This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/bmesh/operators/bmo_normals.c

306 lines
9.5 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup bmesh
*
* normal recalculation.
*/
#include "MEM_guardedalloc.h"
#include "BLI_linklist_stack.h"
#include "BLI_math.h"
#include "bmesh.h"
#include "intern/bmesh_operators_private.h" /* own include */
/********* righthand faces implementation ****** */
#define FACE_FLAG (1 << 0)
#define FACE_FLIP (1 << 1)
#define FACE_TEMP (1 << 2)
static bool bmo_recalc_normal_loop_filter_cb(const BMLoop *l, void *UNUSED(user_data))
{
return BM_edge_is_manifold(l->e);
}
/**
* This uses a more comprehensive test to see if the furthest face from the center
* is pointing towards the center or not.
*
* A simple test could just check the dot product
* of the faces-normal and the direction from the center,
* however this can fail for faces which make a sharp spike. eg:
*
* <pre>
* +
* |\ <- face
* + +
* \ \
* \ \
* \ +--------------+
* \ |
* \ center -> + |
* \ |
* +------------+
* </pre>
*
* In the example above, the a\ face can point towards the \a center
* which would end up flipping the normals inwards.
*
* To take these spikes into account, find the furthest face-loop-vertex.
*/
/**
* \return a face index in \a faces and set \a r_is_flip
* if the face is flipped away from the center.
*/
static int recalc_face_normals_find_index(BMesh *bm,
BMFace **faces,
const int faces_len,
bool *r_is_flip)
{
const float eps = FLT_EPSILON;
float cent_area_accum = 0.0f;
float cent[3];
const float cent_fac = 1.0f / (float)faces_len;
bool is_flip = false;
int f_start_index;
int i;
/** Search for the best loop. Members are compared in-order defined here. */
struct {
/**
* Squared distance from the center to the loops vertex 'l->v'.
* The normalized direction between the center and this vertex
* is also used for the dot-products below.
*/
float dist_sq;
/**
* Signed dot product using the normalized edge vector,
* (best of 'l->prev->v' or 'l->next->v').
*/
float edge_dot;
/**
* Unsigned dot product using the loop-normal
* (sign is used to check if we need to flip).
*/
float loop_dot;
} best, test;
UNUSED_VARS_NDEBUG(bm);
zero_v3(cent);
/* first calculate the center */
for (i = 0; i < faces_len; i++) {
float f_cent[3];
const float f_area = BM_face_calc_area(faces[i]);
BM_face_calc_center_median_weighted(faces[i], f_cent);
madd_v3_v3fl(cent, f_cent, cent_fac * f_area);
cent_area_accum += f_area;
BLI_assert(BMO_face_flag_test(bm, faces[i], FACE_TEMP) == 0);
BLI_assert(BM_face_is_normal_valid(faces[i]));
}
if (cent_area_accum != 0.0f) {
mul_v3_fl(cent, 1.0f / cent_area_accum);
}
/* Distances must start above zero,
* or we can't do meaningful calculations based on the direction to the center */
best.dist_sq = eps;
best.edge_dot = best.loop_dot = -FLT_MAX;
/* used in degenerate cases only */
f_start_index = 0;
/**
* Find the outer-most vertex, comparing distance to the center,
* then the outer-most loop attached to that vertex.
*
* Important this is correctly detected,
* where casting a ray from the center wont hit any loops past this one.
* Otherwise the result may be incorrect.
*/
for (i = 0; i < faces_len; i++) {
BMLoop *l_iter, *l_first;
l_iter = l_first = BM_FACE_FIRST_LOOP(faces[i]);
do {
bool is_best_dist_sq;
float dir[3];
sub_v3_v3v3(dir, l_iter->v->co, cent);
test.dist_sq = len_squared_v3(dir);
is_best_dist_sq = (test.dist_sq > best.dist_sq);
if (is_best_dist_sq || (test.dist_sq == best.dist_sq)) {
float edge_dir_pair[2][3];
mul_v3_fl(dir, 1.0f / sqrtf(test.dist_sq));
sub_v3_v3v3(edge_dir_pair[0], l_iter->next->v->co, l_iter->v->co);
sub_v3_v3v3(edge_dir_pair[1], l_iter->prev->v->co, l_iter->v->co);
if ((normalize_v3(edge_dir_pair[0]) > eps) && (normalize_v3(edge_dir_pair[1]) > eps)) {
bool is_best_edge_dot;
test.edge_dot = max_ff(dot_v3v3(dir, edge_dir_pair[0]), dot_v3v3(dir, edge_dir_pair[1]));
is_best_edge_dot = (test.edge_dot > best.edge_dot);
if (is_best_dist_sq || is_best_edge_dot || (test.edge_dot == best.edge_dot)) {
float loop_dir[3];
cross_v3_v3v3(loop_dir, edge_dir_pair[0], edge_dir_pair[1]);
if (normalize_v3(loop_dir) > eps) {
float loop_dir_dot;
/* Highly unlikely the furthest loop is also the concave part of an ngon,
* but it can be contrived with _very_ non-planar faces - so better check. */
if (UNLIKELY(dot_v3v3(loop_dir, l_iter->f->no) < 0.0f)) {
negate_v3(loop_dir);
}
loop_dir_dot = dot_v3v3(dir, loop_dir);
test.loop_dot = fabsf(loop_dir_dot);
if (is_best_dist_sq || is_best_edge_dot || (test.loop_dot > best.loop_dot)) {
best = test;
f_start_index = i;
is_flip = (loop_dir_dot < 0.0f);
}
}
}
}
}
} while ((l_iter = l_iter->next) != l_first);
}
*r_is_flip = is_flip;
return f_start_index;
}
/**
* Given an array of faces, recalculate their normals.
* this functions assumes all faces in the array are connected by edges.
*
* \param bm:
* \param faces: Array of connected faces.
* \param faces_len: Length of \a faces
* \param oflag: Flag to check before doing the actual face flipping.
*/
static void bmo_recalc_face_normals_array(BMesh *bm,
BMFace **faces,
const int faces_len,
const short oflag)
{
int i, f_start_index;
const short oflag_flip = oflag | FACE_FLIP;
bool is_flip;
BMFace *f;
BLI_LINKSTACK_DECLARE(fstack, BMFace *);
f_start_index = recalc_face_normals_find_index(bm, faces, faces_len, &is_flip);
if (is_flip) {
BMO_face_flag_enable(bm, faces[f_start_index], FACE_FLIP);
}
/* now that we've found our starting face, make all connected faces
* have the same winding. this is done recursively, using a manual
* stack (if we use simple function recursion, we'd end up overloading
* the stack on large meshes). */
BLI_LINKSTACK_INIT(fstack);
BLI_LINKSTACK_PUSH(fstack, faces[f_start_index]);
BMO_face_flag_enable(bm, faces[f_start_index], FACE_TEMP);
while ((f = BLI_LINKSTACK_POP(fstack))) {
const bool flip_state = BMO_face_flag_test_bool(bm, f, FACE_FLIP);
BMLoop *l_iter, *l_first;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
BMLoop *l_other = l_iter->radial_next;
if ((l_other != l_iter) && bmo_recalc_normal_loop_filter_cb(l_iter, NULL)) {
if (!BMO_face_flag_test(bm, l_other->f, FACE_TEMP)) {
BMO_face_flag_enable(bm, l_other->f, FACE_TEMP);
BMO_face_flag_set(bm, l_other->f, FACE_FLIP, (l_other->v == l_iter->v) != flip_state);
BLI_LINKSTACK_PUSH(fstack, l_other->f);
}
}
} while ((l_iter = l_iter->next) != l_first);
}
BLI_LINKSTACK_FREE(fstack);
/* apply flipping to oflag'd faces */
for (i = 0; i < faces_len; i++) {
if (BMO_face_flag_test(bm, faces[i], oflag_flip) == oflag_flip) {
BM_face_normal_flip(bm, faces[i]);
}
BMO_face_flag_disable(bm, faces[i], FACE_TEMP);
}
}
/**
* Put normal to the outside, and set the first direction flags in edges
*
* then check the object, and set directions / direction-flags:
* but only for edges with 1 or 2 faces this is in fact the 'select connected'
*
* in case all faces were not done: start over with 'find the ultimate ...'.
*/
void bmo_recalc_face_normals_exec(BMesh *bm, BMOperator *op)
{
int *groups_array = MEM_mallocN(sizeof(*groups_array) * bm->totface, __func__);
BMFace **faces_grp = MEM_mallocN(sizeof(*faces_grp) * bm->totface, __func__);
int(*group_index)[2];
const int group_tot = BM_mesh_calc_face_groups(
bm, groups_array, &group_index, bmo_recalc_normal_loop_filter_cb, NULL, 0, BM_EDGE);
int i;
BMO_slot_buffer_flag_enable(bm, op->slots_in, "faces", BM_FACE, FACE_FLAG);
BM_mesh_elem_table_ensure(bm, BM_FACE);
for (i = 0; i < group_tot; i++) {
const int fg_sta = group_index[i][0];
const int fg_len = group_index[i][1];
int j;
bool is_calc = false;
for (j = 0; j < fg_len; j++) {
faces_grp[j] = BM_face_at_index(bm, groups_array[fg_sta + j]);
if (is_calc == false) {
is_calc = BMO_face_flag_test_bool(bm, faces_grp[j], FACE_FLAG);
}
}
if (is_calc) {
bmo_recalc_face_normals_array(bm, faces_grp, fg_len, FACE_FLAG);
}
}
MEM_freeN(faces_grp);
MEM_freeN(groups_array);
MEM_freeN(group_index);
}