This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/threads.c

798 lines
18 KiB
C
Raw Normal View History

/*
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
*
* The Original Code is Copyright (C) 2006 Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
2011-02-27 20:37:56 +00:00
/** \file blender/blenlib/intern/threads.c
* \ingroup bli
*/
2013-04-01 11:27:47 +00:00
#include <stdlib.h>
#include <errno.h>
#include <string.h>
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
#include "MEM_guardedalloc.h"
2013-04-01 11:27:47 +00:00
#include "BLI_listbase.h"
#include "BLI_gsqueue.h"
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
#include "BLI_threads.h"
#include "PIL_time.h"
/* for checking system threads - BLI_system_thread_count */
#ifdef WIN32
# include <windows.h>
# include <sys/timeb.h>
#elif defined(__APPLE__)
# include <sys/types.h>
# include <sys/sysctl.h>
#else
# include <unistd.h>
# include <sys/time.h>
#endif
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
#if defined(__APPLE__) && defined(_OPENMP) && (__GNUC__ == 4) && (__GNUC_MINOR__ == 2)
# define USE_APPLE_OMP_FIX
#endif
#ifdef USE_APPLE_OMP_FIX
/* ************** libgomp (Apple gcc 4.2.1) TLS bug workaround *************** */
extern pthread_key_t gomp_tls_key;
static void *thread_tls_data;
#endif
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
/* ********** basic thread control API ************
*
* Many thread cases have an X amount of jobs, and only an Y amount of
* threads are useful (typically amount of cpus)
*
* This code can be used to start a maximum amount of 'thread slots', which
* then can be filled in a loop with an idle timer.
*
* A sample loop can look like this (pseudo c);
*
* ListBase lb;
2012-05-27 19:40:36 +00:00
* int maxthreads = 2;
* int cont = 1;
*
* BLI_init_threads(&lb, do_something_func, maxthreads);
*
* while (cont) {
* if (BLI_available_threads(&lb) && !(escape loop event)) {
* // get new job (data pointer)
* // tag job 'processed
* BLI_insert_thread(&lb, job);
* }
* else PIL_sleep_ms(50);
*
* // find if a job is ready, this the do_something_func() should write in job somewhere
2012-05-27 19:40:36 +00:00
* cont = 0;
* for (go over all jobs)
* if (job is ready) {
* if (job was not removed) {
* BLI_remove_thread(&lb, job);
* }
* }
2012-05-27 19:40:36 +00:00
* else cont = 1;
* }
* // conditions to exit loop
* if (if escape loop event) {
2012-07-01 09:54:44 +00:00
* if (BLI_available_threadslots(&lb) == maxthreads)
* break;
* }
* }
*
* BLI_end_threads(&lb);
*
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
************************************************ */
static pthread_mutex_t _malloc_lock = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t _image_lock = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t _image_draw_lock = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t _viewer_lock = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t _custom1_lock = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t _rcache_lock = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t _opengl_lock = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t _nodes_lock = PTHREAD_MUTEX_INITIALIZER;
Camera tracking integration =========================== Commiting camera tracking integration gsoc project into trunk. This commit includes: - Bundled version of libmv library (with some changes against official repo, re-sync with libmv repo a bit later) - New datatype ID called MovieClip which is optimized to work with movie clips (both of movie files and image sequences) and doing camera/motion tracking operations. - New editor called Clip Editor which is currently used for motion/tracking stuff only, but which can be easily extended to work with masks too. This editor supports: * Loading movie files/image sequences * Build proxies with different size for loaded movie clip, also supports building undistorted proxies to increase speed of playback in undistorted mode. * Manual lens distortion mode calibration using grid and grease pencil * Supervised 2D tracking using two different algorithms KLT and SAD. * Basic algorithm for feature detection * Camera motion solving. scene orientation - New constraints to "link" scene objects with solved motions from clip: * Follow Track (make object follow 2D motion of track with given name or parent object to reconstructed 3D position of track) * Camera Solver to make camera moving in the same way as reconstructed camera This commit NOT includes changes from tomato branch: - New nodes (they'll be commited as separated patch) - Automatic image offset guessing for image input node and image editor (need to do more tests and gather more feedback) - Code cleanup in libmv-capi. It's not so critical cleanup, just increasing readability and understanadability of code. Better to make this chaneg when Keir will finish his current patch. More details about this project can be found on this page: http://wiki.blender.org/index.php/User:Nazg-gul/GSoC-2011 Further development of small features would be done in trunk, bigger/experimental features would first be implemented in tomato branch.
2011-11-07 12:55:18 +00:00
static pthread_mutex_t _movieclip_lock = PTHREAD_MUTEX_INITIALIZER;
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 10:05:07 +00:00
static pthread_mutex_t _colormanage_lock = PTHREAD_MUTEX_INITIALIZER;
static pthread_t mainid;
static int thread_levels = 0; /* threads can be invoked inside threads */
static int num_threads_override = 0;
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
/* just a max for security reasons */
#define RE_MAX_THREAD BLENDER_MAX_THREADS
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
typedef struct ThreadSlot {
struct ThreadSlot *next, *prev;
void *(*do_thread)(void *);
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
void *callerdata;
pthread_t pthread;
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
int avail;
} ThreadSlot;
Render & Compositing Thread Fixes * Rendering twice or more could crash layer/pass buttons. * Compositing would crash while drawing the image. * Rendering animations could also crash drawing the image. * Compositing could crash * Starting to rendering while preview render / compo was still running could crash. * Exiting while rendering an animation would not abort the renderer properly, making Blender seemingly freeze. * Fixes theoretically possible issue with setting malloc lock with nested threads. * Drawing previews inside nodes could crash when those nodes were being rendered at the same time. There's more crashes, manipulating the scene data or undo can still crash, this commit only focuses on making sure the image buffer and render result access is thread safe. Implementation: * Rather than assuming the render result does not get freed during render, which seems to be quite difficult to do given that e.g. the compositor is allowed to change the size of the buffer or output different passes, the render result is now protected with a read/write mutex. * The read/write mutex allows multiple readers (and pixel writers) at the same time, but only allows one writer to manipulate the data structure. * Added BKE_image_acquire_ibuf/BKE_image_release_ibuf to access images being rendered, cases where this is not needed (most code) can still use BKE_image_get_ibuf. * The job manager now allows only one rendering job at the same time, rather than the G.rendering check which was not reliable.
2009-09-30 18:18:32 +00:00
static void BLI_lock_malloc_thread(void)
{
pthread_mutex_lock(&_malloc_lock);
}
Render & Compositing Thread Fixes * Rendering twice or more could crash layer/pass buttons. * Compositing would crash while drawing the image. * Rendering animations could also crash drawing the image. * Compositing could crash * Starting to rendering while preview render / compo was still running could crash. * Exiting while rendering an animation would not abort the renderer properly, making Blender seemingly freeze. * Fixes theoretically possible issue with setting malloc lock with nested threads. * Drawing previews inside nodes could crash when those nodes were being rendered at the same time. There's more crashes, manipulating the scene data or undo can still crash, this commit only focuses on making sure the image buffer and render result access is thread safe. Implementation: * Rather than assuming the render result does not get freed during render, which seems to be quite difficult to do given that e.g. the compositor is allowed to change the size of the buffer or output different passes, the render result is now protected with a read/write mutex. * The read/write mutex allows multiple readers (and pixel writers) at the same time, but only allows one writer to manipulate the data structure. * Added BKE_image_acquire_ibuf/BKE_image_release_ibuf to access images being rendered, cases where this is not needed (most code) can still use BKE_image_get_ibuf. * The job manager now allows only one rendering job at the same time, rather than the G.rendering check which was not reliable.
2009-09-30 18:18:32 +00:00
static void BLI_unlock_malloc_thread(void)
{
pthread_mutex_unlock(&_malloc_lock);
}
void BLI_threadapi_init(void)
{
mainid = pthread_self();
}
/* tot = 0 only initializes malloc mutex in a safe way (see sequence.c)
* problem otherwise: scene render will kill of the mutex!
*/
void BLI_init_threads(ListBase *threadbase, void *(*do_thread)(void *), int tot)
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
{
int a;
if (threadbase != NULL && tot > 0) {
threadbase->first = threadbase->last = NULL;
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
if (tot > RE_MAX_THREAD) tot = RE_MAX_THREAD;
else if (tot < 1) tot = 1;
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
for (a = 0; a < tot; a++) {
ThreadSlot *tslot = MEM_callocN(sizeof(ThreadSlot), "threadslot");
BLI_addtail(threadbase, tslot);
tslot->do_thread = do_thread;
tslot->avail = 1;
}
}
if (thread_levels == 0) {
MEM_set_lock_callback(BLI_lock_malloc_thread, BLI_unlock_malloc_thread);
Render & Compositing Thread Fixes * Rendering twice or more could crash layer/pass buttons. * Compositing would crash while drawing the image. * Rendering animations could also crash drawing the image. * Compositing could crash * Starting to rendering while preview render / compo was still running could crash. * Exiting while rendering an animation would not abort the renderer properly, making Blender seemingly freeze. * Fixes theoretically possible issue with setting malloc lock with nested threads. * Drawing previews inside nodes could crash when those nodes were being rendered at the same time. There's more crashes, manipulating the scene data or undo can still crash, this commit only focuses on making sure the image buffer and render result access is thread safe. Implementation: * Rather than assuming the render result does not get freed during render, which seems to be quite difficult to do given that e.g. the compositor is allowed to change the size of the buffer or output different passes, the render result is now protected with a read/write mutex. * The read/write mutex allows multiple readers (and pixel writers) at the same time, but only allows one writer to manipulate the data structure. * Added BKE_image_acquire_ibuf/BKE_image_release_ibuf to access images being rendered, cases where this is not needed (most code) can still use BKE_image_get_ibuf. * The job manager now allows only one rendering job at the same time, rather than the G.rendering check which was not reliable.
2009-09-30 18:18:32 +00:00
#ifdef USE_APPLE_OMP_FIX
/* workaround for Apple gcc 4.2.1 omp vs background thread bug,
* we copy gomp thread local storage pointer to setting it again
* inside the thread that we start */
thread_tls_data = pthread_getspecific(gomp_tls_key);
#endif
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
}
thread_levels++;
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
}
/* amount of available threads */
int BLI_available_threads(ListBase *threadbase)
{
ThreadSlot *tslot;
int counter = 0;
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
for (tslot = threadbase->first; tslot; tslot = tslot->next) {
if (tslot->avail)
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
counter++;
}
return counter;
}
/* returns thread number, for sample patterns or threadsafe tables */
int BLI_available_thread_index(ListBase *threadbase)
{
ThreadSlot *tslot;
int counter = 0;
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
for (tslot = threadbase->first; tslot; tslot = tslot->next, counter++) {
if (tslot->avail)
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
return counter;
}
return 0;
}
static void *tslot_thread_start(void *tslot_p)
{
ThreadSlot *tslot = (ThreadSlot *)tslot_p;
#ifdef USE_APPLE_OMP_FIX
/* workaround for Apple gcc 4.2.1 omp vs background thread bug,
* set gomp thread local storage pointer which was copied beforehand */
pthread_setspecific(gomp_tls_key, thread_tls_data);
#endif
return tslot->do_thread(tslot->callerdata);
}
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
int BLI_thread_is_main(void)
{
return pthread_equal(pthread_self(), mainid);
}
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
void BLI_insert_thread(ListBase *threadbase, void *callerdata)
{
ThreadSlot *tslot;
for (tslot = threadbase->first; tslot; tslot = tslot->next) {
if (tslot->avail) {
tslot->avail = 0;
tslot->callerdata = callerdata;
pthread_create(&tslot->pthread, NULL, tslot_thread_start, tslot);
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
return;
}
}
printf("ERROR: could not insert thread slot\n");
}
void BLI_remove_thread(ListBase *threadbase, void *callerdata)
{
ThreadSlot *tslot;
for (tslot = threadbase->first; tslot; tslot = tslot->next) {
if (tslot->callerdata == callerdata) {
pthread_join(tslot->pthread, NULL);
tslot->callerdata = NULL;
tslot->avail = 1;
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
}
}
}
void BLI_remove_thread_index(ListBase *threadbase, int index)
{
ThreadSlot *tslot;
int counter = 0;
for (tslot = threadbase->first; tslot; tslot = tslot->next, counter++) {
if (counter == index && tslot->avail == 0) {
pthread_join(tslot->pthread, NULL);
tslot->callerdata = NULL;
tslot->avail = 1;
break;
}
}
}
void BLI_remove_threads(ListBase *threadbase)
{
ThreadSlot *tslot;
for (tslot = threadbase->first; tslot; tslot = tslot->next) {
if (tslot->avail == 0) {
pthread_join(tslot->pthread, NULL);
tslot->callerdata = NULL;
tslot->avail = 1;
}
}
}
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
void BLI_end_threads(ListBase *threadbase)
{
ThreadSlot *tslot;
/* only needed if there's actually some stuff to end
* this way we don't end up decrementing thread_levels on an empty threadbase
* */
if (threadbase && threadbase->first != NULL) {
for (tslot = threadbase->first; tslot; tslot = tslot->next) {
if (tslot->avail == 0) {
pthread_join(tslot->pthread, NULL);
}
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
}
BLI_freelistN(threadbase);
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
}
thread_levels--;
if (thread_levels == 0)
MEM_set_lock_callback(NULL, NULL);
}
Render & Compositing Thread Fixes * Rendering twice or more could crash layer/pass buttons. * Compositing would crash while drawing the image. * Rendering animations could also crash drawing the image. * Compositing could crash * Starting to rendering while preview render / compo was still running could crash. * Exiting while rendering an animation would not abort the renderer properly, making Blender seemingly freeze. * Fixes theoretically possible issue with setting malloc lock with nested threads. * Drawing previews inside nodes could crash when those nodes were being rendered at the same time. There's more crashes, manipulating the scene data or undo can still crash, this commit only focuses on making sure the image buffer and render result access is thread safe. Implementation: * Rather than assuming the render result does not get freed during render, which seems to be quite difficult to do given that e.g. the compositor is allowed to change the size of the buffer or output different passes, the render result is now protected with a read/write mutex. * The read/write mutex allows multiple readers (and pixel writers) at the same time, but only allows one writer to manipulate the data structure. * Added BKE_image_acquire_ibuf/BKE_image_release_ibuf to access images being rendered, cases where this is not needed (most code) can still use BKE_image_get_ibuf. * The job manager now allows only one rendering job at the same time, rather than the G.rendering check which was not reliable.
2009-09-30 18:18:32 +00:00
/* System Information */
/* how many threads are native on this system? */
int BLI_system_thread_count(void)
{
int t;
#ifdef WIN32
SYSTEM_INFO info;
GetSystemInfo(&info);
t = (int) info.dwNumberOfProcessors;
#else
# ifdef __APPLE__
int mib[2];
size_t len;
mib[0] = CTL_HW;
mib[1] = HW_NCPU;
len = sizeof(t);
sysctl(mib, 2, &t, &len, NULL, 0);
# else
t = (int)sysconf(_SC_NPROCESSORS_ONLN);
# endif
#endif
if (num_threads_override > 0)
return num_threads_override;
if (t > RE_MAX_THREAD)
return RE_MAX_THREAD;
if (t < 1)
return 1;
return t;
}
void BLI_system_num_threads_override_set(int num)
{
num_threads_override = num;
}
int BLI_system_num_threads_override_get(void)
{
return num_threads_override;
}
Render & Compositing Thread Fixes * Rendering twice or more could crash layer/pass buttons. * Compositing would crash while drawing the image. * Rendering animations could also crash drawing the image. * Compositing could crash * Starting to rendering while preview render / compo was still running could crash. * Exiting while rendering an animation would not abort the renderer properly, making Blender seemingly freeze. * Fixes theoretically possible issue with setting malloc lock with nested threads. * Drawing previews inside nodes could crash when those nodes were being rendered at the same time. There's more crashes, manipulating the scene data or undo can still crash, this commit only focuses on making sure the image buffer and render result access is thread safe. Implementation: * Rather than assuming the render result does not get freed during render, which seems to be quite difficult to do given that e.g. the compositor is allowed to change the size of the buffer or output different passes, the render result is now protected with a read/write mutex. * The read/write mutex allows multiple readers (and pixel writers) at the same time, but only allows one writer to manipulate the data structure. * Added BKE_image_acquire_ibuf/BKE_image_release_ibuf to access images being rendered, cases where this is not needed (most code) can still use BKE_image_get_ibuf. * The job manager now allows only one rendering job at the same time, rather than the G.rendering check which was not reliable.
2009-09-30 18:18:32 +00:00
/* Global Mutex Locks */
void BLI_lock_thread(int type)
{
if (type == LOCK_IMAGE)
Render & Compositing Thread Fixes * Rendering twice or more could crash layer/pass buttons. * Compositing would crash while drawing the image. * Rendering animations could also crash drawing the image. * Compositing could crash * Starting to rendering while preview render / compo was still running could crash. * Exiting while rendering an animation would not abort the renderer properly, making Blender seemingly freeze. * Fixes theoretically possible issue with setting malloc lock with nested threads. * Drawing previews inside nodes could crash when those nodes were being rendered at the same time. There's more crashes, manipulating the scene data or undo can still crash, this commit only focuses on making sure the image buffer and render result access is thread safe. Implementation: * Rather than assuming the render result does not get freed during render, which seems to be quite difficult to do given that e.g. the compositor is allowed to change the size of the buffer or output different passes, the render result is now protected with a read/write mutex. * The read/write mutex allows multiple readers (and pixel writers) at the same time, but only allows one writer to manipulate the data structure. * Added BKE_image_acquire_ibuf/BKE_image_release_ibuf to access images being rendered, cases where this is not needed (most code) can still use BKE_image_get_ibuf. * The job manager now allows only one rendering job at the same time, rather than the G.rendering check which was not reliable.
2009-09-30 18:18:32 +00:00
pthread_mutex_lock(&_image_lock);
else if (type == LOCK_DRAW_IMAGE)
pthread_mutex_lock(&_image_draw_lock);
else if (type == LOCK_VIEWER)
pthread_mutex_lock(&_viewer_lock);
else if (type == LOCK_CUSTOM1)
Render & Compositing Thread Fixes * Rendering twice or more could crash layer/pass buttons. * Compositing would crash while drawing the image. * Rendering animations could also crash drawing the image. * Compositing could crash * Starting to rendering while preview render / compo was still running could crash. * Exiting while rendering an animation would not abort the renderer properly, making Blender seemingly freeze. * Fixes theoretically possible issue with setting malloc lock with nested threads. * Drawing previews inside nodes could crash when those nodes were being rendered at the same time. There's more crashes, manipulating the scene data or undo can still crash, this commit only focuses on making sure the image buffer and render result access is thread safe. Implementation: * Rather than assuming the render result does not get freed during render, which seems to be quite difficult to do given that e.g. the compositor is allowed to change the size of the buffer or output different passes, the render result is now protected with a read/write mutex. * The read/write mutex allows multiple readers (and pixel writers) at the same time, but only allows one writer to manipulate the data structure. * Added BKE_image_acquire_ibuf/BKE_image_release_ibuf to access images being rendered, cases where this is not needed (most code) can still use BKE_image_get_ibuf. * The job manager now allows only one rendering job at the same time, rather than the G.rendering check which was not reliable.
2009-09-30 18:18:32 +00:00
pthread_mutex_lock(&_custom1_lock);
else if (type == LOCK_RCACHE)
pthread_mutex_lock(&_rcache_lock);
else if (type == LOCK_OPENGL)
pthread_mutex_lock(&_opengl_lock);
else if (type == LOCK_NODES)
pthread_mutex_lock(&_nodes_lock);
else if (type == LOCK_MOVIECLIP)
Camera tracking integration =========================== Commiting camera tracking integration gsoc project into trunk. This commit includes: - Bundled version of libmv library (with some changes against official repo, re-sync with libmv repo a bit later) - New datatype ID called MovieClip which is optimized to work with movie clips (both of movie files and image sequences) and doing camera/motion tracking operations. - New editor called Clip Editor which is currently used for motion/tracking stuff only, but which can be easily extended to work with masks too. This editor supports: * Loading movie files/image sequences * Build proxies with different size for loaded movie clip, also supports building undistorted proxies to increase speed of playback in undistorted mode. * Manual lens distortion mode calibration using grid and grease pencil * Supervised 2D tracking using two different algorithms KLT and SAD. * Basic algorithm for feature detection * Camera motion solving. scene orientation - New constraints to "link" scene objects with solved motions from clip: * Follow Track (make object follow 2D motion of track with given name or parent object to reconstructed 3D position of track) * Camera Solver to make camera moving in the same way as reconstructed camera This commit NOT includes changes from tomato branch: - New nodes (they'll be commited as separated patch) - Automatic image offset guessing for image input node and image editor (need to do more tests and gather more feedback) - Code cleanup in libmv-capi. It's not so critical cleanup, just increasing readability and understanadability of code. Better to make this chaneg when Keir will finish his current patch. More details about this project can be found on this page: http://wiki.blender.org/index.php/User:Nazg-gul/GSoC-2011 Further development of small features would be done in trunk, bigger/experimental features would first be implemented in tomato branch.
2011-11-07 12:55:18 +00:00
pthread_mutex_lock(&_movieclip_lock);
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 10:05:07 +00:00
else if (type == LOCK_COLORMANAGE)
pthread_mutex_lock(&_colormanage_lock);
Render & Compositing Thread Fixes * Rendering twice or more could crash layer/pass buttons. * Compositing would crash while drawing the image. * Rendering animations could also crash drawing the image. * Compositing could crash * Starting to rendering while preview render / compo was still running could crash. * Exiting while rendering an animation would not abort the renderer properly, making Blender seemingly freeze. * Fixes theoretically possible issue with setting malloc lock with nested threads. * Drawing previews inside nodes could crash when those nodes were being rendered at the same time. There's more crashes, manipulating the scene data or undo can still crash, this commit only focuses on making sure the image buffer and render result access is thread safe. Implementation: * Rather than assuming the render result does not get freed during render, which seems to be quite difficult to do given that e.g. the compositor is allowed to change the size of the buffer or output different passes, the render result is now protected with a read/write mutex. * The read/write mutex allows multiple readers (and pixel writers) at the same time, but only allows one writer to manipulate the data structure. * Added BKE_image_acquire_ibuf/BKE_image_release_ibuf to access images being rendered, cases where this is not needed (most code) can still use BKE_image_get_ibuf. * The job manager now allows only one rendering job at the same time, rather than the G.rendering check which was not reliable.
2009-09-30 18:18:32 +00:00
}
void BLI_unlock_thread(int type)
{
if (type == LOCK_IMAGE)
Render & Compositing Thread Fixes * Rendering twice or more could crash layer/pass buttons. * Compositing would crash while drawing the image. * Rendering animations could also crash drawing the image. * Compositing could crash * Starting to rendering while preview render / compo was still running could crash. * Exiting while rendering an animation would not abort the renderer properly, making Blender seemingly freeze. * Fixes theoretically possible issue with setting malloc lock with nested threads. * Drawing previews inside nodes could crash when those nodes were being rendered at the same time. There's more crashes, manipulating the scene data or undo can still crash, this commit only focuses on making sure the image buffer and render result access is thread safe. Implementation: * Rather than assuming the render result does not get freed during render, which seems to be quite difficult to do given that e.g. the compositor is allowed to change the size of the buffer or output different passes, the render result is now protected with a read/write mutex. * The read/write mutex allows multiple readers (and pixel writers) at the same time, but only allows one writer to manipulate the data structure. * Added BKE_image_acquire_ibuf/BKE_image_release_ibuf to access images being rendered, cases where this is not needed (most code) can still use BKE_image_get_ibuf. * The job manager now allows only one rendering job at the same time, rather than the G.rendering check which was not reliable.
2009-09-30 18:18:32 +00:00
pthread_mutex_unlock(&_image_lock);
else if (type == LOCK_DRAW_IMAGE)
pthread_mutex_unlock(&_image_draw_lock);
else if (type == LOCK_VIEWER)
pthread_mutex_unlock(&_viewer_lock);
else if (type == LOCK_CUSTOM1)
Render & Compositing Thread Fixes * Rendering twice or more could crash layer/pass buttons. * Compositing would crash while drawing the image. * Rendering animations could also crash drawing the image. * Compositing could crash * Starting to rendering while preview render / compo was still running could crash. * Exiting while rendering an animation would not abort the renderer properly, making Blender seemingly freeze. * Fixes theoretically possible issue with setting malloc lock with nested threads. * Drawing previews inside nodes could crash when those nodes were being rendered at the same time. There's more crashes, manipulating the scene data or undo can still crash, this commit only focuses on making sure the image buffer and render result access is thread safe. Implementation: * Rather than assuming the render result does not get freed during render, which seems to be quite difficult to do given that e.g. the compositor is allowed to change the size of the buffer or output different passes, the render result is now protected with a read/write mutex. * The read/write mutex allows multiple readers (and pixel writers) at the same time, but only allows one writer to manipulate the data structure. * Added BKE_image_acquire_ibuf/BKE_image_release_ibuf to access images being rendered, cases where this is not needed (most code) can still use BKE_image_get_ibuf. * The job manager now allows only one rendering job at the same time, rather than the G.rendering check which was not reliable.
2009-09-30 18:18:32 +00:00
pthread_mutex_unlock(&_custom1_lock);
else if (type == LOCK_RCACHE)
pthread_mutex_unlock(&_rcache_lock);
else if (type == LOCK_OPENGL)
pthread_mutex_unlock(&_opengl_lock);
else if (type == LOCK_NODES)
pthread_mutex_unlock(&_nodes_lock);
else if (type == LOCK_MOVIECLIP)
Camera tracking integration =========================== Commiting camera tracking integration gsoc project into trunk. This commit includes: - Bundled version of libmv library (with some changes against official repo, re-sync with libmv repo a bit later) - New datatype ID called MovieClip which is optimized to work with movie clips (both of movie files and image sequences) and doing camera/motion tracking operations. - New editor called Clip Editor which is currently used for motion/tracking stuff only, but which can be easily extended to work with masks too. This editor supports: * Loading movie files/image sequences * Build proxies with different size for loaded movie clip, also supports building undistorted proxies to increase speed of playback in undistorted mode. * Manual lens distortion mode calibration using grid and grease pencil * Supervised 2D tracking using two different algorithms KLT and SAD. * Basic algorithm for feature detection * Camera motion solving. scene orientation - New constraints to "link" scene objects with solved motions from clip: * Follow Track (make object follow 2D motion of track with given name or parent object to reconstructed 3D position of track) * Camera Solver to make camera moving in the same way as reconstructed camera This commit NOT includes changes from tomato branch: - New nodes (they'll be commited as separated patch) - Automatic image offset guessing for image input node and image editor (need to do more tests and gather more feedback) - Code cleanup in libmv-capi. It's not so critical cleanup, just increasing readability and understanadability of code. Better to make this chaneg when Keir will finish his current patch. More details about this project can be found on this page: http://wiki.blender.org/index.php/User:Nazg-gul/GSoC-2011 Further development of small features would be done in trunk, bigger/experimental features would first be implemented in tomato branch.
2011-11-07 12:55:18 +00:00
pthread_mutex_unlock(&_movieclip_lock);
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 10:05:07 +00:00
else if (type == LOCK_COLORMANAGE)
pthread_mutex_unlock(&_colormanage_lock);
Render & Compositing Thread Fixes * Rendering twice or more could crash layer/pass buttons. * Compositing would crash while drawing the image. * Rendering animations could also crash drawing the image. * Compositing could crash * Starting to rendering while preview render / compo was still running could crash. * Exiting while rendering an animation would not abort the renderer properly, making Blender seemingly freeze. * Fixes theoretically possible issue with setting malloc lock with nested threads. * Drawing previews inside nodes could crash when those nodes were being rendered at the same time. There's more crashes, manipulating the scene data or undo can still crash, this commit only focuses on making sure the image buffer and render result access is thread safe. Implementation: * Rather than assuming the render result does not get freed during render, which seems to be quite difficult to do given that e.g. the compositor is allowed to change the size of the buffer or output different passes, the render result is now protected with a read/write mutex. * The read/write mutex allows multiple readers (and pixel writers) at the same time, but only allows one writer to manipulate the data structure. * Added BKE_image_acquire_ibuf/BKE_image_release_ibuf to access images being rendered, cases where this is not needed (most code) can still use BKE_image_get_ibuf. * The job manager now allows only one rendering job at the same time, rather than the G.rendering check which was not reliable.
2009-09-30 18:18:32 +00:00
}
/* Mutex Locks */
void BLI_mutex_init(ThreadMutex *mutex)
{
pthread_mutex_init(mutex, NULL);
}
void BLI_mutex_lock(ThreadMutex *mutex)
{
pthread_mutex_lock(mutex);
}
void BLI_mutex_unlock(ThreadMutex *mutex)
{
pthread_mutex_unlock(mutex);
}
void BLI_mutex_end(ThreadMutex *mutex)
{
pthread_mutex_destroy(mutex);
}
ThreadMutex *BLI_mutex_alloc(void)
{
ThreadMutex *mutex = MEM_callocN(sizeof(ThreadMutex), "ThreadMutex");
BLI_mutex_init(mutex);
return mutex;
}
void BLI_mutex_free(ThreadMutex *mutex)
{
BLI_mutex_end(mutex);
MEM_freeN(mutex);
}
/* Spin Locks */
void BLI_spin_init(SpinLock *spin)
{
#ifdef __APPLE__
*spin = OS_SPINLOCK_INIT;
#else
pthread_spin_init(spin, 0);
#endif
}
void BLI_spin_lock(SpinLock *spin)
{
#ifdef __APPLE__
OSSpinLockLock(spin);
#else
pthread_spin_lock(spin);
#endif
}
void BLI_spin_unlock(SpinLock *spin)
{
#ifdef __APPLE__
OSSpinLockUnlock(spin);
#else
pthread_spin_unlock(spin);
#endif
}
#ifndef __APPLE__
void BLI_spin_end(SpinLock *spin)
{
pthread_spin_destroy(spin);
}
#else
void BLI_spin_end(SpinLock *UNUSED(spin))
{
}
#endif
Render & Compositing Thread Fixes * Rendering twice or more could crash layer/pass buttons. * Compositing would crash while drawing the image. * Rendering animations could also crash drawing the image. * Compositing could crash * Starting to rendering while preview render / compo was still running could crash. * Exiting while rendering an animation would not abort the renderer properly, making Blender seemingly freeze. * Fixes theoretically possible issue with setting malloc lock with nested threads. * Drawing previews inside nodes could crash when those nodes were being rendered at the same time. There's more crashes, manipulating the scene data or undo can still crash, this commit only focuses on making sure the image buffer and render result access is thread safe. Implementation: * Rather than assuming the render result does not get freed during render, which seems to be quite difficult to do given that e.g. the compositor is allowed to change the size of the buffer or output different passes, the render result is now protected with a read/write mutex. * The read/write mutex allows multiple readers (and pixel writers) at the same time, but only allows one writer to manipulate the data structure. * Added BKE_image_acquire_ibuf/BKE_image_release_ibuf to access images being rendered, cases where this is not needed (most code) can still use BKE_image_get_ibuf. * The job manager now allows only one rendering job at the same time, rather than the G.rendering check which was not reliable.
2009-09-30 18:18:32 +00:00
/* Read/Write Mutex Lock */
void BLI_rw_mutex_init(ThreadRWMutex *mutex)
{
pthread_rwlock_init(mutex, NULL);
}
void BLI_rw_mutex_lock(ThreadRWMutex *mutex, int mode)
{
if (mode == THREAD_LOCK_READ)
Render & Compositing Thread Fixes * Rendering twice or more could crash layer/pass buttons. * Compositing would crash while drawing the image. * Rendering animations could also crash drawing the image. * Compositing could crash * Starting to rendering while preview render / compo was still running could crash. * Exiting while rendering an animation would not abort the renderer properly, making Blender seemingly freeze. * Fixes theoretically possible issue with setting malloc lock with nested threads. * Drawing previews inside nodes could crash when those nodes were being rendered at the same time. There's more crashes, manipulating the scene data or undo can still crash, this commit only focuses on making sure the image buffer and render result access is thread safe. Implementation: * Rather than assuming the render result does not get freed during render, which seems to be quite difficult to do given that e.g. the compositor is allowed to change the size of the buffer or output different passes, the render result is now protected with a read/write mutex. * The read/write mutex allows multiple readers (and pixel writers) at the same time, but only allows one writer to manipulate the data structure. * Added BKE_image_acquire_ibuf/BKE_image_release_ibuf to access images being rendered, cases where this is not needed (most code) can still use BKE_image_get_ibuf. * The job manager now allows only one rendering job at the same time, rather than the G.rendering check which was not reliable.
2009-09-30 18:18:32 +00:00
pthread_rwlock_rdlock(mutex);
else
pthread_rwlock_wrlock(mutex);
}
void BLI_rw_mutex_unlock(ThreadRWMutex *mutex)
{
pthread_rwlock_unlock(mutex);
}
void BLI_rw_mutex_end(ThreadRWMutex *mutex)
{
pthread_rwlock_destroy(mutex);
}
ThreadRWMutex *BLI_rw_mutex_alloc(void)
{
ThreadRWMutex *mutex = MEM_callocN(sizeof(ThreadRWMutex), "ThreadRWMutex");
BLI_rw_mutex_init(mutex);
return mutex;
}
void BLI_rw_mutex_free(ThreadRWMutex *mutex)
{
BLI_rw_mutex_end(mutex);
MEM_freeN(mutex);
}
/* ************************************************ */
typedef struct ThreadedWorker {
ListBase threadbase;
void *(*work_fnct)(void *);
char busy[RE_MAX_THREAD];
int total;
int sleep_time;
} ThreadedWorker;
typedef struct WorkParam {
ThreadedWorker *worker;
void *param;
int index;
} WorkParam;
static void *exec_work_fnct(void *v_param)
{
WorkParam *p = (WorkParam *)v_param;
void *value;
value = p->worker->work_fnct(p->param);
p->worker->busy[p->index] = 0;
MEM_freeN(p);
return value;
}
ThreadedWorker *BLI_create_worker(void *(*do_thread)(void *), int tot, int sleep_time)
{
ThreadedWorker *worker;
(void)sleep_time; /* unused */
worker = MEM_callocN(sizeof(ThreadedWorker), "threadedworker");
if (tot > RE_MAX_THREAD) {
tot = RE_MAX_THREAD;
}
else if (tot < 1) {
tot = 1;
}
worker->total = tot;
worker->work_fnct = do_thread;
BLI_init_threads(&worker->threadbase, exec_work_fnct, tot);
return worker;
}
void BLI_end_worker(ThreadedWorker *worker)
{
BLI_remove_threads(&worker->threadbase);
}
void BLI_destroy_worker(ThreadedWorker *worker)
{
BLI_end_worker(worker);
BLI_freelistN(&worker->threadbase);
MEM_freeN(worker);
}
void BLI_insert_work(ThreadedWorker *worker, void *param)
{
WorkParam *p = MEM_callocN(sizeof(WorkParam), "workparam");
int index;
if (BLI_available_threads(&worker->threadbase) == 0) {
index = worker->total;
while (index == worker->total) {
PIL_sleep_ms(worker->sleep_time);
for (index = 0; index < worker->total; index++) {
if (worker->busy[index] == 0) {
BLI_remove_thread_index(&worker->threadbase, index);
break;
}
}
}
}
else {
index = BLI_available_thread_index(&worker->threadbase);
}
worker->busy[index] = 1;
p->param = param;
p->index = index;
p->worker = worker;
BLI_insert_thread(&worker->threadbase, p);
}
/* ************************************************ */
struct ThreadQueue {
GSQueue *queue;
pthread_mutex_t mutex;
pthread_cond_t push_cond;
pthread_cond_t finish_cond;
volatile int nowait;
volatile int cancelled;
};
ThreadQueue *BLI_thread_queue_init(void)
{
ThreadQueue *queue;
queue = MEM_callocN(sizeof(ThreadQueue), "ThreadQueue");
queue->queue = BLI_gsqueue_new(sizeof(void *));
pthread_mutex_init(&queue->mutex, NULL);
pthread_cond_init(&queue->push_cond, NULL);
pthread_cond_init(&queue->finish_cond, NULL);
return queue;
}
void BLI_thread_queue_free(ThreadQueue *queue)
{
/* destroy everything, assumes no one is using queue anymore */
pthread_cond_destroy(&queue->finish_cond);
pthread_cond_destroy(&queue->push_cond);
pthread_mutex_destroy(&queue->mutex);
BLI_gsqueue_free(queue->queue);
MEM_freeN(queue);
}
void BLI_thread_queue_push(ThreadQueue *queue, void *work)
{
pthread_mutex_lock(&queue->mutex);
BLI_gsqueue_push(queue->queue, &work);
/* signal threads waiting to pop */
pthread_cond_signal(&queue->push_cond);
pthread_mutex_unlock(&queue->mutex);
}
void *BLI_thread_queue_pop(ThreadQueue *queue)
{
void *work = NULL;
/* wait until there is work */
pthread_mutex_lock(&queue->mutex);
while (BLI_gsqueue_is_empty(queue->queue) && !queue->nowait)
pthread_cond_wait(&queue->push_cond, &queue->mutex);
/* if we have something, pop it */
if (!BLI_gsqueue_is_empty(queue->queue)) {
BLI_gsqueue_pop(queue->queue, &work);
if (BLI_gsqueue_is_empty(queue->queue))
pthread_cond_broadcast(&queue->finish_cond);
}
pthread_mutex_unlock(&queue->mutex);
return work;
}
static void wait_timeout(struct timespec *timeout, int ms)
{
ldiv_t div_result;
long sec, usec, x;
#ifdef WIN32
{
struct _timeb now;
_ftime(&now);
sec = now.time;
usec = now.millitm * 1000; /* microsecond precision would be better */
}
#else
{
struct timeval now;
gettimeofday(&now, NULL);
sec = now.tv_sec;
usec = now.tv_usec;
}
#endif
/* add current time + millisecond offset */
div_result = ldiv(ms, 1000);
timeout->tv_sec = sec + div_result.quot;
x = usec + (div_result.rem * 1000);
if (x >= 1000000) {
timeout->tv_sec++;
x -= 1000000;
}
timeout->tv_nsec = x * 1000;
}
void *BLI_thread_queue_pop_timeout(ThreadQueue *queue, int ms)
{
double t;
void *work = NULL;
struct timespec timeout;
t = PIL_check_seconds_timer();
wait_timeout(&timeout, ms);
/* wait until there is work */
pthread_mutex_lock(&queue->mutex);
while (BLI_gsqueue_is_empty(queue->queue) && !queue->nowait) {
if (pthread_cond_timedwait(&queue->push_cond, &queue->mutex, &timeout) == ETIMEDOUT)
break;
else if (PIL_check_seconds_timer() - t >= ms * 0.001)
break;
}
/* if we have something, pop it */
if (!BLI_gsqueue_is_empty(queue->queue)) {
BLI_gsqueue_pop(queue->queue, &work);
if (BLI_gsqueue_is_empty(queue->queue))
pthread_cond_broadcast(&queue->finish_cond);
}
pthread_mutex_unlock(&queue->mutex);
return work;
}
int BLI_thread_queue_size(ThreadQueue *queue)
{
int size;
pthread_mutex_lock(&queue->mutex);
size = BLI_gsqueue_size(queue->queue);
pthread_mutex_unlock(&queue->mutex);
return size;
}
void BLI_thread_queue_nowait(ThreadQueue *queue)
{
pthread_mutex_lock(&queue->mutex);
queue->nowait = 1;
/* signal threads waiting to pop */
pthread_cond_broadcast(&queue->push_cond);
pthread_mutex_unlock(&queue->mutex);
}
void BLI_thread_queue_wait_finish(ThreadQueue *queue)
{
/* wait for finish condition */
pthread_mutex_lock(&queue->mutex);
while (!BLI_gsqueue_is_empty(queue->queue))
pthread_cond_wait(&queue->finish_cond, &queue->mutex);
pthread_mutex_unlock(&queue->mutex);
}
/* ************************************************ */
void BLI_begin_threaded_malloc(void)
{
/* Used for debug only */
/* BLI_assert(thread_levels >= 0); */
if (thread_levels == 0) {
MEM_set_lock_callback(BLI_lock_malloc_thread, BLI_unlock_malloc_thread);
}
thread_levels++;
}
void BLI_end_threaded_malloc(void)
{
/* Used for debug only */
/* BLI_assert(thread_levels >= 0); */
thread_levels--;
if (thread_levels == 0)
MEM_set_lock_callback(NULL, NULL);
2011-11-10 17:43:37 +00:00
}