This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/render/intern/raytrace/rayobject_rtbuild.cpp

494 lines
12 KiB
C++
Raw Normal View History

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2009 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): André Pinto.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <assert.h>
#include <math.h>
#include <stdlib.h>
2009-08-02 12:11:14 +00:00
#include <algorithm>
#include "rayobject_rtbuild.h"
#include "MEM_guardedalloc.h"
#include "BLI_arithb.h"
#include "BKE_utildefines.h"
static bool selected_node(RTBuilder::Object *node)
{
return node->selected;
}
static void rtbuild_init(RTBuilder *b)
{
b->split_axis = -1;
b->primitives.begin = 0;
b->primitives.end = 0;
b->primitives.maxsize = 0;
for(int i=0; i<RTBUILD_MAX_CHILDS; i++)
b->child_offset[i] = 0;
for(int i=0; i<3; i++)
b->sorted_begin[i] = b->sorted_end[i] = 0;
INIT_MINMAX(b->bb, b->bb+3);
}
RTBuilder* rtbuild_create(int size)
{
RTBuilder *builder = (RTBuilder*) MEM_mallocN( sizeof(RTBuilder), "RTBuilder" );
RTBuilder::Object *memblock= (RTBuilder::Object*)MEM_mallocN( sizeof(RTBuilder::Object)*size,"RTBuilder.objects");
rtbuild_init(builder);
builder->primitives.begin = builder->primitives.end = memblock;
builder->primitives.maxsize = size;
for(int i=0; i<3; i++)
{
builder->sorted_begin[i] = (RTBuilder::Object**)MEM_mallocN( sizeof(RTBuilder::Object*)*size,"RTBuilder.sorted_objects");
builder->sorted_end[i] = builder->sorted_begin[i];
}
return builder;
}
void rtbuild_free(RTBuilder *b)
{
if(b->primitives.begin) MEM_freeN(b->primitives.begin);
for(int i=0; i<3; i++)
if(b->sorted_begin[i])
MEM_freeN(b->sorted_begin[i]);
MEM_freeN(b);
}
void rtbuild_add(RTBuilder *b, RayObject *o)
{
assert( b->primitives.begin + b->primitives.maxsize != b->primitives.end );
b->primitives.end->obj = o;
b->primitives.end->cost = RE_rayobject_cost(o);
INIT_MINMAX(b->primitives.end->bb, b->primitives.end->bb+3);
RE_rayobject_merge_bb(o, b->primitives.end->bb, b->primitives.end->bb+3);
for(int i=0; i<3; i++)
{
*(b->sorted_end[i]) = b->primitives.end;
b->sorted_end[i]++;
}
b->primitives.end++;
}
int rtbuild_size(RTBuilder *b)
{
return b->sorted_end[0] - b->sorted_begin[0];
}
template<class Obj,int Axis>
static bool obj_bb_compare(const Obj &a, const Obj &b)
{
if(a->bb[Axis] != b->bb[Axis])
return a->bb[Axis] < b->bb[Axis];
return a->obj < b->obj;
}
template<class Item>
static void object_sort(Item *begin, Item *end, int axis)
{
if(axis == 0) return std::sort(begin, end, obj_bb_compare<Item,0> );
if(axis == 1) return std::sort(begin, end, obj_bb_compare<Item,1> );
if(axis == 2) return std::sort(begin, end, obj_bb_compare<Item,2> );
assert(false);
}
void rtbuild_done(RTBuilder *b)
{
for(int i=0; i<3; i++)
if(b->sorted_begin[i])
object_sort( b->sorted_begin[i], b->sorted_end[i], i );
}
RayObject* rtbuild_get_primitive(RTBuilder *b, int index)
{
return b->sorted_begin[0][index]->obj;
}
RTBuilder* rtbuild_get_child(RTBuilder *b, int child, RTBuilder *tmp)
{
rtbuild_init( tmp );
for(int i=0; i<3; i++)
if(b->sorted_begin[i])
{
tmp->sorted_begin[i] = b->sorted_begin[i] + b->child_offset[child ];
tmp->sorted_end [i] = b->sorted_begin[i] + b->child_offset[child+1];
}
else
{
tmp->sorted_begin[i] = 0;
tmp->sorted_end [i] = 0;
}
return tmp;
}
void rtbuild_calc_bb(RTBuilder *b)
{
if(b->bb[0] == 1.0e30f)
{
for(RTBuilder::Object **index = b->sorted_begin[0]; index != b->sorted_end[0]; index++)
RE_rayobject_merge_bb( (*index)->obj , b->bb, b->bb+3);
}
}
void rtbuild_merge_bb(RTBuilder *b, float *min, float *max)
{
rtbuild_calc_bb(b);
DO_MIN(b->bb, min);
DO_MAX(b->bb+3, max);
}
/*
int rtbuild_get_largest_axis(RTBuilder *b)
{
rtbuild_calc_bb(b);
return bb_largest_axis(b->bb, b->bb+3);
}
//Left balanced tree
int rtbuild_mean_split(RTBuilder *b, int nchilds, int axis)
{
int i;
int mleafs_per_child, Mleafs_per_child;
int tot_leafs = rtbuild_size(b);
int missing_leafs;
long long s;
assert(nchilds <= RTBUILD_MAX_CHILDS);
//TODO optimize calc of leafs_per_child
for(s=nchilds; s<tot_leafs; s*=nchilds);
Mleafs_per_child = s/nchilds;
mleafs_per_child = Mleafs_per_child/nchilds;
//split min leafs per child
b->child_offset[0] = 0;
for(i=1; i<=nchilds; i++)
b->child_offset[i] = mleafs_per_child;
//split remaining leafs
missing_leafs = tot_leafs - mleafs_per_child*nchilds;
for(i=1; i<=nchilds; i++)
{
if(missing_leafs > Mleafs_per_child - mleafs_per_child)
{
b->child_offset[i] += Mleafs_per_child - mleafs_per_child;
missing_leafs -= Mleafs_per_child - mleafs_per_child;
}
else
{
b->child_offset[i] += missing_leafs;
missing_leafs = 0;
break;
}
}
//adjust for accumulative offsets
for(i=1; i<=nchilds; i++)
b->child_offset[i] += b->child_offset[i-1];
//Count created childs
for(i=nchilds; b->child_offset[i] == b->child_offset[i-1]; i--);
split_leafs(b, b->child_offset, i, axis);
assert( b->child_offset[0] == 0 && b->child_offset[i] == tot_leafs );
return i;
}
int rtbuild_mean_split_largest_axis(RTBuilder *b, int nchilds)
{
int axis = rtbuild_get_largest_axis(b);
return rtbuild_mean_split(b, nchilds, axis);
}
*/
/*
* "separators" is an array of dim NCHILDS-1
* and indicates where to cut the childs
*/
/*
int rtbuild_median_split(RTBuilder *b, float *separators, int nchilds, int axis)
{
int size = rtbuild_size(b);
assert(nchilds <= RTBUILD_MAX_CHILDS);
if(size <= nchilds)
{
return rtbuild_mean_split(b, nchilds, axis);
}
else
{
int i;
b->split_axis = axis;
//Calculate child offsets
b->child_offset[0] = 0;
for(i=0; i<nchilds-1; i++)
b->child_offset[i+1] = split_leafs_by_plane(b, b->child_offset[i], size, separators[i]);
b->child_offset[nchilds] = size;
for(i=0; i<nchilds; i++)
if(b->child_offset[i+1] - b->child_offset[i] == size)
return rtbuild_mean_split(b, nchilds, axis);
return nchilds;
}
}
int rtbuild_median_split_largest_axis(RTBuilder *b, int nchilds)
{
int la, i;
float separators[RTBUILD_MAX_CHILDS];
rtbuild_calc_bb(b);
la = bb_largest_axis(b->bb,b->bb+3);
for(i=1; i<nchilds; i++)
separators[i-1] = (b->bb[la+3]-b->bb[la])*i / nchilds;
return rtbuild_median_split(b, separators, nchilds, la);
}
*/
//Heuristics Object Splitter
struct SweepCost
{
float bb[6];
float cost;
};
/* Object Surface Area Heuristic splitter */
int rtbuild_heuristic_object_split(RTBuilder *b, int nchilds)
{
int size = rtbuild_size(b);
assert(nchilds == 2);
assert(size > 1);
int baxis = -1, boffset = 0;
if(size > nchilds)
{
float bcost = FLT_MAX;
baxis = -1, boffset = size/2;
SweepCost *sweep = (SweepCost*)MEM_mallocN( sizeof(SweepCost)*size, "RTBuilder.HeuristicSweep" );
for(int axis=0; axis<3; axis++)
{
SweepCost sweep_left;
RTBuilder::Object **obj = b->sorted_begin[axis];
// float right_cost = 0;
for(int i=size-1; i>=0; i--)
{
if(i == size-1)
{
VECCOPY(sweep[i].bb, obj[i]->bb);
VECCOPY(sweep[i].bb+3, obj[i]->bb+3);
sweep[i].cost = obj[i]->cost;
}
else
{
sweep[i].bb[0] = MIN2(obj[i]->bb[0], sweep[i+1].bb[0]);
sweep[i].bb[1] = MIN2(obj[i]->bb[1], sweep[i+1].bb[1]);
sweep[i].bb[2] = MIN2(obj[i]->bb[2], sweep[i+1].bb[2]);
sweep[i].bb[3] = MAX2(obj[i]->bb[3], sweep[i+1].bb[3]);
sweep[i].bb[4] = MAX2(obj[i]->bb[4], sweep[i+1].bb[4]);
sweep[i].bb[5] = MAX2(obj[i]->bb[5], sweep[i+1].bb[5]);
sweep[i].cost = obj[i]->cost + sweep[i+1].cost;
}
// right_cost += obj[i]->cost;
}
sweep_left.bb[0] = obj[0]->bb[0];
sweep_left.bb[1] = obj[0]->bb[1];
sweep_left.bb[2] = obj[0]->bb[2];
sweep_left.bb[3] = obj[0]->bb[3];
sweep_left.bb[4] = obj[0]->bb[4];
sweep_left.bb[5] = obj[0]->bb[5];
sweep_left.cost = obj[0]->cost;
// right_cost -= obj[0]->cost; if(right_cost < 0) right_cost = 0;
for(int i=1; i<size; i++)
{
//Worst case heuristic (cost of each child is linear)
float hcost, left_side, right_side;
left_side = bb_area(sweep_left.bb, sweep_left.bb+3)*(sweep_left.cost+logf(i));
right_side= bb_area(sweep[i].bb, sweep[i].bb+3)*(sweep[i].cost+logf(size-i));
hcost = left_side+right_side;
assert(left_side >= 0);
assert(right_side >= 0);
if(left_side > bcost) break; //No way we can find a better heuristic in this axis
assert(hcost >= 0);
if( hcost < bcost
|| (hcost == bcost && axis < baxis)) //this makes sure the tree built is the same whatever is the order of the sorting axis
{
bcost = hcost;
baxis = axis;
boffset = i;
}
DO_MIN( obj[i]->bb, sweep_left.bb );
DO_MAX( obj[i]->bb+3, sweep_left.bb+3 );
sweep_left.cost += obj[i]->cost;
// right_cost -= obj[i]->cost; if(right_cost < 0) right_cost = 0;
}
assert(baxis >= 0 && baxis < 3);
}
MEM_freeN(sweep);
}
else if(size == 2)
{
baxis = 0;
boffset = 1;
}
else if(size == 1)
{
b->child_offset[0] = 0;
b->child_offset[1] = 1;
return 1;
}
b->child_offset[0] = 0;
b->child_offset[1] = boffset;
b->child_offset[2] = size;
/* Adjust sorted arrays for childs */
for(int i=0; i<boffset; i++) b->sorted_begin[baxis][i]->selected = true;
for(int i=boffset; i<size; i++) b->sorted_begin[baxis][i]->selected = false;
for(int i=0; i<3; i++)
std::stable_partition( b->sorted_begin[i], b->sorted_end[i], selected_node );
return nchilds;
}
/*
* Helper code
* PARTITION code / used on mean-split
* basicly this a std::nth_element (like on C++ STL algorithm)
*/
/*
static void split_leafs(RTBuilder *b, int *nth, int partitions, int split_axis)
{
int i;
b->split_axis = split_axis;
for(i=0; i < partitions-1; i++)
{
assert(nth[i] < nth[i+1] && nth[i+1] < nth[partitions]);
if(split_axis == 0) std::nth_element(b, nth[i], nth[i+1], nth[partitions], obj_bb_compare<RTBuilder::Object,0>);
if(split_axis == 1) std::nth_element(b, nth[i], nth[i+1], nth[partitions], obj_bb_compare<RTBuilder::Object,1>);
if(split_axis == 2) std::nth_element(b, nth[i], nth[i+1], nth[partitions], obj_bb_compare<RTBuilder::Object,2>);
}
}
*/
/*
* Bounding Box utils
*/
float bb_volume(float *min, float *max)
{
return (max[0]-min[0])*(max[1]-min[1])*(max[2]-min[2]);
}
float bb_area(float *min, float *max)
{
float sub[3], a;
sub[0] = max[0]-min[0];
sub[1] = max[1]-min[1];
sub[2] = max[2]-min[2];
a = (sub[0]*sub[1] + sub[0]*sub[2] + sub[1]*sub[2])*2;
assert(a >= 0.0);
return a;
}
int bb_largest_axis(float *min, float *max)
{
float sub[3];
sub[0] = max[0]-min[0];
sub[1] = max[1]-min[1];
sub[2] = max[2]-min[2];
if(sub[0] > sub[1])
{
if(sub[0] > sub[2])
return 0;
else
return 2;
}
else
{
if(sub[1] > sub[2])
return 1;
else
return 2;
}
}
int bb_fits_inside(float *outer_min, float *outer_max, float *inner_min, float *inner_max)
{
int i;
for(i=0; i<3; i++)
if(outer_min[i] > inner_min[i]) return 0;
for(i=0; i<3; i++)
if(outer_max[i] < inner_max[i]) return 0;
return 1;
}