This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/intern/cycles/blender/blender_object.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

667 lines
20 KiB
C++
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/camera.h"
#include "render/graph.h"
#include "render/integrator.h"
#include "render/light.h"
#include "render/mesh.h"
#include "render/nodes.h"
#include "render/object.h"
#include "render/particles.h"
#include "render/scene.h"
#include "render/shader.h"
#include "blender/blender_object_cull.h"
#include "blender/blender_sync.h"
#include "blender/blender_util.h"
#include "util/util_foreach.h"
#include "util/util_hash.h"
#include "util/util_logging.h"
#include "util/util_task.h"
CCL_NAMESPACE_BEGIN
/* Utilities */
bool BlenderSync::BKE_object_is_modified(BL::Object &b_ob)
{
/* test if we can instance or if the object is modified */
if (b_ob.type() == BL::Object::type_META) {
/* multi-user and dupli metaballs are fused, can't instance */
return true;
}
else if (ccl::BKE_object_is_modified(b_ob, b_scene, preview)) {
/* modifiers */
return true;
}
else {
/* object level material links */
for (BL::MaterialSlot &b_slot : b_ob.material_slots) {
if (b_slot.link() == BL::MaterialSlot::link_OBJECT) {
return true;
}
}
}
return false;
}
bool BlenderSync::object_is_geometry(BL::Object &b_ob)
{
BL::ID b_ob_data = b_ob.data();
if (!b_ob_data) {
return false;
}
BL::Object::type_enum type = b_ob.type();
if (type == BL::Object::type_VOLUME || type == BL::Object::type_HAIR) {
/* Will be exported attached to mesh. */
return true;
}
else if (type == BL::Object::type_CURVE) {
/* Skip exporting curves without faces, overhead can be
* significant if there are many for path animation. */
BL::Curve b_curve(b_ob_data);
return (b_curve.bevel_object() || b_curve.extrude() != 0.0f || b_curve.bevel_depth() != 0.0f ||
b_curve.dimensions() == BL::Curve::dimensions_2D || b_ob.modifiers.length());
}
else {
return (b_ob_data.is_a(&RNA_Mesh) || b_ob_data.is_a(&RNA_Curve) ||
b_ob_data.is_a(&RNA_MetaBall));
}
}
bool BlenderSync::object_is_light(BL::Object &b_ob)
{
BL::ID b_ob_data = b_ob.data();
return (b_ob_data && b_ob_data.is_a(&RNA_Light));
}
/* Object */
Object *BlenderSync::sync_object(BL::Depsgraph &b_depsgraph,
BL::ViewLayer &b_view_layer,
BL::DepsgraphObjectInstance &b_instance,
float motion_time,
bool use_particle_hair,
bool show_lights,
BlenderObjectCulling &culling,
bool *use_portal,
TaskPool *geom_task_pool)
{
const bool is_instance = b_instance.is_instance();
BL::Object b_ob = b_instance.object();
BL::Object b_parent = is_instance ? b_instance.parent() : b_instance.object();
BL::Object b_ob_instance = is_instance ? b_instance.instance_object() : b_ob;
Cycles: Support rendering objects from dupli-list This commit extends the work from Dalai made around scene iterators to support iterating into objects from dupli-lists. Changes can be summarized as: - Depsgraph iterator will hold pointer to an object which created current duplilist. It is available via `dupli_parent` field of the iterator. It is only set when duplilist is not NULL and guaranteed to be NULL for all other cases. - Introduced new depsgraph.duplis collection which gives a more extended information about depsgraph iterator. It is basically a collection on top of DEGObjectsIteratorData. It is used to provide access to such data as persistent ID, generated space and so on. Things which still needs to be done/finished/clarified: - Need to introduce some sort of `is_instance` boolean property which will indicate Python and C++ RNA that we are inside of dupli-list. - Introduce a way to skip dupli-list for particular objects. So, for example, if we are culling object due to distance we can skip all objects it was duplicating. - Introduce a way to skip particular duplicators. So we can skip iterating into particle system. - Introduce some cleaner API for C side of operators to access all data such as persistent ID and friends. This way we wouldn't need de-reference iterator and could keep access to such data really abstract. Who knows how we'll be storing internal state of the operator in the future. While there is still stuff to do, current state works and moves us in the proper direction.
2017-06-06 13:58:40 +02:00
const bool motion = motion_time != 0.0f;
/*const*/ Transform tfm = get_transform(b_ob.matrix_world());
int *persistent_id = NULL;
BL::Array<int, OBJECT_PERSISTENT_ID_SIZE> persistent_id_array;
if (is_instance) {
persistent_id_array = b_instance.persistent_id();
Cycles: Support rendering objects from dupli-list This commit extends the work from Dalai made around scene iterators to support iterating into objects from dupli-lists. Changes can be summarized as: - Depsgraph iterator will hold pointer to an object which created current duplilist. It is available via `dupli_parent` field of the iterator. It is only set when duplilist is not NULL and guaranteed to be NULL for all other cases. - Introduced new depsgraph.duplis collection which gives a more extended information about depsgraph iterator. It is basically a collection on top of DEGObjectsIteratorData. It is used to provide access to such data as persistent ID, generated space and so on. Things which still needs to be done/finished/clarified: - Need to introduce some sort of `is_instance` boolean property which will indicate Python and C++ RNA that we are inside of dupli-list. - Introduce a way to skip dupli-list for particular objects. So, for example, if we are culling object due to distance we can skip all objects it was duplicating. - Introduce a way to skip particular duplicators. So we can skip iterating into particle system. - Introduce some cleaner API for C side of operators to access all data such as persistent ID and friends. This way we wouldn't need de-reference iterator and could keep access to such data really abstract. Who knows how we'll be storing internal state of the operator in the future. While there is still stuff to do, current state works and moves us in the proper direction.
2017-06-06 13:58:40 +02:00
persistent_id = persistent_id_array.data;
}
/* light is handled separately */
if (!motion && object_is_light(b_ob)) {
if (!show_lights) {
return NULL;
}
/* TODO: don't use lights for excluded layers used as mask layer,
* when dynamic overrides are back. */
#if 0
if (!((layer_flag & view_layer.holdout_layer) && (layer_flag & view_layer.exclude_layer)))
#endif
{
sync_light(b_parent,
persistent_id,
b_ob,
b_ob_instance,
is_instance ? b_instance.random_id() : 0,
tfm,
use_portal);
}
return NULL;
}
/* only interested in object that we can create meshes from */
if (!object_is_geometry(b_ob)) {
return NULL;
}
/* Perform object culling. */
if (culling.test(scene, b_ob, tfm)) {
return NULL;
}
/* Visibility flags for both parent and child. */
PointerRNA cobject = RNA_pointer_get(&b_ob.ptr, "cycles");
bool use_holdout = get_boolean(cobject, "is_holdout") ||
b_parent.holdout_get(PointerRNA_NULL, b_view_layer);
uint visibility = object_ray_visibility(b_ob) & PATH_RAY_ALL_VISIBILITY;
if (b_parent.ptr.data != b_ob.ptr.data) {
visibility &= object_ray_visibility(b_parent);
}
/* TODO: make holdout objects on excluded layer invisible for non-camera rays. */
#if 0
if (use_holdout && (layer_flag & view_layer.exclude_layer)) {
visibility &= ~(PATH_RAY_ALL_VISIBILITY - PATH_RAY_CAMERA);
}
#endif
/* Clear camera visibility for indirect only objects. */
bool use_indirect_only = !use_holdout &&
b_parent.indirect_only_get(PointerRNA_NULL, b_view_layer);
if (use_indirect_only) {
visibility &= ~PATH_RAY_CAMERA;
}
/* Don't export completely invisible objects. */
if (visibility == 0) {
return NULL;
}
/* Use task pool only for non-instances, since sync_dupli_particle accesses
* geometry. This restriction should be removed for better performance. */
TaskPool *object_geom_task_pool = (is_instance) ? NULL : geom_task_pool;
/* key to lookup object */
ObjectKey key(b_parent, persistent_id, b_ob_instance, use_particle_hair);
Object *object;
/* motion vector case */
if (motion) {
object = object_map.find(key);
if (object && object->use_motion()) {
/* Set transform at matching motion time step. */
int time_index = object->motion_step(motion_time);
if (time_index >= 0) {
array<Transform> motion = object->get_motion();
motion[time_index] = tfm;
object->set_motion(motion);
}
/* mesh deformation */
if (object->get_geometry())
sync_geometry_motion(b_depsgraph,
b_ob_instance,
object,
motion_time,
use_particle_hair,
object_geom_task_pool);
}
return object;
}
/* test if we need to sync */
bool object_updated = false;
if (object_map.add_or_update(&object, b_ob, b_parent, key))
object_updated = true;
/* mesh sync */
/* b_ob is owned by the iterator and will go out of scope at the end of the block.
* b_ob_instance is the original object and will remain valid for deferred geometry
* sync. */
Geometry *geometry = sync_geometry(b_depsgraph,
b_ob_instance,
b_ob_instance,
object_updated,
use_particle_hair,
object_geom_task_pool);
object->set_geometry(geometry);
/* special case not tracked by object update flags */
if (sync_object_attributes(b_instance, object)) {
object_updated = true;
}
/* holdout */
object->set_use_holdout(use_holdout);
object->set_visibility(visibility);
bool is_shadow_catcher = get_boolean(cobject, "is_shadow_catcher");
object->set_is_shadow_catcher(is_shadow_catcher);
float shadow_terminator_offset = get_float(cobject, "shadow_terminator_offset");
object->set_shadow_terminator_offset(shadow_terminator_offset);
/* sync the asset name for Cryptomatte */
BL::Object parent = b_ob.parent();
ustring parent_name;
if (parent) {
while (parent.parent()) {
parent = parent.parent();
}
parent_name = parent.name();
}
else {
parent_name = b_ob.name();
}
object->set_asset_name(parent_name);
/* object sync
* transform comparison should not be needed, but duplis don't work perfect
* in the depsgraph and may not signal changes, so this is a workaround */
if (object->is_modified() || object_updated ||
(object->get_geometry() && object->get_geometry()->is_modified()) ||
tfm != object->get_tfm()) {
object->name = b_ob.name().c_str();
object->set_pass_id(b_ob.pass_index());
object->set_color(get_float3(b_ob.color()));
object->set_tfm(tfm);
array<Transform> motion;
object->set_motion(motion);
/* motion blur */
Scene::MotionType need_motion = scene->need_motion();
if (need_motion != Scene::MOTION_NONE && object->get_geometry()) {
Geometry *geom = object->get_geometry();
geom->set_use_motion_blur(false);
geom->set_motion_steps(0);
uint motion_steps;
if (need_motion == Scene::MOTION_BLUR) {
motion_steps = object_motion_steps(b_parent, b_ob, Object::MAX_MOTION_STEPS);
geom->set_motion_steps(motion_steps);
if (motion_steps && object_use_deform_motion(b_parent, b_ob)) {
geom->set_use_motion_blur(true);
}
}
else {
motion_steps = 3;
geom->set_motion_steps(motion_steps);
}
motion.resize(motion_steps, transform_empty());
if (motion_steps) {
motion[motion_steps / 2] = tfm;
/* update motion socket before trying to access object->motion_time */
object->set_motion(motion);
for (size_t step = 0; step < motion_steps; step++) {
motion_times.insert(object->motion_time(step));
}
}
}
/* dupli texture coordinates and random_id */
if (is_instance) {
object->set_dupli_generated(0.5f * get_float3(b_instance.orco()) -
make_float3(0.5f, 0.5f, 0.5f));
object->set_dupli_uv(get_float2(b_instance.uv()));
object->set_random_id(b_instance.random_id());
}
else {
object->set_dupli_generated(zero_float3());
object->set_dupli_uv(zero_float2());
object->set_random_id(hash_uint2(hash_string(object->name.c_str()), 0));
}
object->tag_update(scene);
}
if (is_instance) {
/* Sync possible particle data. */
sync_dupli_particle(b_parent, b_instance, object);
}
return object;
}
/* This function mirrors drw_uniform_property_lookup in draw_instance_data.cpp */
static bool lookup_property(BL::ID b_id, const string &name, float4 *r_value)
{
PointerRNA ptr;
PropertyRNA *prop;
if (!RNA_path_resolve(&b_id.ptr, name.c_str(), &ptr, &prop)) {
return false;
}
if (prop == NULL) {
return false;
}
PropertyType type = RNA_property_type(prop);
int arraylen = RNA_property_array_length(&ptr, prop);
if (arraylen == 0) {
float value;
if (type == PROP_FLOAT)
value = RNA_property_float_get(&ptr, prop);
else if (type == PROP_INT)
value = RNA_property_int_get(&ptr, prop);
else
return false;
*r_value = make_float4(value, value, value, 1.0f);
return true;
}
else if (type == PROP_FLOAT && arraylen <= 4) {
*r_value = make_float4(0.0f, 0.0f, 0.0f, 1.0f);
RNA_property_float_get_array(&ptr, prop, &r_value->x);
return true;
}
return false;
}
/* This function mirrors drw_uniform_attribute_lookup in draw_instance_data.cpp */
static float4 lookup_instance_property(BL::DepsgraphObjectInstance &b_instance,
const string &name,
bool use_instancer)
{
string idprop_name = string_printf("[\"%s\"]", name.c_str());
float4 value;
/* If requesting instance data, check the parent particle system and object. */
if (use_instancer && b_instance.is_instance()) {
BL::ParticleSystem b_psys = b_instance.particle_system();
if (b_psys) {
if (lookup_property(b_psys.settings(), idprop_name, &value) ||
lookup_property(b_psys.settings(), name, &value)) {
return value;
}
}
if (lookup_property(b_instance.parent(), idprop_name, &value) ||
lookup_property(b_instance.parent(), name, &value)) {
return value;
}
}
/* Check the object and mesh. */
BL::Object b_ob = b_instance.object();
BL::ID b_data = b_ob.data();
if (lookup_property(b_ob, idprop_name, &value) || lookup_property(b_ob, name, &value) ||
lookup_property(b_data, idprop_name, &value) || lookup_property(b_data, name, &value)) {
return value;
}
return make_float4(0.0f);
}
bool BlenderSync::sync_object_attributes(BL::DepsgraphObjectInstance &b_instance, Object *object)
{
/* Find which attributes are needed. */
AttributeRequestSet requests = object->get_geometry()->needed_attributes();
/* Delete attributes that became unnecessary. */
vector<ParamValue> &attributes = object->attributes;
bool changed = false;
for (int i = attributes.size() - 1; i >= 0; i--) {
if (!requests.find(attributes[i].name())) {
attributes.erase(attributes.begin() + i);
changed = true;
}
}
/* Update attribute values. */
foreach (AttributeRequest &req, requests.requests) {
ustring name = req.name;
std::string real_name;
BlenderAttributeType type = blender_attribute_name_split_type(name, &real_name);
if (type != BL::ShaderNodeAttribute::attribute_type_GEOMETRY) {
bool use_instancer = (type == BL::ShaderNodeAttribute::attribute_type_INSTANCER);
float4 value = lookup_instance_property(b_instance, real_name, use_instancer);
/* Try finding the existing attribute value. */
ParamValue *param = NULL;
for (size_t i = 0; i < attributes.size(); i++) {
if (attributes[i].name() == name) {
param = &attributes[i];
break;
}
}
/* Replace or add the value. */
ParamValue new_param(name, TypeDesc::TypeFloat4, 1, &value);
assert(new_param.datasize() == sizeof(value));
if (!param) {
changed = true;
attributes.push_back(new_param);
}
else if (memcmp(param->data(), &value, sizeof(value)) != 0) {
changed = true;
*param = new_param;
}
}
}
return changed;
}
/* Object Loop */
void BlenderSync::sync_objects(BL::Depsgraph &b_depsgraph,
BL::SpaceView3D &b_v3d,
float motion_time)
{
/* Task pool for multithreaded geometry sync. */
TaskPool geom_task_pool;
/* layer data */
bool motion = motion_time != 0.0f;
if (!motion) {
/* prepare for sync */
light_map.pre_sync();
geometry_map.pre_sync();
object_map.pre_sync();
particle_system_map.pre_sync();
motion_times.clear();
}
else {
geometry_motion_synced.clear();
}
/* initialize culling */
BlenderObjectCulling culling(scene, b_scene);
/* object loop */
bool cancel = false;
bool use_portal = false;
const bool show_lights = BlenderViewportParameters(b_v3d).use_scene_lights;
BL::ViewLayer b_view_layer = b_depsgraph.view_layer_eval();
BL::Depsgraph::object_instances_iterator b_instance_iter;
for (b_depsgraph.object_instances.begin(b_instance_iter);
b_instance_iter != b_depsgraph.object_instances.end() && !cancel;
++b_instance_iter) {
BL::DepsgraphObjectInstance b_instance = *b_instance_iter;
BL::Object b_ob = b_instance.object();
/* Viewport visibility. */
const bool show_in_viewport = !b_v3d || b_ob.visible_in_viewport_get(b_v3d);
if (show_in_viewport == false) {
continue;
}
/* Load per-object culling data. */
culling.init_object(scene, b_ob);
/* Ensure the object geom supporting the hair is processed before adding
* the hair processing task to the task pool, calling .to_mesh() on the
* same object in parallel does not work. */
const bool sync_hair = b_instance.show_particles() && object_has_particle_hair(b_ob);
/* Object itself. */
if (b_instance.show_self()) {
sync_object(b_depsgraph,
b_view_layer,
b_instance,
motion_time,
false,
show_lights,
culling,
&use_portal,
sync_hair ? NULL : &geom_task_pool);
}
/* Particle hair as separate object. */
if (sync_hair) {
sync_object(b_depsgraph,
b_view_layer,
b_instance,
motion_time,
true,
show_lights,
culling,
&use_portal,
&geom_task_pool);
}
cancel = progress.get_cancel();
}
geom_task_pool.wait_work();
progress.set_sync_status("");
if (!cancel && !motion) {
sync_background_light(b_v3d, use_portal);
/* Handle removed data and modified pointers, as this may free memory, delete Nodes in the
2021-05-04 00:42:34 +10:00
* right order to ensure that dependent data is freed after their users. Objects should be
* freed before particle systems and geometries. */
light_map.post_sync();
object_map.post_sync();
geometry_map.post_sync();
particle_system_map.post_sync();
}
if (motion)
geometry_motion_synced.clear();
}
void BlenderSync::sync_motion(BL::RenderSettings &b_render,
BL::Depsgraph &b_depsgraph,
BL::SpaceView3D &b_v3d,
BL::Object &b_override,
int width,
int height,
void **python_thread_state)
{
if (scene->need_motion() == Scene::MOTION_NONE)
return;
/* get camera object here to deal with camera switch */
BL::Object b_cam = b_scene.camera();
if (b_override)
b_cam = b_override;
int frame_center = b_scene.frame_current();
float subframe_center = b_scene.frame_subframe();
float frame_center_delta = 0.0f;
if (scene->need_motion() != Scene::MOTION_PASS &&
scene->camera->get_motion_position() != Camera::MOTION_POSITION_CENTER) {
float shuttertime = scene->camera->get_shuttertime();
if (scene->camera->get_motion_position() == Camera::MOTION_POSITION_END) {
frame_center_delta = -shuttertime * 0.5f;
}
else {
assert(scene->camera->get_motion_position() == Camera::MOTION_POSITION_START);
frame_center_delta = shuttertime * 0.5f;
}
float time = frame_center + subframe_center + frame_center_delta;
int frame = (int)floorf(time);
float subframe = time - frame;
python_thread_state_restore(python_thread_state);
b_engine.frame_set(frame, subframe);
python_thread_state_save(python_thread_state);
if (b_cam) {
sync_camera_motion(b_render, b_cam, width, height, 0.0f);
}
sync_objects(b_depsgraph, b_v3d, 0.0f);
}
/* Insert motion times from camera. Motion times from other objects
* have already been added in a sync_objects call. */
if (b_cam) {
uint camera_motion_steps = object_motion_steps(b_cam, b_cam);
for (size_t step = 0; step < camera_motion_steps; step++) {
motion_times.insert(scene->camera->motion_time(step));
}
}
/* note iteration over motion_times set happens in sorted order */
foreach (float relative_time, motion_times) {
/* center time is already handled. */
if (relative_time == 0.0f) {
continue;
}
VLOG(1) << "Synchronizing motion for the relative time " << relative_time << ".";
/* fixed shutter time to get previous and next frame for motion pass */
float shuttertime = scene->motion_shutter_time();
/* compute frame and subframe time */
float time = frame_center + subframe_center + frame_center_delta +
relative_time * shuttertime * 0.5f;
int frame = (int)floorf(time);
float subframe = time - frame;
/* change frame */
python_thread_state_restore(python_thread_state);
b_engine.frame_set(frame, subframe);
python_thread_state_save(python_thread_state);
/* Syncs camera motion if relative_time is one of the camera's motion times. */
sync_camera_motion(b_render, b_cam, width, height, relative_time);
/* sync object */
sync_objects(b_depsgraph, b_v3d, relative_time);
}
/* we need to set the python thread state again because this
* function assumes it is being executed from python and will
* try to save the thread state */
python_thread_state_restore(python_thread_state);
b_engine.frame_set(frame_center, subframe_center);
python_thread_state_save(python_thread_state);
}
CCL_NAMESPACE_END