(vel,bv)-edotv*edotbv);
c=elen2*(radius2-dot_v3v3(bv,bv))+edotbv*edotbv;
if(getLowestRoot(a, b, c, *r_lambda, &newLambda))
{
e=(edotv*newLambda-edotbv)/elen2;
if(e >= 0.0f && e <= 1.0f)
{
*r_lambda = newLambda;
copy_v3_v3(ipoint,e2);
mul_v3_fl(ipoint,e);
add_v3_v3(ipoint, v0);
found_by_sweep=1;
}
}
/*e3*/
2011-01-08 12:43:44 +00:00
/* sub_v3_v3v3(bv,v0,p1); */ /* UNUSED */
/* elen2 = dot_v3v3(e1,e1); */ /* UNUSED */
/* edotv = dot_v3v3(e1,vel); */ /* UNUSED */
2011-01-06 01:29:13 +00:00
/* edotbv = dot_v3v3(e1,bv); */ /* UNUSED */
sub_v3_v3v3(bv,v1,p1);
elen2 = dot_v3v3(e3,e3);
edotv = dot_v3v3(e3,vel);
edotbv = dot_v3v3(e3,bv);
a=elen2*(-dot_v3v3(vel,vel))+edotv*edotv;
b=2.0f*(elen2*dot_v3v3(vel,bv)-edotv*edotbv);
c=elen2*(radius2-dot_v3v3(bv,bv))+edotbv*edotbv;
if(getLowestRoot(a, b, c, *r_lambda, &newLambda))
{
e=(edotv*newLambda-edotbv)/elen2;
if(e >= 0.0f && e <= 1.0f)
{
*r_lambda = newLambda;
copy_v3_v3(ipoint,e3);
mul_v3_fl(ipoint,e);
add_v3_v3(ipoint, v1);
found_by_sweep=1;
}
}
return found_by_sweep;
}
int isect_axial_line_tri_v3(const int axis, const float p1[3], const float p2[3],
const float v0[3], const float v1[3], const float v2[3], float *r_lambda)
{
float p[3], e1[3], e2[3];
float u, v, f;
int a0=axis, a1=(axis+1)%3, a2=(axis+2)%3;
//return isect_line_tri_v3(p1,p2,v0,v1,v2,lambda);
///* first a simple bounding box test */
//if(MIN3(v0[a1],v1[a1],v2[a1]) > p1[a1]) return 0;
//if(MIN3(v0[a2],v1[a2],v2[a2]) > p1[a2]) return 0;
//if(MAX3(v0[a1],v1[a1],v2[a1]) < p1[a1]) return 0;
//if(MAX3(v0[a2],v1[a2],v2[a2]) < p1[a2]) return 0;
///* then a full intersection test */
sub_v3_v3v3(e1,v1,v0);
sub_v3_v3v3(e2,v2,v0);
sub_v3_v3v3(p,v0,p1);
f= (e2[a1]*e1[a2]-e2[a2]*e1[a1]);
if ((f > -0.000001f) && (f < 0.000001f)) return 0;
v= (p[a2]*e1[a1]-p[a1]*e1[a2])/f;
if ((v < 0.0f)||(v > 1.0f)) return 0;
f= e1[a1];
2012-02-27 10:35:39 +00:00
if((f > -0.000001f) && (f < 0.000001f)) {
f= e1[a2];
if((f > -0.000001f) && (f < 0.000001f)) return 0;
u= (-p[a2]-v*e2[a2])/f;
}
else
u= (-p[a1]-v*e2[a1])/f;
if ((u < 0.0f) || ((u + v) > 1.0f)) return 0;
*r_lambda = (p[a0]+u*e1[a0]+v*e2[a0])/(p2[a0]-p1[a0]);
if ((*r_lambda < 0.0f) || (*r_lambda > 1.0f)) return 0;
return 1;
}
/* Returns the number of point of interests
* 0 - lines are colinear
* 1 - lines are coplanar, i1 is set to intersection
* 2 - i1 and i2 are the nearest points on line 1 (v1, v2) and line 2 (v3, v4) respectively
* */
int isect_line_line_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3], float i1[3], float i2[3])
{
float a[3], b[3], c[3], ab[3], cb[3], dir1[3], dir2[3];
float d;
sub_v3_v3v3(c, v3, v1);
sub_v3_v3v3(a, v2, v1);
sub_v3_v3v3(b, v4, v3);
2010-08-15 15:14:08 +00:00
normalize_v3_v3(dir1, a);
normalize_v3_v3(dir2, b);
d = dot_v3v3(dir1, dir2);
if (d == 1.0f || d == -1.0f) {
/* colinear */
return 0;
}
cross_v3_v3v3(ab, a, b);
d = dot_v3v3(c, ab);
/* test if the two lines are coplanar */
if (d > -0.000001f && d < 0.000001f) {
cross_v3_v3v3(cb, c, b);
mul_v3_fl(a, dot_v3v3(cb, ab) / dot_v3v3(ab, ab));
add_v3_v3v3(i1, v1, a);
copy_v3_v3(i2, i1);
return 1; /* one intersection only */
}
/* if not */
else {
float n[3], t[3];
float v3t[3], v4t[3];
sub_v3_v3v3(t, v1, v3);
/* offset between both plane where the lines lies */
cross_v3_v3v3(n, a, b);
project_v3_v3v3(t, t, n);
/* for the first line, offset the second line until it is coplanar */
add_v3_v3v3(v3t, v3, t);
add_v3_v3v3(v4t, v4, t);
sub_v3_v3v3(c, v3t, v1);
sub_v3_v3v3(a, v2, v1);
sub_v3_v3v3(b, v4t, v3t);
cross_v3_v3v3(ab, a, b);
cross_v3_v3v3(cb, c, b);
mul_v3_fl(a, dot_v3v3(cb, ab) / dot_v3v3(ab, ab));
add_v3_v3v3(i1, v1, a);
/* for the second line, just substract the offset from the first intersection point */
sub_v3_v3v3(i2, i1, t);
return 2; /* two nearest points */
}
}
/* Intersection point strictly between the two lines
* 0 when no intersection is found
* */
int isect_line_line_strict_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3], float vi[3], float *r_lambda)
{
float a[3], b[3], c[3], ab[3], cb[3], ca[3], dir1[3], dir2[3];
float d;
sub_v3_v3v3(c, v3, v1);
sub_v3_v3v3(a, v2, v1);
sub_v3_v3v3(b, v4, v3);
2010-08-15 15:14:08 +00:00
normalize_v3_v3(dir1, a);
normalize_v3_v3(dir2, b);
d = dot_v3v3(dir1, dir2);
if (d == 1.0f || d == -1.0f || d == 0) {
/* colinear or one vector is zero-length*/
return 0;
}
cross_v3_v3v3(ab, a, b);
d = dot_v3v3(c, ab);
/* test if the two lines are coplanar */
if (d > -0.000001f && d < 0.000001f) {
float f1, f2;
cross_v3_v3v3(cb, c, b);
cross_v3_v3v3(ca, c, a);
f1 = dot_v3v3(cb, ab) / dot_v3v3(ab, ab);
f2 = dot_v3v3(ca, ab) / dot_v3v3(ab, ab);
if (f1 >= 0 && f1 <= 1 &&
f2 >= 0 && f2 <= 1)
{
mul_v3_fl(a, f1);
add_v3_v3v3(vi, v1, a);
if (r_lambda) *r_lambda = f1;
return 1; /* intersection found */
}
else
{
return 0;
}
}
else
{
return 0;
}
}
int isect_aabb_aabb_v3(const float min1[3], const float max1[3], const float min2[3], const float max2[3])
{
return (min1[0]<max2[0] && min1[1]<max2[1] && min1[2]<max2[2] &&
min2[0]<max1[0] && min2[1]<max1[1] && min2[2]<max1[2]);
}
/* find closest point to p on line through l1,l2 and return lambda,
* where (0 <= lambda <= 1) when cp is in the line segement l1,l2
*/
float closest_to_line_v3(float cp[3], const float p[3], const float l1[3], const float l2[3])
{
float h[3],u[3],lambda;
sub_v3_v3v3(u, l2, l1);
sub_v3_v3v3(h, p, l1);
lambda = dot_v3v3(u,h)/dot_v3v3(u,u);
cp[0] = l1[0] + u[0] * lambda;
cp[1] = l1[1] + u[1] * lambda;
cp[2] = l1[2] + u[2] * lambda;
return lambda;
}
float closest_to_line_v2(float cp[2],const float p[2], const float l1[2], const float l2[2])
{
float h[2],u[2],lambda;
sub_v2_v2v2(u, l2, l1);
sub_v2_v2v2(h, p, l1);
lambda = dot_v2v2(u,h)/dot_v2v2(u,u);
cp[0] = l1[0] + u[0] * lambda;
cp[1] = l1[1] + u[1] * lambda;
return lambda;
}
/* little sister we only need to know lambda */
float line_point_factor_v3(const float p[3], const float l1[3], const float l2[3])
{
float h[3],u[3];
sub_v3_v3v3(u, l2, l1);
sub_v3_v3v3(h, p, l1);
return(dot_v3v3(u,h)/dot_v3v3(u,u));
}
float line_point_factor_v2(const float p[2], const float l1[2], const float l2[2])
{
float h[2], u[2];
sub_v2_v2v2(u, l2, l1);
sub_v2_v2v2(h, p, l1);
return(dot_v2v2(u, h)/dot_v2v2(u, u));
}
/* Similar to LineIntersectsTriangleUV, except it operates on a quad and in 2d, assumes point is in quad */
void isect_point_quad_uv_v2(const float v0[2], const float v1[2], const float v2[2], const float v3[2], const float pt[2], float r_uv[2])
{
float x0,y0, x1,y1, wtot, v2d[2], w1, w2;
/* used for parallel lines */
float pt3d[3], l1[3], l2[3], pt_on_line[3];
/* compute 2 edges of the quad intersection point */
if (IsectLLPt2Df(v0[0],v0[1],v1[0],v1[1], v2[0],v2[1],v3[0],v3[1], &x0,&y0) == 1) {
/* the intersection point between the quad-edge intersection and the point in the quad we want the uv's for */
/* should never be paralle !! */
/*printf("\tnot parallel 1\n");*/
IsectLLPt2Df(pt[0],pt[1],x0,y0, v0[0],v0[1],v3[0],v3[1], &x1,&y1);
/* Get the weights from the new intersection point, to each edge */
v2d[0] = x1-v0[0];
v2d[1] = y1-v0[1];
w1 = len_v2(v2d);
v2d[0] = x1-v3[0]; /* some but for the other vert */
v2d[1] = y1-v3[1];
w2 = len_v2(v2d);
wtot = w1+w2;
/*w1 = w1/wtot;*/
/*w2 = w2/wtot;*/
r_uv[0] = w1/wtot;
} else {
/* lines are parallel, lambda_cp_line_ex is 3d grrr */
/*printf("\tparallel1\n");*/
pt3d[0] = pt[0];
pt3d[1] = pt[1];
pt3d[2] = l1[2] = l2[2] = 0.0f;
l1[0] = v0[0]; l1[1] = v0[1];
l2[0] = v1[0]; l2[1] = v1[1];
closest_to_line_v3(pt_on_line,pt3d, l1, l2);
v2d[0] = pt[0]-pt_on_line[0]; /* same, for the other vert */
v2d[1] = pt[1]-pt_on_line[1];
w1 = len_v2(v2d);
l1[0] = v2[0]; l1[1] = v2[1];
l2[0] = v3[0]; l2[1] = v3[1];
closest_to_line_v3(pt_on_line,pt3d, l1, l2);
v2d[0] = pt[0]-pt_on_line[0]; /* same, for the other vert */
v2d[1] = pt[1]-pt_on_line[1];
w2 = len_v2(v2d);
wtot = w1+w2;
r_uv[0] = w1/wtot;
}
/* Same as above to calc the uv[1] value, alternate calculation */
if (IsectLLPt2Df(v0[0],v0[1],v3[0],v3[1], v1[0],v1[1],v2[0],v2[1], &x0,&y0) == 1) { /* was v0,v1 v2,v3 now v0,v3 v1,v2*/
/* never paralle if above was not */
/*printf("\tnot parallel2\n");*/
IsectLLPt2Df(pt[0],pt[1],x0,y0, v0[0],v0[1],v1[0],v1[1], &x1,&y1);/* was v0,v3 now v0,v1*/
v2d[0] = x1-v0[0];
v2d[1] = y1-v0[1];
w1 = len_v2(v2d);
v2d[0] = x1-v1[0];
v2d[1] = y1-v1[1];
w2 = len_v2(v2d);
wtot = w1+w2;
r_uv[1] = w1/wtot;
} else {
/* lines are parallel, lambda_cp_line_ex is 3d grrr */
/*printf("\tparallel2\n");*/
pt3d[0] = pt[0];
pt3d[1] = pt[1];
pt3d[2] = l1[2] = l2[2] = 0.0f;
l1[0] = v0[0]; l1[1] = v0[1];
l2[0] = v3[0]; l2[1] = v3[1];
closest_to_line_v3(pt_on_line,pt3d, l1, l2);
v2d[0] = pt[0]-pt_on_line[0]; /* some but for the other vert */
v2d[1] = pt[1]-pt_on_line[1];
w1 = len_v2(v2d);
l1[0] = v1[0]; l1[1] = v1[1];
l2[0] = v2[0]; l2[1] = v2[1];
closest_to_line_v3(pt_on_line,pt3d, l1, l2);
v2d[0] = pt[0]-pt_on_line[0]; /* some but for the other vert */
v2d[1] = pt[1]-pt_on_line[1];
w2 = len_v2(v2d);
wtot = w1+w2;
r_uv[1] = w1/wtot;
}
/* may need to flip UV's here */
}
/* same as above but does tri's and quads, tri's are a bit of a hack */
void isect_point_face_uv_v2(const int isquad, const float v0[2], const float v1[2], const float v2[2], const float v3[2], const float pt[2], float r_uv[2])
{
if (isquad) {
isect_point_quad_uv_v2(v0, v1, v2, v3, pt, r_uv);
}
else {
/* not for quads, use for our abuse of LineIntersectsTriangleUV */
float p1_3d[3], p2_3d[3], v0_3d[3], v1_3d[3], v2_3d[3], lambda;
p1_3d[0] = p2_3d[0] = r_uv[0];
p1_3d[1] = p2_3d[1] = r_uv[1];
p1_3d[2] = 1.0f;
p2_3d[2] = -1.0f;
v0_3d[2] = v1_3d[2] = v2_3d[2] = 0.0;
/* generate a new fuv, (this is possibly a non optimal solution,
* since we only need 2d calculation but use 3d func's)
*
* this method makes an imaginary triangle in 2d space using the UV's from the derived mesh face
* Then find new uv coords using the fuv and this face with LineIntersectsTriangleUV.
* This means the new values will be correct in relation to the derived meshes face.
*/
copy_v2_v2(v0_3d, v0);
copy_v2_v2(v1_3d, v1);
copy_v2_v2(v2_3d, v2);
/* Doing this in 3D is not nice */
isect_line_tri_v3(p1_3d, p2_3d, v0_3d, v1_3d, v2_3d, &lambda, r_uv);
}
}
#if 0 // XXX this version used to be used in isect_point_tri_v2_int() and was called IsPointInTri2D
int isect_point_tri_v2(float pt[2], float v1[2], float v2[2], float v3[2])
{
float inp1, inp2, inp3;
inp1= (v2[0]-v1[0])*(v1[1]-pt[1]) + (v1[1]-v2[1])*(v1[0]-pt[0]);
inp2= (v3[0]-v2[0])*(v2[1]-pt[1]) + (v2[1]-v3[1])*(v2[0]-pt[0]);
inp3= (v1[0]-v3[0])*(v3[1]-pt[1]) + (v3[1]-v1[1])*(v3[0]-pt[0]);
if(inp1<=0.0f && inp2<=0.0f && inp3<=0.0f) return 1;
if(inp1>=0.0f && inp2>=0.0f && inp3>=0.0f) return 1;
return 0;
}
#endif
#if 0
int isect_point_tri_v2(float v0[2], float v1[2], float v2[2], float pt[2])
{
/* not for quads, use for our abuse of LineIntersectsTriangleUV */
float p1_3d[3], p2_3d[3], v0_3d[3], v1_3d[3], v2_3d[3];
/* not used */
float lambda, uv[3];
p1_3d[0] = p2_3d[0] = uv[0]= pt[0];
p1_3d[1] = p2_3d[1] = uv[1]= uv[2]= pt[1];
p1_3d[2] = 1.0f;
p2_3d[2] = -1.0f;
v0_3d[2] = v1_3d[2] = v2_3d[2] = 0.0;
/* generate a new fuv, (this is possibly a non optimal solution,
* since we only need 2d calculation but use 3d func's)
*
* this method makes an imaginary triangle in 2d space using the UV's from the derived mesh face
* Then find new uv coords using the fuv and this face with LineIntersectsTriangleUV.
* This means the new values will be correct in relation to the derived meshes face.
*/
copy_v2_v2(v0_3d, v0);
copy_v2_v2(v1_3d, v1);
copy_v2_v2(v2_3d, v2);
/* Doing this in 3D is not nice */
return isect_line_tri_v3(p1_3d, p2_3d, v0_3d, v1_3d, v2_3d, &lambda, uv);
}
#endif
/*
* x1,y2
* | \
* | \ .(a,b)
* | \
* x1,y1-- x2,y1
*/
int isect_point_tri_v2_int(const int x1, const int y1, const int x2, const int y2, const int a, const int b)
{
float v1[2], v2[2], v3[2], p[2];
v1[0]= (float)x1;
v1[1]= (float)y1;
v2[0]= (float)x1;
v2[1]= (float)y2;
v3[0]= (float)x2;
v3[1]= (float)y1;
p[0]= (float)a;
p[1]= (float)b;
return isect_point_tri_v2(p, v1, v2, v3);
}
static int point_in_slice(const float p[3], const float v1[3], const float l1[3], const float l2[3])
{
/*
* what is a slice ?
* some maths:
* a line including l1,l2 and a point not on the line
* define a subset of R3 delimeted by planes parallel to the line and orthogonal
* to the (point --> line) distance vector,one plane on the line one on the point,
* the room inside usually is rather small compared to R3 though still infinte
* useful for restricting (speeding up) searches
* e.g. all points of triangular prism are within the intersection of 3 'slices'
* onother trivial case : cube
* but see a 'spat' which is a deformed cube with paired parallel planes needs only 3 slices too
*/
float h,rp[3],cp[3],q[3];
closest_to_line_v3(cp,v1,l1,l2);
sub_v3_v3v3(q,cp,v1);
sub_v3_v3v3(rp,p,v1);
h=dot_v3v3(q,rp)/dot_v3v3(q,q);
if (h < 0.0f || h > 1.0f) return 0;
return 1;
}
#if 0
/* adult sister defining the slice planes by the origin and the normal
* NOTE |normal| may not be 1 but defining the thickness of the slice */
static int point_in_slice_as(float p[3],float origin[3],float normal[3])
{
float h,rp[3];
sub_v3_v3v3(rp,p,origin);
h=dot_v3v3(normal,rp)/dot_v3v3(normal,normal);
if (h < 0.0f || h > 1.0f) return 0;
return 1;
}
/*mama (knowing the squared length of the normal)*/
static int point_in_slice_m(float p[3],float origin[3],float normal[3],float lns)
{
float h,rp[3];
sub_v3_v3v3(rp,p,origin);
h=dot_v3v3(normal,rp)/lns;
if (h < 0.0f || h > 1.0f) return 0;
return 1;
}
#endif
int isect_point_tri_prism_v3(const float p[3], const float v1[3], const float v2[3], const float v3[3])
{
if(!point_in_slice(p,v1,v2,v3)) return 0;
if(!point_in_slice(p,v2,v3,v1)) return 0;
if(!point_in_slice(p,v3,v1,v2)) return 0;
return 1;
}
int clip_line_plane(float p1[3], float p2[3], const float plane[4])
{
float dp[3], n[3], div, t, pc[3];
copy_v3_v3(n, plane);
sub_v3_v3v3(dp, p2, p1);
div= dot_v3v3(dp, n);
if(div == 0.0f) /* parallel */
return 1;
t= -(dot_v3v3(p1, n) + plane[3])/div;
if(div > 0.0f) {
/* behind plane, completely clipped */
if(t >= 1.0f) {
zero_v3(p1);
zero_v3(p2);
return 0;
}
/* intersect plane */
if(t > 0.0f) {
madd_v3_v3v3fl(pc, p1, dp, t);
copy_v3_v3(p1, pc);
return 1;
}
return 1;
}
else {
/* behind plane, completely clipped */
if(t <= 0.0f) {
zero_v3(p1);
zero_v3(p2);
return 0;
}
/* intersect plane */
if(t < 1.0f) {
madd_v3_v3v3fl(pc, p1, dp, t);
copy_v3_v3(p2, pc);
return 1;
}
return 1;
}
}
void plot_line_v2v2i(const int p1[2], const int p2[2], int (*callback)(int, int, void *), void *userData)
{
int x1= p1[0];
int y1= p1[1];
int x2= p2[0];
int y2= p2[1];
signed char ix;
signed char iy;
// if x1 == x2 or y1 == y2, then it does not matter what we set here
int delta_x = (x2 > x1?(ix = 1, x2 - x1):(ix = -1, x1 - x2)) << 1;
int delta_y = (y2 > y1?(iy = 1, y2 - y1):(iy = -1, y1 - y2)) << 1;
if(callback(x1, y1, userData) == 0) {
return;
}
if (delta_x >= delta_y) {
// error may go below zero
int error = delta_y - (delta_x >> 1);
while (x1 != x2) {
if (error >= 0) {
if (error || (ix > 0)) {
y1 += iy;
error -= delta_x;
}
// else do nothing
}
// else do nothing
x1 += ix;
error += delta_y;
2012-02-27 10:35:39 +00:00
if (callback(x1, y1, userData) == 0) {
return;
}
}
}
else {
// error may go below zero
int error = delta_x - (delta_y >> 1);
while (y1 != y2) {
if (error >= 0) {
if (error || (iy > 0)) {
x1 += ix;
error -= delta_y;
}
// else do nothing
}
// else do nothing
y1 += iy;
error += delta_x;
if(callback(x1, y1, userData) == 0) {
return;
}
}
}
}
/****************************** Interpolation ********************************/
/* get the 2 dominant axis values, 0==X, 1==Y, 2==Z */
void axis_dominant_v3(int *axis_a, int *axis_b, const float axis[3])
{
const float xn= fabsf(axis[0]);
const float yn= fabsf(axis[1]);
const float zn= fabsf(axis[2]);
if (zn >= xn && zn >= yn) { *axis_a= 0; *axis_b= 1; }
else if (yn >= xn && yn >= zn) { *axis_a= 0; *axis_b= 2; }
else { *axis_a= 1; *axis_b= 2; }
}
static float tri_signed_area(const float v1[3], const float v2[3], const float v3[3], const int i, const int j)
{
return 0.5f*((v1[i]-v2[i])*(v2[j]-v3[j]) + (v1[j]-v2[j])*(v3[i]-v2[i]));
}
static int barycentric_weights(const float v1[3], const float v2[3], const float v3[3], const float co[3], const float n[3], float w[3])
{
float a1, a2, a3, asum;
int i, j;
axis_dominant_v3(&i, &j, n);
a1= tri_signed_area(v2, v3, co, i, j);
a2= tri_signed_area(v3, v1, co, i, j);
a3= tri_signed_area(v1, v2, co, i, j);
asum= a1 + a2 + a3;
if (fabsf(asum) < FLT_EPSILON) {
/* zero area triangle */
w[0]= w[1]= w[2]= 1.0f/3.0f;
return 1;
}
asum= 1.0f/asum;
w[0]= a1*asum;
w[1]= a2*asum;
w[2]= a3*asum;
return 0;
}
void interp_weights_face_v3(float w[4], const float v1[3], const float v2[3], const float v3[3], const float v4[3], const float co[3])
{
float w2[3];
w[0]= w[1]= w[2]= w[3]= 0.0f;
/* first check for exact match */
if(equals_v3v3(co, v1))
w[0]= 1.0f;
else if(equals_v3v3(co, v2))
w[1]= 1.0f;
else if(equals_v3v3(co, v3))
w[2]= 1.0f;
else if(v4 && equals_v3v3(co, v4))
w[3]= 1.0f;
else {
/* otherwise compute barycentric interpolation weights */
float n1[3], n2[3], n[3];
int degenerate;
sub_v3_v3v3(n1, v1, v3);
if (v4) {
sub_v3_v3v3(n2, v2, v4);
}
else {
sub_v3_v3v3(n2, v2, v3);
}
cross_v3_v3v3(n, n1, n2);
/* OpenGL seems to split this way, so we do too */
if (v4) {
degenerate= barycentric_weights(v1, v2, v4, co, n, w);
SWAP(float, w[2], w[3]);
if(degenerate || (w[0] < 0.0f)) {
/* if w[1] is negative, co is on the other side of the v1-v3 edge,
* so we interpolate using the other triangle */
degenerate= barycentric_weights(v2, v3, v4, co, n, w2);
if(!degenerate) {
w[0]= 0.0f;
w[1]= w2[0];
w[2]= w2[1];
w[3]= w2[2];
}
}
}
else
barycentric_weights(v1, v2, v3, co, n, w);
}
}
/* used by projection painting
* note: using area_tri_signed_v2 means locations outside the triangle are correctly weighted */
void barycentric_weights_v2(const float v1[2], const float v2[2], const float v3[2], const float co[2], float w[3])
{
float wtot_inv, wtot;
w[0] = area_tri_signed_v2(v2, v3, co);
w[1] = area_tri_signed_v2(v3, v1, co);
w[2] = area_tri_signed_v2(v1, v2, co);
wtot = w[0]+w[1]+w[2];
if (wtot != 0.0f) {
wtot_inv = 1.0f/wtot;
w[0] = w[0]*wtot_inv;
w[1] = w[1]*wtot_inv;
w[2] = w[2]*wtot_inv;
}
else /* dummy values for zero area face */
w[0] = w[1] = w[2] = 1.0f/3.0f;
}
/* given 2 triangles in 3D space, and a point in relation to the first triangle.
* calculate the location of a point in relation to the second triangle.
* Useful for finding relative positions with geometry */
void barycentric_transform(float pt_tar[3], float const pt_src[3],
const float tri_tar_p1[3], const float tri_tar_p2[3], const float tri_tar_p3[3],
const float tri_src_p1[3], const float tri_src_p2[3], const float tri_src_p3[3])
{
/* this works by moving the source triangle so its normal is pointing on the Z
* axis where its barycentric wights can be calculated in 2D and its Z offset can
* be re-applied. The weights are applied directly to the targets 3D points and the
* z-depth is used to scale the targets normal as an offset.
* This saves transforming the target into its Z-Up orientation and back (which could also work) */
const float z_up[3] = {0, 0, 1};
float no_tar[3], no_src[3];
float quat_src[4];
float pt_src_xy[3];
float tri_xy_src[3][3];
float w_src[3];
float area_tar, area_src;
float z_ofs_src;
normal_tri_v3(no_tar, tri_tar_p1, tri_tar_p2, tri_tar_p3);
normal_tri_v3(no_src, tri_src_p1, tri_src_p2, tri_src_p3);
rotation_between_vecs_to_quat(quat_src, no_src, z_up);
normalize_qt(quat_src);
copy_v3_v3(pt_src_xy, pt_src);
copy_v3_v3(tri_xy_src[0], tri_src_p1);
copy_v3_v3(tri_xy_src[1], tri_src_p2);
copy_v3_v3(tri_xy_src[2], tri_src_p3);
/* make the source tri xy space */
mul_qt_v3(quat_src, pt_src_xy);
mul_qt_v3(quat_src, tri_xy_src[0]);
mul_qt_v3(quat_src, tri_xy_src[1]);
mul_qt_v3(quat_src, tri_xy_src[2]);
barycentric_weights_v2(tri_xy_src[0], tri_xy_src[1], tri_xy_src[2], pt_src_xy, w_src);
interp_v3_v3v3v3(pt_tar, tri_tar_p1, tri_tar_p2, tri_tar_p3, w_src);
area_tar= sqrtf(area_tri_v3(tri_tar_p1, tri_tar_p2, tri_tar_p3));
area_src= sqrtf(area_tri_v2(tri_xy_src[0], tri_xy_src[1], tri_xy_src[2]));
z_ofs_src= pt_src_xy[2] - tri_xy_src[0][2];
madd_v3_v3v3fl(pt_tar, pt_tar, no_tar, (z_ofs_src / area_src) * area_tar);
}
/* given an array with some invalid values this function interpolates valid values
* replacing the invalid ones */
int interp_sparse_array(float *array, int const list_size, const float skipval)
{
int found_invalid = 0;
int found_valid = 0;
int i;
for (i=0; i < list_size; i++) {
if(array[i] == skipval)
found_invalid= 1;
else
found_valid= 1;
}
if(found_valid==0) {
return -1;
}
else if (found_invalid==0) {
return 0;
}
else {
/* found invalid depths, interpolate */
float valid_last= skipval;
int valid_ofs= 0;
float *array_up= MEM_callocN(sizeof(float) * list_size, "interp_sparse_array up");
float *array_down= MEM_callocN(sizeof(float) * list_size, "interp_sparse_array up");
int *ofs_tot_up= MEM_callocN(sizeof(int) * list_size, "interp_sparse_array tup");
int *ofs_tot_down= MEM_callocN(sizeof(int) * list_size, "interp_sparse_array tdown");
for (i=0; i < list_size; i++) {
if(array[i] == skipval) {
array_up[i]= valid_last;
ofs_tot_up[i]= ++valid_ofs;
}
else {
valid_last= array[i];
valid_ofs= 0;
}
}
valid_last= skipval;
valid_ofs= 0;
for (i=list_size-1; i >= 0; i--) {
if(array[i] == skipval) {
array_down[i]= valid_last;
ofs_tot_down[i]= ++valid_ofs;
}
else {
valid_last= array[i];
valid_ofs= 0;
}
}
/* now blend */
for (i=0; i < list_size; i++) {
if(array[i] == skipval) {
if(array_up[i] != skipval && array_down[i] != skipval) {
array[i]= ((array_up[i] * ofs_tot_down[i]) + (array_down[i] * ofs_tot_up[i])) / (float)(ofs_tot_down[i] + ofs_tot_up[i]);
} else if (array_up[i] != skipval) {
array[i]= array_up[i];
} else if (array_down[i] != skipval) {
array[i]= array_down[i];
}
}
}
MEM_freeN(array_up);
MEM_freeN(array_down);
MEM_freeN(ofs_tot_up);
MEM_freeN(ofs_tot_down);
}
return 1;
}
/* Mean value weights - smooth interpolation weights for polygons with
* more than 3 vertices */
static float mean_value_half_tan(const float v1[3], const float v2[3], const float v3[3])
{
float d2[3], d3[3], cross[3], area, dot, len;
sub_v3_v3v3(d2, v2, v1);
sub_v3_v3v3(d3, v3, v1);
cross_v3_v3v3(cross, d2, d3);
area= len_v3(cross);
dot= dot_v3v3(d2, d3);
len= len_v3(d2)*len_v3(d3);
if(area == 0.0f)
return 0.0f;
else
return (len - dot)/area;
}
void interp_weights_poly_v3(float *w, float v[][3], const int n, const float co[3])
{
float totweight, t1, t2, len, *vmid, *vprev, *vnext;
int i;
totweight= 0.0f;
for(i=0; i<n; i++) {
vmid= v[i];
vprev= (i == 0)? v[n-1]: v[i-1];
vnext= (i == n-1)? v[0]: v[i+1];
t1= mean_value_half_tan(co, vprev, vmid);
t2= mean_value_half_tan(co, vmid, vnext);
len= len_v3v3(co, vmid);
w[i]= (t1+t2)/len;
totweight += w[i];
}
if(totweight != 0.0f)
for(i=0; i<n; i++)
w[i] /= totweight;
}
/* (x1,v1)(t1=0)------(x2,v2)(t2=1), 0<t<1 --> (x,v)(t) */
void interp_cubic_v3(float x[3], float v[3], const float x1[3], const float v1[3], const float x2[3], const float v2[3], const float t)
{
float a[3],b[3];
float t2= t*t;
float t3= t2*t;
/* cubic interpolation */
a[0]= v1[0] + v2[0] + 2*(x1[0] - x2[0]);
a[1]= v1[1] + v2[1] + 2*(x1[1] - x2[1]);
a[2]= v1[2] + v2[2] + 2*(x1[2] - x2[2]);
b[0]= -2*v1[0] - v2[0] - 3*(x1[0] - x2[0]);
b[1]= -2*v1[1] - v2[1] - 3*(x1[1] - x2[1]);
b[2]= -2*v1[2] - v2[2] - 3*(x1[2] - x2[2]);
x[0]= a[0]*t3 + b[0]*t2 + v1[0]*t + x1[0];
x[1]= a[1]*t3 + b[1]*t2 + v1[1]*t + x1[1];
x[2]= a[2]*t3 + b[2]*t2 + v1[2]*t + x1[2];
v[0]= 3*a[0]*t2 + 2*b[0]*t + v1[0];
v[1]= 3*a[1]*t2 + 2*b[1]*t + v1[1];
v[2]= 3*a[2]*t2 + 2*b[2]*t + v1[2];
}
/* unfortunately internal calculations have to be done at double precision to achieve correct/stable results. */
#define IS_ZERO(x) ((x>(-DBL_EPSILON) && x<DBL_EPSILON) ? 1 : 0)
/* Barycentric reverse */
void resolve_tri_uv(float r_uv[2], const float st[2], const float st0[2], const float st1[2], const float st2[2])
{
/* find UV such that
* t= u*t0 + v*t1 + (1-u-v)*t2
* u*(t0-t2) + v*(t1-t2)= t-t2 */
const double a= st0[0]-st2[0], b= st1[0]-st2[0];
const double c= st0[1]-st2[1], d= st1[1]-st2[1];
const double det= a*d - c*b;
if(IS_ZERO(det)==0) { /* det should never be zero since the determinant is the signed ST area of the triangle. */
const double x[]= {st[0]-st2[0], st[1]-st2[1]};
r_uv[0]= (float)((d*x[0] - b*x[1])/det);
r_uv[1]= (float)(((-c)*x[0] + a*x[1])/det);
} else zero_v2(r_uv);
}
/* bilinear reverse */
void resolve_quad_uv(float r_uv[2], const float st[2], const float st0[2], const float st1[2], const float st2[2], const float st3[2])
{
const double signed_area= (st0[0]*st1[1] - st0[1]*st1[0]) + (st1[0]*st2[1] - st1[1]*st2[0]) +
(st2[0]*st3[1] - st2[1]*st3[0]) + (st3[0]*st0[1] - st3[1]*st0[0]);
/* X is 2D cross product (determinant)
* A= (p0-p) X (p0-p3)*/
const double a= (st0[0]-st[0])*(st0[1]-st3[1]) - (st0[1]-st[1])*(st0[0]-st3[0]);
/* B= ( (p0-p) X (p1-p2) + (p1-p) X (p0-p3) ) / 2 */
const double b= 0.5 * ( ((st0[0]-st[0])*(st1[1]-st2[1]) - (st0[1]-st[1])*(st1[0]-st2[0])) +
((st1[0]-st[0])*(st0[1]-st3[1]) - (st1[1]-st[1])*(st0[0]-st3[0])) );
/* C = (p1-p) X (p1-p2) */
const double fC= (st1[0]-st[0])*(st1[1]-st2[1]) - (st1[1]-st[1])*(st1[0]-st2[0]);
const double denom= a - 2*b + fC;
// clear outputs
zero_v2(r_uv);
if(IS_ZERO(denom)!=0) {
const double fDen= a-fC;
if(IS_ZERO(fDen)==0)
r_uv[0]= (float)(a / fDen);
} else {
const double desc_sq= b*b - a*fC;
const double desc= sqrt(desc_sq<0.0?0.0:desc_sq);
const double s= signed_area>0 ? (-1.0) : 1.0;
r_uv[0]= (float)(( (a-b) + s * desc ) / denom);
}
/* find UV such that
* fST = (1-u)(1-v)*ST0 + u*(1-v)*ST1 + u*v*ST2 + (1-u)*v*ST3 */
{
const double denom_s= (1-r_uv[0])*(st0[0]-st3[0]) + r_uv[0]*(st1[0]-st2[0]);
const double denom_t= (1-r_uv[0])*(st0[1]-st3[1]) + r_uv[0]*(st1[1]-st2[1]);
int i= 0; double denom= denom_s;
if(fabs(denom_s)<fabs(denom_t)) {
i= 1;
denom=denom_t;
}
if(IS_ZERO(denom)==0)
r_uv[1]= (float) (( (1.0f-r_uv[0])*(st0[i]-st[i]) + r_uv[0]*(st1[i]-st[i]) ) / denom);
}
}
#undef IS_ZERO
/***************************** View & Projection *****************************/
void orthographic_m4(float matrix[][4], const float left, const float right, const float bottom, const float top, const float nearClip, const float farClip)
{
float Xdelta, Ydelta, Zdelta;
Xdelta = right - left;
Ydelta = top - bottom;
Zdelta = farClip - nearClip;
if (Xdelta == 0.0f || Ydelta == 0.0f || Zdelta == 0.0f) {
return;
}
unit_m4(matrix);
matrix[0][0] = 2.0f/Xdelta;
matrix[3][0] = -(right + left)/Xdelta;
matrix[1][1] = 2.0f/Ydelta;
matrix[3][1] = -(top + bottom)/Ydelta;
matrix[2][2] = -2.0f/Zdelta; /* note: negate Z */
matrix[3][2] = -(farClip + nearClip)/Zdelta;
}
void perspective_m4(float mat[4][4], const float left, const float right, const float bottom, const float top, const float nearClip, const float farClip)
{
float Xdelta, Ydelta, Zdelta;
Xdelta = right - left;
Ydelta = top - bottom;
Zdelta = farClip - nearClip;
if (Xdelta == 0.0f || Ydelta == 0.0f || Zdelta == 0.0f) {
return;
}
mat[0][0] = nearClip * 2.0f/Xdelta;
mat[1][1] = nearClip * 2.0f/Ydelta;
mat[2][0] = (right + left)/Xdelta; /* note: negate Z */
mat[2][1] = (top + bottom)/Ydelta;
mat[2][2] = -(farClip + nearClip)/Zdelta;
mat[2][3] = -1.0f;
mat[3][2] = (-2.0f * nearClip * farClip)/Zdelta;
mat[0][1] = mat[0][2] = mat[0][3] =
mat[1][0] = mat[1][2] = mat[1][3] =
mat[3][0] = mat[3][1] = mat[3][3] = 0.0;
}
/* translate a matrix created by orthographic_m4 or perspective_m4 in XY coords (used to jitter the view) */
void window_translate_m4(float winmat[][4], float perspmat[][4], const float x, const float y)
{
if(winmat[2][3] == -1.0f) {
/* in the case of a win-matrix, this means perspective always */
float v1[3];
float v2[3];
float len1, len2;
v1[0]= perspmat[0][0];
v1[1]= perspmat[1][0];
v1[2]= perspmat[2][0];
v2[0]= perspmat[0][1];
v2[1]= perspmat[1][1];
v2[2]= perspmat[2][1];
len1= (1.0f / len_v3(v1));
len2= (1.0f / len_v3(v2));
winmat[2][0] += len1 * winmat[0][0] * x;
winmat[2][1] += len2 * winmat[1][1] * y;
}
else {
winmat[3][0] += x;
winmat[3][1] += y;
}
}
static void i_multmatrix(float icand[][4], float Vm[][4])
{
int row, col;
float temp[4][4];
for(row=0 ; row<4 ; row++)
for(col=0 ; col<4 ; col++)
temp[row][col] = icand[row][0] * Vm[0][col]
+ icand[row][1] * Vm[1][col]
+ icand[row][2] * Vm[2][col]
+ icand[row][3] * Vm[3][col];
copy_m4_m4(Vm, temp);
}
void polarview_m4(float Vm[][4],float dist, float azimuth, float incidence, float twist)
{
unit_m4(Vm);
translate_m4(Vm,0.0, 0.0, -dist);
rotate_m4(Vm,'Z',-twist);
rotate_m4(Vm,'X',-incidence);
rotate_m4(Vm,'Z',-azimuth);
}
void lookat_m4(float mat[][4],float vx, float vy, float vz, float px, float py, float pz, float twist)
{
float sine, cosine, hyp, hyp1, dx, dy, dz;
float mat1[4][4]= MAT4_UNITY;
unit_m4(mat);
rotate_m4(mat, 'Z', -twist);
dx = px - vx;
dy = py - vy;
dz = pz - vz;
hyp = dx * dx + dz * dz; /* hyp squared */
hyp1 = (float)sqrt(dy*dy + hyp);
hyp = (float)sqrt(hyp); /* the real hyp */
if (hyp1 != 0.0f) { /* rotate X */
sine = -dy / hyp1;
cosine = hyp /hyp1;
} else {
sine = 0;
cosine = 1.0f;
}
mat1[1][1] = cosine;
mat1[1][2] = sine;
mat1[2][1] = -sine;
mat1[2][2] = cosine;
i_multmatrix(mat1, mat);
mat1[1][1] = mat1[2][2] = 1.0f; /* be careful here to reinit */
mat1[1][2] = mat1[2][1] = 0.0; /* those modified by the last */
/* paragraph */
if (hyp != 0.0f) { /* rotate Y */
sine = dx / hyp;
cosine = -dz / hyp;
} else {
sine = 0;
cosine = 1.0f;
}
mat1[0][0] = cosine;
mat1[0][2] = -sine;
mat1[2][0] = sine;
mat1[2][2] = cosine;
i_multmatrix(mat1, mat);
translate_m4(mat,-vx,-vy,-vz); /* translate viewpoint to origin */
}
int box_clip_bounds_m4(float boundbox[2][3], const float bounds[4], float winmat[4][4])
{
float mat[4][4], vec[4];
int a, fl, flag= -1;
copy_m4_m4(mat, winmat);
for(a=0; a<8; a++) {
vec[0]= (a & 1)? boundbox[0][0]: boundbox[1][0];
vec[1]= (a & 2)? boundbox[0][1]: boundbox[1][1];
vec[2]= (a & 4)? boundbox[0][2]: boundbox[1][2];
vec[3]= 1.0;
mul_m4_v4(mat, vec);
fl= 0;
if(bounds) {
if(vec[0] > bounds[1]*vec[3]) fl |= 1;
if(vec[0]< bounds[0]*vec[3]) fl |= 2;
if(vec[1] > bounds[3]*vec[3]) fl |= 4;
if(vec[1]< bounds[2]*vec[3]) fl |= 8;
}
else {
if(vec[0] < -vec[3]) fl |= 1;
if(vec[0] > vec[3]) fl |= 2;
if(vec[1] < -vec[3]) fl |= 4;
if(vec[1] > vec[3]) fl |= 8;
}
if(vec[2] < -vec[3]) fl |= 16;
if(vec[2] > vec[3]) fl |= 32;
flag &= fl;
if(flag==0) return 0;
}
return flag;
}
void box_minmax_bounds_m4(float min[3], float max[3], float boundbox[2][3], float mat[4][4])
{
float mn[3], mx[3], vec[3];
int a;
copy_v3_v3(mn, min);
copy_v3_v3(mx, max);
for(a=0; a<8; a++) {
vec[0]= (a & 1)? boundbox[0][0]: boundbox[1][0];
vec[1]= (a & 2)? boundbox[0][1]: boundbox[1][1];
vec[2]= (a & 4)? boundbox[0][2]: boundbox[1][2];
mul_m4_v3(mat, vec);
DO_MINMAX(vec, mn, mx);
}
copy_v3_v3(min, mn);
copy_v3_v3(max, mx);
}
/********************************** Mapping **********************************/
void map_to_tube(float *r_u, float *r_v, const float x, const float y, const float z)
{
float len;
*r_v = (z + 1.0f) / 2.0f;
len = sqrtf(x * x + y * y);
if(len > 0.0f) {
*r_u = (float)((1.0 - (atan2(x/len,y/len) / M_PI)) / 2.0);
}
else {
*r_v = *r_u = 0.0f; /* to avoid un-initialized variables */
}
}
void map_to_sphere(float *r_u, float *r_v, const float x, const float y, const float z)
{
float len;
len = sqrtf(x * x + y * y + z * z);
if(len > 0.0f) {
if(x==0.0f && y==0.0f) *r_u= 0.0f; /* othwise domain error */
else *r_u = (1.0f - atan2f(x,y) / (float)M_PI) / 2.0f;
*r_v = 1.0f - (float)saacos(z/len)/(float)M_PI;
}
else {
*r_v = *r_u = 0.0f; /* to avoid un-initialized variables */
}
}
/********************************* Normals **********************************/
void accumulate_vertex_normals(float n1[3], float n2[3], float n3[3],
float n4[3], const float f_no[3], const float co1[3], const float co2[3],
const float co3[3], const float co4[3])
{
float vdiffs[4][3];
const int nverts= (n4!=NULL && co4!=NULL)? 4: 3;
/* compute normalized edge vectors */
sub_v3_v3v3(vdiffs[0], co2, co1);
sub_v3_v3v3(vdiffs[1], co3, co2);
if(nverts==3) {
sub_v3_v3v3(vdiffs[2], co1, co3);
}
else {
sub_v3_v3v3(vdiffs[2], co4, co3);
sub_v3_v3v3(vdiffs[3], co1, co4);
normalize_v3(vdiffs[3]);
}
normalize_v3(vdiffs[0]);
normalize_v3(vdiffs[1]);
normalize_v3(vdiffs[2]);
/* accumulate angle weighted face normal */
{
float *vn[]= {n1, n2, n3, n4};
const float *prev_edge = vdiffs[nverts-1];
int i;
for(i=0; i<nverts; i++) {
const float *cur_edge= vdiffs[i];
const float fac= saacos(-dot_v3v3(cur_edge, prev_edge));
// accumulate
madd_v3_v3fl(vn[i], f_no, fac);
prev_edge = cur_edge;
}
}
}
/* Add weighted face normal component into normals of the face vertices.
* Caller must pass pre-allocated vdiffs of nverts length. */
void accumulate_vertex_normals_poly(float **vertnos, float polyno[3],
float **vertcos, float vdiffs[][3], int nverts)
{
int i;
/* calculate normalized edge directions for each edge in the poly */
for (i = 0; i < nverts; i++) {
sub_v3_v3v3(vdiffs[i], vertcos[(i+1) % nverts], vertcos[i]);
normalize_v3(vdiffs[i]);
}
/* accumulate angle weighted face normal */
{
const float *prev_edge = vdiffs[nverts-1];
int i;
for(i=0; i<nverts; i++) {
const float *cur_edge = vdiffs[i];
/* calculate angle between the two poly edges incident on
* this vertex */
const float fac= saacos(-dot_v3v3(cur_edge, prev_edge));
/* accumulate */
madd_v3_v3fl(vertnos[i], polyno, fac);
prev_edge = cur_edge;
}
}
}
/********************************* Tangents **********************************/
/* For normal map tangents we need to detect uv boundaries, and only average
* tangents in case the uvs are connected. Alternative would be to store 1
* tangent per face rather than 4 per face vertex, but that's not compatible
* with games */
/* from BKE_mesh.h */
#define STD_UV_CONNECT_LIMIT 0.0001f
void sum_or_add_vertex_tangent(void *arena, VertexTangent **vtang, const float tang[3], const float uv[2])
{
VertexTangent *vt;
/* find a tangent with connected uvs */
for(vt= *vtang; vt; vt=vt->next) {
if(fabsf(uv[0]-vt->uv[0]) < STD_UV_CONNECT_LIMIT && fabsf(uv[1]-vt->uv[1]) < STD_UV_CONNECT_LIMIT) {
add_v3_v3(vt->tang, tang);
return;
}
}
/* if not found, append a new one */
vt= BLI_memarena_alloc((MemArena *)arena, sizeof(VertexTangent));
copy_v3_v3(vt->tang, tang);
vt->uv[0]= uv[0];
vt->uv[1]= uv[1];
if(*vtang)
vt->next= *vtang;
*vtang= vt;
}
float *find_vertex_tangent(VertexTangent *vtang, const float uv[2])
{
VertexTangent *vt;
static float nulltang[3] = {0.0f, 0.0f, 0.0f};
for(vt= vtang; vt; vt=vt->next)
if(fabsf(uv[0]-vt->uv[0]) < STD_UV_CONNECT_LIMIT && fabsf(uv[1]-vt->uv[1]) < STD_UV_CONNECT_LIMIT)
return vt->tang;
return nulltang; /* shouldn't happen, except for nan or so */
}
void tangent_from_uv(float uv1[2], float uv2[2], float uv3[3], float co1[3], float co2[3], float co3[3], float n[3], float tang[3])
{
float s1= uv2[0] - uv1[0];
float s2= uv3[0] - uv1[0];
float t1= uv2[1] - uv1[1];
float t2= uv3[1] - uv1[1];
float det= (s1 * t2 - s2 * t1);
if(det != 0.0f) { /* otherwise 'tang' becomes nan */
float tangv[3], ct[3], e1[3], e2[3];
det= 1.0f/det;
/* normals in render are inversed... */
sub_v3_v3v3(e1, co1, co2);
sub_v3_v3v3(e2, co1, co3);
tang[0] = (t2*e1[0] - t1*e2[0])*det;
tang[1] = (t2*e1[1] - t1*e2[1])*det;
tang[2] = (t2*e1[2] - t1*e2[2])*det;
tangv[0] = (s1*e2[0] - s2*e1[0])*det;
tangv[1] = (s1*e2[1] - s2*e1[1])*det;
tangv[2] = (s1*e2[2] - s2*e1[2])*det;
cross_v3_v3v3(ct, tang, tangv);
/* check flip */
if (dot_v3v3(ct, n) < 0.0f) {
negate_v3(tang);
}
}
else {
2010-02-12 14:46:04 +00:00
tang[0]= tang[1]= tang[2]= 0.0;
}
}
/****************************** Vector Clouds ********************************/
/* vector clouds */
/* void vcloud_estimate_transform(int list_size, float (*pos)[3], float *weight,float (*rpos)[3], float *rweight,
* float lloc[3],float rloc[3],float lrot[3][3],float lscale[3][3])
*
* input
* (
* int list_size
* 4 lists as pointer to array[list_size]
* 1. current pos array of 'new' positions
* 2. current weight array of 'new'weights (may be NULL pointer if you have no weights )
* 3. reference rpos array of 'old' positions
* 4. reference rweight array of 'old'weights (may be NULL pointer if you have no weights )
* )
* output
* (
* float lloc[3] center of mass pos
* float rloc[3] center of mass rpos
* float lrot[3][3] rotation matrix
* float lscale[3][3] scale matrix
* pointers may be NULL if not needed
* )
*/
/* can't believe there is none in math utils */
static float _det_m3(float m2[3][3])
{
float det = 0.f;
2012-02-27 10:35:39 +00:00
if (m2) {
det= m2[0][0]* (m2[1][1]*m2[2][2] - m2[1][2]*m2[2][1])
-m2[1][0]* (m2[0][1]*m2[2][2] - m2[0][2]*m2[2][1])
+m2[2][0]* (m2[0][1]*m2[1][2] - m2[0][2]*m2[1][1]);
}
return det;
}
void vcloud_estimate_transform(int list_size, float (*pos)[3], float *weight,float (*rpos)[3], float *rweight,
float lloc[3],float rloc[3],float lrot[3][3],float lscale[3][3])
{
float accu_com[3]= {0.0f,0.0f,0.0f}, accu_rcom[3]= {0.0f,0.0f,0.0f};
float accu_weight = 0.0f,accu_rweight = 0.0f,eps = 0.000001f;
int a;
/* first set up a nice default response */
if (lloc) zero_v3(lloc);
if (rloc) zero_v3(rloc);
if (lrot) unit_m3(lrot);
if (lscale) unit_m3(lscale);
/* do com for both clouds */
if (pos && rpos && (list_size > 0)) /* paranoya check */
{
/* do com for both clouds */
2012-02-27 10:35:39 +00:00
for(a=0; a<list_size; a++) {
if (weight) {
float v[3];
copy_v3_v3(v,pos[a]);
mul_v3_fl(v,weight[a]);
add_v3_v3(accu_com, v);
accu_weight +=weight[a];
}
else add_v3_v3(accu_com, pos[a]);
2012-02-27 10:35:39 +00:00
if (rweight) {
float v[3];
copy_v3_v3(v,rpos[a]);
mul_v3_fl(v,rweight[a]);
add_v3_v3(accu_rcom, v);
accu_rweight +=rweight[a];
}
else add_v3_v3(accu_rcom, rpos[a]);
}
2012-02-27 10:35:39 +00:00
if (!weight || !rweight) {
accu_weight = accu_rweight = list_size;
}
mul_v3_fl(accu_com,1.0f/accu_weight);
mul_v3_fl(accu_rcom,1.0f/accu_rweight);
if (lloc) copy_v3_v3(lloc,accu_com);
if (rloc) copy_v3_v3(rloc,accu_rcom);
2012-02-27 10:35:39 +00:00
if (lrot || lscale) { /* caller does not want rot nor scale, strange but legal */
/*so now do some reverse engeneering and see if we can split rotation from scale ->Polardecompose*/
/* build 'projection' matrix */
float m[3][3],mr[3][3],q[3][3],qi[3][3];
float va[3],vb[3],stunt[3];
float odet,ndet;
int i=0,imax=15;
zero_m3(m);
zero_m3(mr);
/* build 'projection' matrix */
2012-02-27 10:35:39 +00:00
for(a=0; a<list_size; a++) {
sub_v3_v3v3(va,rpos[a],accu_rcom);
/* mul_v3_fl(va,bp->mass); mass needs renormalzation here ?? */
sub_v3_v3v3(vb,pos[a],accu_com);
/* mul_v3_fl(va,rp->mass); */
m[0][0] += va[0] * vb[0];
m[0][1] += va[0] * vb[1];
m[0][2] += va[0] * vb[2];
m[1][0] += va[1] * vb[0];
m[1][1] += va[1] * vb[1];
m[1][2] += va[1] * vb[2];
m[2][0] += va[2] * vb[0];
m[2][1] += va[2] * vb[1];
m[2][2] += va[2] * vb[2];
/* building the referenc matrix on the fly
* needed to scale properly later */
mr[0][0] += va[0] * va[0];
mr[0][1] += va[0] * va[1];
mr[0][2] += va[0] * va[2];
mr[1][0] += va[1] * va[0];
mr[1][1] += va[1] * va[1];
mr[1][2] += va[1] * va[2];
mr[2][0] += va[2] * va[0];
mr[2][1] += va[2] * va[1];
mr[2][2] += va[2] * va[2];
}
copy_m3_m3(q,m);
stunt[0] = q[0][0]; stunt[1] = q[1][1]; stunt[2] = q[2][2];
/* renormalizing for numeric stability */
mul_m3_fl(q,1.f/len_v3(stunt));
/* this is pretty much Polardecompose 'inline' the algo based on Higham's thesis */
/* without the far case ... but seems to work here pretty neat */
odet = 0.f;
ndet = _det_m3(q);
2012-02-27 10:35:39 +00:00
while((odet-ndet)*(odet-ndet) > eps && i<imax) {
invert_m3_m3(qi,q);
transpose_m3(qi);
add_m3_m3m3(q,q,qi);
mul_m3_fl(q,0.5f);
odet = ndet;
ndet = _det_m3(q);
i++;
}
2012-02-27 10:35:39 +00:00
if (i) {
float scale[3][3];
float irot[3][3];
if(lrot) copy_m3_m3(lrot,q);
invert_m3_m3(irot,q);
invert_m3_m3(qi,mr);
mul_m3_m3m3(q,m,qi);
mul_m3_m3m3(scale,irot,q);
if(lscale) copy_m3_m3(lscale,scale);
}
}
}
}
/******************************* Form Factor *********************************/
static void vec_add_dir(float r[3], const float v1[3], const float v2[3], const float fac)
{
r[0]= v1[0] + fac*(v2[0] - v1[0]);
r[1]= v1[1] + fac*(v2[1] - v1[1]);
r[2]= v1[2] + fac*(v2[2] - v1[2]);
}
static int ff_visible_quad(const float p[3], const float n[3], const float v0[3], const float v1[3], const float v2[3], float q0[3], float q1[3], float q2[3], float q3[3])
{
static const float epsilon = 1e-6f;
float c, sd[3];
c= dot_v3v3(n, p);
/* signed distances from the vertices to the plane. */
sd[0]= dot_v3v3(n, v0) - c;
sd[1]= dot_v3v3(n, v1) - c;
sd[2]= dot_v3v3(n, v2) - c;
if(fabsf(sd[0]) < epsilon) sd[0] = 0.0f;
if(fabsf(sd[1]) < epsilon) sd[1] = 0.0f;
if(fabsf(sd[2]) < epsilon) sd[2] = 0.0f;
if(sd[0] > 0) {
if(sd[1] > 0) {
if(sd[2] > 0) {
// +++
copy_v3_v3(q0, v0);
copy_v3_v3(q1, v1);
copy_v3_v3(q2, v2);
copy_v3_v3(q3, q2);
}
else if(sd[2] < 0) {
// ++-
copy_v3_v3(q0, v0);
copy_v3_v3(q1, v1);
vec_add_dir(q2, v1, v2, (sd[1]/(sd[1]-sd[2])));
vec_add_dir(q3, v0, v2, (sd[0]/(sd[0]-sd[2])));
}
else {
// ++0
copy_v3_v3(q0, v0);
copy_v3_v3(q1, v1);
copy_v3_v3(q2, v2);
copy_v3_v3(q3, q2);
}
}
else if(sd[1] < 0) {
if(sd[2] > 0) {
// +-+
copy_v3_v3(q0, v0);
vec_add_dir(q1, v0, v1, (sd[0]/(sd[0]-sd[1])));
vec_add_dir(q2, v1, v2, (sd[1]/(sd[1]-sd[2])));
copy_v3_v3(q3, v2);
}
else if(sd[2] < 0) {
// +--
copy_v3_v3(q0, v0);
vec_add_dir(q1, v0, v1, (sd[0]/(sd[0]-sd[1])));
vec_add_dir(q2, v0, v2, (sd[0]/(sd[0]-sd[2])));
copy_v3_v3(q3, q2);
}
else {
// +-0
copy_v3_v3(q0, v0);
vec_add_dir(q1, v0, v1, (sd[0]/(sd[0]-sd[1])));
copy_v3_v3(q2, v2);
copy_v3_v3(q3, q2);
}
}
else {
if(sd[2] > 0) {
// +0+
copy_v3_v3(q0, v0);
copy_v3_v3(q1, v1);
copy_v3_v3(q2, v2);
copy_v3_v3(q3, q2);
}
else if(sd[2] < 0) {
// +0-
copy_v3_v3(q0, v0);
copy_v3_v3(q1, v1);
vec_add_dir(q2, v0, v2, (sd[0]/(sd[0]-sd[2])));
copy_v3_v3(q3, q2);
}
else {
// +00
copy_v3_v3(q0, v0);
copy_v3_v3(q1, v1);
copy_v3_v3(q2, v2);
copy_v3_v3(q3, q2);
}
}
}
else if(sd[0] < 0) {
if(sd[1] > 0) {
if(sd[2] > 0) {
// -++
vec_add_dir(q0, v0, v1, (sd[0]/(sd[0]-sd[1])));
copy_v3_v3(q1, v1);
copy_v3_v3(q2, v2);
vec_add_dir(q3, v0, v2, (sd[0]/(sd[0]-sd[2])));
}
else if(sd[2] < 0) {
// -+-
vec_add_dir(q0, v0, v1, (sd[0]/(sd[0]-sd[1])));
copy_v3_v3(q1, v1);
vec_add_dir(q2, v1, v2, (sd[1]/(sd[1]-sd[2])));
copy_v3_v3(q3, q2);
}
else {
// -+0
vec_add_dir(q0, v0, v1, (sd[0]/(sd[0]-sd[1])));
copy_v3_v3(q1, v1);
copy_v3_v3(q2, v2);
copy_v3_v3(q3, q2);
}
}
else if(sd[1] < 0) {
if(sd[2] > 0) {
// --+
vec_add_dir(q0, v0, v2, (sd[0]/(sd[0]-sd[2])));
vec_add_dir(q1, v1, v2, (sd[1]/(sd[1]-sd[2])));
copy_v3_v3(q2, v2);
copy_v3_v3(q3, q2);
}
else if(sd[2] < 0) {
// ---
return 0;
}
else {
// --0
return 0;
}
}
else {
if(sd[2] > 0) {
// -0+
vec_add_dir(q0, v0, v2, (sd[0]/(sd[0]-sd[2])));
copy_v3_v3(q1, v1);
copy_v3_v3(q2, v2);
copy_v3_v3(q3, q2);
}
else if(sd[2] < 0) {
// -0-
return 0;
}
else {
// -00
return 0;
}
}
}
else {
if(sd[1] > 0) {
if(sd[2] > 0) {
// 0++
copy_v3_v3(q0, v0);
copy_v3_v3(q1, v1);
copy_v3_v3(q2, v2);
copy_v3_v3(q3, q2);
}
else if(sd[2] < 0) {
// 0+-
copy_v3_v3(q0, v0);
copy_v3_v3(q1, v1);
vec_add_dir(q2, v1, v2, (sd[1]/(sd[1]-sd[2])));
copy_v3_v3(q3, q2);
}
else {
// 0+0
copy_v3_v3(q0, v0);
copy_v3_v3(q1, v1);
copy_v3_v3(q2, v2);
copy_v3_v3(q3, q2);
}
}
else if(sd[1] < 0) {
if(sd[2] > 0) {
// 0-+
copy_v3_v3(q0, v0);
vec_add_dir(q1, v1, v2, (sd[1]/(sd[1]-sd[2])));
copy_v3_v3(q2, v2);
copy_v3_v3(q3, q2);
}
else if(sd[2] < 0) {
// 0--
return 0;
}
else {
// 0-0
return 0;
}
}
else {
if(sd[2] > 0) {
// 00+
copy_v3_v3(q0, v0);
copy_v3_v3(q1, v1);
copy_v3_v3(q2, v2);
copy_v3_v3(q3, q2);
}
else if(sd[2] < 0) {
// 00-
return 0;
}
else {
// 000
return 0;
}
}
}
return 1;
}
/* altivec optimization, this works, but is unused */
#if 0
#include <Accelerate/Accelerate.h>
typedef union {
vFloat v;
float f[4];
} vFloatResult;
static vFloat vec_splat_float(float val)
{
2012-02-27 10:35:39 +00:00
return (vFloat) {val, val, val, val};
}
static float ff_quad_form_factor(float *p, float *n, float *q0, float *q1, float *q2, float *q3)
{
vFloat vcos, rlen, vrx, vry, vrz, vsrx, vsry, vsrz, gx, gy, gz, vangle;
2012-02-27 10:35:39 +00:00
vUInt8 rotate = (vUInt8) {4,5,6,7,8,9,10,11,12,13,14,15,0,1,2,3};
vFloatResult vresult;
float result;
/* compute r* */
2012-02-27 10:35:39 +00:00
vrx = (vFloat) {q0[0], q1[0], q2[0], q3[0]} - vec_splat_float(p[0]);
vry = (vFloat) {q0[1], q1[1], q2[1], q3[1]} - vec_splat_float(p[1]);
vrz = (vFloat) {q0[2], q1[2], q2[2], q3[2]} - vec_splat_float(p[2]);
/* normalize r* */
rlen = vec_rsqrte(vrx*vrx + vry*vry + vrz*vrz + vec_splat_float(1e-16f));
vrx = vrx*rlen;
vry = vry*rlen;
vrz = vrz*rlen;
/* rotate r* for cross and dot */
vsrx= vec_perm(vrx, vrx, rotate);
vsry= vec_perm(vry, vry, rotate);
vsrz= vec_perm(vrz, vrz, rotate);
/* cross product */
gx = vsry*vrz - vsrz*vry;
gy = vsrz*vrx - vsrx*vrz;
gz = vsrx*vry - vsry*vrx;
/* normalize */
rlen = vec_rsqrte(gx*gx + gy*gy + gz*gz + vec_splat_float(1e-16f));
gx = gx*rlen;
gy = gy*rlen;
gz = gz*rlen;
/* angle */
vcos = vrx*vsrx + vry*vsry + vrz*vsrz;
vcos= vec_max(vec_min(vcos, vec_splat_float(1.0f)), vec_splat_float(-1.0f));
vangle= vacosf(vcos);
/* dot */
vresult.v = (vec_splat_float(n[0])*gx +
vec_splat_float(n[1])*gy +
vec_splat_float(n[2])*gz)*vangle;
result= (vresult.f[0] + vresult.f[1] + vresult.f[2] + vresult.f[3])*(0.5f/(float)M_PI);
result= MAX2(result, 0.0f);
return result;
}
#endif
/* SSE optimization, acos code doesn't work */
#if 0
#include <xmmintrin.h>
static __m128 sse_approx_acos(__m128 x)
{
/* needs a better approximation than taylor expansion of acos, since that
* gives big erros for near 1.0 values, sqrt(2*x)*acos(1-x) should work
* better, see http://www.tom.womack.net/projects/sse-fast-arctrig.html */
return _mm_set_ps1(1.0f);
}
static float ff_quad_form_factor(float *p, float *n, float *q0, float *q1, float *q2, float *q3)
{
float r0[3], r1[3], r2[3], r3[3], g0[3], g1[3], g2[3], g3[3];
float a1, a2, a3, a4, dot1, dot2, dot3, dot4, result;
float fresult[4] __attribute__((aligned(16)));
__m128 qx, qy, qz, rx, ry, rz, rlen, srx, sry, srz, gx, gy, gz, glen, rcos, angle, aresult;
/* compute r */
qx = _mm_set_ps(q3[0], q2[0], q1[0], q0[0]);
qy = _mm_set_ps(q3[1], q2[1], q1[1], q0[1]);
qz = _mm_set_ps(q3[2], q2[2], q1[2], q0[2]);
rx = qx - _mm_set_ps1(p[0]);
ry = qy - _mm_set_ps1(p[1]);
rz = qz - _mm_set_ps1(p[2]);
/* normalize r */
rlen = _mm_rsqrt_ps(rx*rx + ry*ry + rz*rz + _mm_set_ps1(1e-16f));
rx = rx*rlen;
ry = ry*rlen;
rz = rz*rlen;
/* cross product */
srx = _mm_shuffle_ps(rx, rx, _MM_SHUFFLE(0,3,2,1));
sry = _mm_shuffle_ps(ry, ry, _MM_SHUFFLE(0,3,2,1));
srz = _mm_shuffle_ps(rz, rz, _MM_SHUFFLE(0,3,2,1));
gx = sry*rz - srz*ry;
gy = srz*rx - srx*rz;
gz = srx*ry - sry*rx;
/* normalize g */
glen = _mm_rsqrt_ps(gx*gx + gy*gy + gz*gz + _mm_set_ps1(1e-16f));
gx = gx*glen;
gy = gy*glen;
gz = gz*glen;
/* compute angle */
rcos = rx*srx + ry*sry + rz*srz;
rcos= _mm_max_ps(_mm_min_ps(rcos, _mm_set_ps1(1.0f)), _mm_set_ps1(-1.0f));
angle = sse_approx_cos(rcos);
aresult = (_mm_set_ps1(n[0])*gx + _mm_set_ps1(n[1])*gy + _mm_set_ps1(n[2])*gz)*angle;
/* sum together */
result= (fresult[0] + fresult[1] + fresult[2] + fresult[3])*(0.5f/(float)M_PI);
result= MAX2(result, 0.0f);
return result;
}
#endif
static void ff_normalize(float n[3])
{
float d;
d= dot_v3v3(n, n);
if(d > 1.0e-35F) {
d= 1.0f/sqrtf(d);
n[0] *= d;
n[1] *= d;
n[2] *= d;
}
}
static float ff_quad_form_factor(const float p[3], const float n[3], const float q0[3], const float q1[3], const float q2[3], const float q3[3])
{
float r0[3], r1[3], r2[3], r3[3], g0[3], g1[3], g2[3], g3[3];
float a1, a2, a3, a4, dot1, dot2, dot3, dot4, result;
sub_v3_v3v3(r0, q0, p);
sub_v3_v3v3(r1, q1, p);
sub_v3_v3v3(r2, q2, p);
sub_v3_v3v3(r3, q3, p);
ff_normalize(r0);
ff_normalize(r1);
ff_normalize(r2);
ff_normalize(r3);
cross_v3_v3v3(g0, r1, r0); ff_normalize(g0);
cross_v3_v3v3(g1, r2, r1); ff_normalize(g1);
cross_v3_v3v3(g2, r3, r2); ff_normalize(g2);
cross_v3_v3v3(g3, r0, r3); ff_normalize(g3);
a1= saacosf(dot_v3v3(r0, r1));
a2= saacosf(dot_v3v3(r1, r2));
a3= saacosf(dot_v3v3(r2, r3));
a4= saacosf(dot_v3v3(r3, r0));
dot1= dot_v3v3(n, g0);
dot2= dot_v3v3(n, g1);
dot3= dot_v3v3(n, g2);
dot4= dot_v3v3(n, g3);
result= (a1*dot1 + a2*dot2 + a3*dot3 + a4*dot4)*0.5f/(float)M_PI;
result= MAX2(result, 0.0f);
return result;
}
float form_factor_hemi_poly(float p[3], float n[3], float v1[3], float v2[3], float v3[3], float v4[3])
{
/* computes how much hemisphere defined by point and normal is
* covered by a quad or triangle, cosine weighted */
float q0[3], q1[3], q2[3], q3[3], contrib= 0.0f;
if(ff_visible_quad(p, n, v1, v2, v3, q0, q1, q2, q3))
contrib += ff_quad_form_factor(p, n, q0, q1, q2, q3);
if(v4 && ff_visible_quad(p, n, v1, v3, v4, q0, q1, q2, q3))
contrib += ff_quad_form_factor(p, n, q0, q1, q2, q3);
return contrib;
}
/* evaluate if entire quad is a proper convex quad */
int is_quad_convex_v3(const float *v1, const float *v2, const float *v3, const float *v4)
{
float nor[3], nor1[3], nor2[3], vec[4][2];
int axis_a, axis_b;
/* define projection, do both trias apart, quad is undefined! */
normal_tri_v3(nor1, v1, v2, v3);
normal_tri_v3(nor2, v1, v3, v4);
add_v3_v3v3(nor, nor1, nor2);
axis_dominant_v3(&axis_a, &axis_b, nor);
vec[0][0]= v1[axis_a]; vec[0][1]= v1[axis_b];
vec[1][0]= v2[axis_a]; vec[1][1]= v2[axis_b];
vec[2][0]= v3[axis_a]; vec[2][1]= v3[axis_b];
vec[3][0]= v4[axis_a]; vec[3][1]= v4[axis_b];
/* linetests, the 2 diagonals have to instersect to be convex */
return (isect_line_line_v2(vec[0], vec[2], vec[1], vec[3]) > 0) ? 1 : 0;
}