This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/freestyle/intern/blender_interface/BlenderStrokeRenderer.cpp

899 lines
31 KiB
C++
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup freestyle
*/
#include "BlenderStrokeRenderer.h"
#include "../application/AppConfig.h"
#include "../stroke/Canvas.h"
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
#include "MEM_guardedalloc.h"
extern "C" {
#include "RNA_access.h"
#include "RNA_types.h"
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
#include "DNA_camera_types.h"
#include "DNA_collection_types.h"
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
#include "DNA_listBase.h"
#include "DNA_linestyle_types.h"
#include "DNA_material_types.h"
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
#include "DNA_meshdata_types.h"
#include "DNA_mesh_types.h"
#include "DNA_object_types.h"
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
#include "DNA_screen_types.h"
#include "DNA_scene_types.h"
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
#include "BKE_collection.h"
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
#include "BKE_customdata.h"
#include "BKE_idprop.h"
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
#include "BKE_global.h"
Collections and groups unification OVERVIEW * In 2.7 terminology, all layers and groups are now collection datablocks. * These collections are nestable, linkable, instanceable, overrideable, .. which opens up new ways to set up scenes and link + override data. * Viewport/render visibility and selectability are now a part of the collection and shared across all view layers and linkable. * View layers define which subset of the scene collection hierarchy is excluded for each. For many workflows one view layer can be used, these are more of an advanced feature now. OUTLINER * The outliner now has a "View Layer" display mode instead of "Collections", which can display the collections and/or objects in the view layer. * In this display mode, collections can be excluded with the right click menu. These will then be greyed out and their objects will be excluded. * To view collections not linked to any scene, the "Blender File" display mode can be used, with the new filtering option to just see Colleciton datablocks. * The outliner right click menus for collections and objects were reorganized. * Drag and drop still needs to be improved. Like before, dragging the icon or text gives different results, we'll unify this later. LINKING AND OVERRIDES * Collections can now be linked into the scene without creating an instance, with the link/append operator or from the collections view in the outliner. * Collections can get static overrides with the right click menu in the outliner, but this is rather unreliable and not clearly communicated at the moment. * We still need to improve the make override operator to turn collection instances into collections with overrides directly in the scene. PERFORMANCE * We tried to make performance not worse than before and improve it in some cases. The main thing that's still a bit slower is multiple scenes, we have to change the layer syncing to only updated affected scenes. * Collections keep a list of their parent collections for faster incremental updates in syncing and caching. * View layer bases are now in a object -> base hash to avoid quadratic time lookups internally and in API functions like visible_get(). VERSIONING * Compatibility with 2.7 files should be improved due to the new visibility controls. Of course users may not want to set up their scenes differently now to avoid having separate layers and groups. * Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero files. There's a few things which are know to be not quite compatible, like nested layer collections inside groups. * The versioning code for 2.8 files is quite complicated, and isolated behind #ifdef so it can be removed at the end of the release cycle. KNOWN ISSUES * The G-key group operators in the 3D viewport were left mostly as is, they need to be modified still to fit better. * Same for the groups panel in the object properties. This needs to be updated still, or perhaps replaced by something better. * Collections must all have a unique name. Less restrictive namespacing is to be done later, we'll have to see how important this is as all objects within the collections must also have a unique name anyway. * Full scene copy and delete scene are exactly doing the right thing yet. Differential Revision: https://developer.blender.org/D3383 https://code.blender.org/2018/05/collections-and-groups/
2018-04-30 15:57:22 +02:00
#include "BKE_layer.h"
#include "BKE_lib_id.h" /* free_libblock */
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_node.h"
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
#include "BKE_object.h"
#include "BKE_scene.h"
#include "BLI_ghash.h"
#include "BLI_listbase.h"
#include "BLI_math_color.h"
#include "BLI_math_vector.h"
#include "BLI_utildefines.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_build.h"
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
#include "RE_pipeline.h"
#include "render_types.h"
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
}
#include <limits.h>
Attempt to fix a potential name conflict between Freestyle and the compositor. A crash in the Freestyle renderer was reported by Ton on IRC with a stack trace below. Note that #2 is in Freestyle, whereas #1 is in the compositor. The problem was observed in a debug build on OS X 10.7 (gcc 4.2, openmp disabled, no llvm). ---------------------------------------------------------------------- Program received signal EXC_BAD_ACCESS, Could not access memory. Reason: 13 at address: 0x0000000000000000 [Switching to process 72386 thread 0xf303] 0x0000000100c129f3 in NodeBase::~NodeBase (this=0x10e501c80) at COM_NodeBase.cpp:43 43 delete (this->m_outputsockets.back()); Current language: auto; currently c++ (gdb) where #0 0x0000000100c129f3 in NodeBase::~NodeBase (this=0x10e501c80) at COM_NodeBase.cpp:43 #1 0x0000000100c29066 in Node::~Node (this=0x10e501c80) at COM_Node.h:49 #2 0x000000010089c273 in NodeShape::~NodeShape (this=0x10e501c80) at NodeShape.cpp:43 #3 0x000000010089910b in NodeGroup::destroy (this=0x10e501da0) at NodeGroup.cpp:61 #4 0x00000001008990cd in NodeGroup::destroy (this=0x10e5014b0) at NodeGroup.cpp:59 #5 0x00000001008990cd in NodeGroup::destroy (this=0x114e18da0) at NodeGroup.cpp:59 #6 0x00000001007e6602 in Controller::ClearRootNode (this=0x114e19640) at Controller.cpp:329 #7 0x00000001007ea52e in Controller::LoadMesh (this=0x114e19640, re=0x10aba4638, srl=0x1140f5258) at Controller.cpp:302 #8 0x00000001008030ad in prepare (re=0x10aba4638, srl=0x1140f5258) at FRS_freestyle.cpp:302 #9 0x000000010080457a in FRS_do_stroke_rendering (re=0x10aba4638, srl=0x1140f5258) at FRS_freestyle.cpp:600 #10 0x00000001006aeb9d in add_freestyle (re=0x10aba4638) at pipeline.c:1584 #11 0x00000001006aceb7 in do_render_3d (re=0x10aba4638) at pipeline.c:1094 #12 0x00000001006ae061 in do_render_fields_blur_3d (re=0x10aba4638) at pipeline.c:1367 #13 0x00000001006afa16 in do_render_composite_fields_blur_3d (re=0x10aba4638) at pipeline.c:1815 #14 0x00000001006b04e4 in do_render_all_options (re=0x10aba4638) at pipeline.c:2021 ---------------------------------------------------------------------- Apparently a name conflict between the two Blender modules is taking place. The present commit hence intends to address it by putting all the Freestyle C++ classes in the namespace 'Freestyle'. This revision will also prevent potential name conflicts with other Blender modules in the future. Special thanks to Lukas Toenne for the help with C++ namespace.
2013-04-09 00:46:49 +00:00
namespace Freestyle {
const char *BlenderStrokeRenderer::uvNames[] = {"along_stroke", "along_stroke_tips"};
BlenderStrokeRenderer::BlenderStrokeRenderer(Render *re, int render_count) : StrokeRenderer()
{
freestyle_bmain = re->freestyle_bmain;
// for stroke mesh generation
_width = re->winx;
_height = re->winy;
old_scene = re->scene;
char name[MAX_ID_NAME - 2];
BLI_snprintf(name, sizeof(name), "FRS%d_%s", render_count, re->scene->id.name + 2);
freestyle_scene = BKE_scene_add(freestyle_bmain, name);
freestyle_scene->r.cfra = old_scene->r.cfra;
freestyle_scene->r.mode = old_scene->r.mode & ~(R_EDGE_FRS | R_BORDER);
freestyle_scene->r.xsch = re->rectx; // old_scene->r.xsch
freestyle_scene->r.ysch = re->recty; // old_scene->r.ysch
freestyle_scene->r.xasp = 1.0f; // old_scene->r.xasp;
freestyle_scene->r.yasp = 1.0f; // old_scene->r.yasp;
freestyle_scene->r.tilex = old_scene->r.tilex;
freestyle_scene->r.tiley = old_scene->r.tiley;
freestyle_scene->r.size = 100; // old_scene->r.size
freestyle_scene->r.color_mgt_flag = 0; // old_scene->r.color_mgt_flag;
freestyle_scene->r.scemode = (old_scene->r.scemode &
~(R_SINGLE_LAYER | R_NO_FRAME_UPDATE | R_MULTIVIEW)) &
(re->r.scemode | ~R_FULL_SAMPLE);
freestyle_scene->r.flag = old_scene->r.flag;
freestyle_scene->r.threads = old_scene->r.threads;
freestyle_scene->r.border.xmin = old_scene->r.border.xmin;
freestyle_scene->r.border.ymin = old_scene->r.border.ymin;
freestyle_scene->r.border.xmax = old_scene->r.border.xmax;
freestyle_scene->r.border.ymax = old_scene->r.border.ymax;
strcpy(freestyle_scene->r.pic, old_scene->r.pic);
freestyle_scene->r.dither_intensity = old_scene->r.dither_intensity;
STRNCPY(freestyle_scene->r.engine, old_scene->r.engine);
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "Stroke rendering engine : " << freestyle_scene->r.engine << endl;
}
freestyle_scene->r.im_format.planes = R_IMF_PLANES_RGBA;
freestyle_scene->r.im_format.imtype = R_IMF_IMTYPE_PNG;
// Copy ID properties, including Cycles render properties
if (old_scene->id.properties) {
freestyle_scene->id.properties = IDP_CopyProperty_ex(old_scene->id.properties, 0);
}
// Copy eevee render settings.
BKE_scene_copy_data_eevee(freestyle_scene, old_scene);
/* Render with transparent background. */
freestyle_scene->r.alphamode = R_ALPHAPREMUL;
if (G.debug & G_DEBUG_FREESTYLE) {
printf("%s: %d thread(s)\n", __func__, BKE_render_num_threads(&freestyle_scene->r));
}
BKE_scene_set_background(freestyle_bmain, freestyle_scene);
// Scene layer.
ViewLayer *view_layer = (ViewLayer *)freestyle_scene->view_layers.first;
view_layer->layflag = SCE_LAY_SOLID | SCE_LAY_ZTRA;
// Camera
Object *object_camera = BKE_object_add(
freestyle_bmain, freestyle_scene, view_layer, OB_CAMERA, NULL);
Camera *camera = (Camera *)object_camera->data;
camera->type = CAM_ORTHO;
camera->ortho_scale = max(re->rectx, re->recty);
camera->clip_start = 0.1f;
camera->clip_end = 100.0f;
_z_delta = 0.00001f;
_z = camera->clip_start + _z_delta;
object_camera->loc[0] = re->disprect.xmin + 0.5f * re->rectx;
object_camera->loc[1] = re->disprect.ymin + 0.5f * re->recty;
object_camera->loc[2] = 1.0f;
freestyle_scene->camera = object_camera;
// Reset serial mesh ID (used for BlenderStrokeRenderer::NewMesh())
_mesh_id = 0xffffffff;
// Create a bNodeTree-to-Material hash table
_nodetree_hash = BLI_ghash_ptr_new("BlenderStrokeRenderer::_nodetree_hash");
// Depsgraph
freestyle_depsgraph = DEG_graph_new(
freestyle_bmain, freestyle_scene, view_layer, DAG_EVAL_RENDER);
DEG_graph_id_tag_update(freestyle_bmain, freestyle_depsgraph, &freestyle_scene->id, 0);
DEG_graph_id_tag_update(freestyle_bmain, freestyle_depsgraph, &object_camera->id, 0);
DEG_graph_tag_relations_update(freestyle_depsgraph);
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
}
BlenderStrokeRenderer::~BlenderStrokeRenderer()
{
// The freestyle_scene object is not released here. Instead,
// the scene is released in free_all_freestyle_renders() in
// source/blender/render/intern/source/pipeline.c, after the
// compositor has finished.
// release objects and data blocks
Base *base_next = NULL;
ViewLayer *view_layer = (ViewLayer *)freestyle_scene->view_layers.first;
for (Base *b = (Base *)view_layer->object_bases.first; b; b = base_next) {
base_next = b->next;
Object *ob = b->object;
char *name = ob->id.name;
#if 0
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "removing " << name[0] << name[1] << ":" << (name + 2) << endl;
}
#endif
switch (ob->type) {
case OB_CAMERA:
freestyle_scene->camera = NULL;
ATTR_FALLTHROUGH;
case OB_MESH:
BKE_scene_collections_object_remove(freestyle_bmain, freestyle_scene, ob, true);
break;
default:
cerr << "Warning: unexpected object in the scene: " << name[0] << name[1] << ":"
<< (name + 2) << endl;
}
}
// release materials
Link *lnk = (Link *)freestyle_bmain->materials.first;
while (lnk) {
Material *ma = (Material *)lnk;
lnk = lnk->next;
BKE_id_free(freestyle_bmain, ma);
}
BLI_ghash_free(_nodetree_hash, NULL, NULL);
DEG_graph_free(freestyle_depsgraph);
FreeStrokeGroups();
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
}
float BlenderStrokeRenderer::get_stroke_vertex_z(void) const
{
float z = _z;
BlenderStrokeRenderer *self = const_cast<BlenderStrokeRenderer *>(this);
if (!(_z < _z_delta * 100000.0f)) {
self->_z_delta *= 10.0f;
}
self->_z += _z_delta;
return -z;
}
unsigned int BlenderStrokeRenderer::get_stroke_mesh_id(void) const
{
unsigned mesh_id = _mesh_id;
BlenderStrokeRenderer *self = const_cast<BlenderStrokeRenderer *>(this);
self->_mesh_id--;
return mesh_id;
}
Material *BlenderStrokeRenderer::GetStrokeShader(Main *bmain,
bNodeTree *iNodeTree,
bool do_id_user)
{
Material *ma = BKE_material_add(bmain, "stroke_shader");
bNodeTree *ntree;
bNode *output_linestyle = NULL;
bNodeSocket *fromsock, *tosock;
PointerRNA fromptr, toptr;
NodeShaderAttribute *storage;
id_us_min(&ma->id);
if (iNodeTree) {
// make a copy of linestyle->nodetree
ntree = ntreeCopyTree_ex(iNodeTree, bmain, do_id_user);
// find the active Output Line Style node
for (bNode *node = (bNode *)ntree->nodes.first; node; node = node->next) {
if (node->type == SH_NODE_OUTPUT_LINESTYLE && (node->flag & NODE_DO_OUTPUT)) {
output_linestyle = node;
break;
}
}
}
else {
ntree = ntreeAddTree(NULL, "stroke_shader", "ShaderNodeTree");
}
ma->nodetree = ntree;
ma->use_nodes = 1;
ma->blend_method = MA_BM_HASHED;
bNode *input_attr_color = nodeAddStaticNode(NULL, ntree, SH_NODE_ATTRIBUTE);
input_attr_color->locx = 0.0f;
input_attr_color->locy = -200.0f;
storage = (NodeShaderAttribute *)input_attr_color->storage;
BLI_strncpy(storage->name, "Color", sizeof(storage->name));
bNode *mix_rgb_color = nodeAddStaticNode(NULL, ntree, SH_NODE_MIX_RGB);
mix_rgb_color->custom1 = MA_RAMP_BLEND; // Mix
mix_rgb_color->locx = 200.0f;
mix_rgb_color->locy = -200.0f;
tosock = (bNodeSocket *)BLI_findlink(&mix_rgb_color->inputs, 0); // Fac
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, tosock, &toptr);
RNA_float_set(&toptr, "default_value", 0.0f);
bNode *input_attr_alpha = nodeAddStaticNode(NULL, ntree, SH_NODE_ATTRIBUTE);
input_attr_alpha->locx = 400.0f;
input_attr_alpha->locy = 300.0f;
storage = (NodeShaderAttribute *)input_attr_alpha->storage;
BLI_strncpy(storage->name, "Alpha", sizeof(storage->name));
bNode *mix_rgb_alpha = nodeAddStaticNode(NULL, ntree, SH_NODE_MIX_RGB);
mix_rgb_alpha->custom1 = MA_RAMP_BLEND; // Mix
mix_rgb_alpha->locx = 600.0f;
mix_rgb_alpha->locy = 300.0f;
tosock = (bNodeSocket *)BLI_findlink(&mix_rgb_alpha->inputs, 0); // Fac
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, tosock, &toptr);
RNA_float_set(&toptr, "default_value", 0.0f);
bNode *shader_emission = nodeAddStaticNode(NULL, ntree, SH_NODE_EMISSION);
shader_emission->locx = 400.0f;
shader_emission->locy = -200.0f;
bNode *input_light_path = nodeAddStaticNode(NULL, ntree, SH_NODE_LIGHT_PATH);
input_light_path->locx = 400.0f;
input_light_path->locy = 100.0f;
bNode *mix_shader_color = nodeAddStaticNode(NULL, ntree, SH_NODE_MIX_SHADER);
mix_shader_color->locx = 600.0f;
mix_shader_color->locy = -100.0f;
bNode *shader_transparent = nodeAddStaticNode(NULL, ntree, SH_NODE_BSDF_TRANSPARENT);
shader_transparent->locx = 600.0f;
shader_transparent->locy = 100.0f;
bNode *mix_shader_alpha = nodeAddStaticNode(NULL, ntree, SH_NODE_MIX_SHADER);
mix_shader_alpha->locx = 800.0f;
mix_shader_alpha->locy = 100.0f;
bNode *output_material = nodeAddStaticNode(NULL, ntree, SH_NODE_OUTPUT_MATERIAL);
output_material->locx = 1000.0f;
output_material->locy = 100.0f;
fromsock = (bNodeSocket *)BLI_findlink(&input_attr_color->outputs, 0); // Color
tosock = (bNodeSocket *)BLI_findlink(&mix_rgb_color->inputs, 1); // Color1
nodeAddLink(ntree, input_attr_color, fromsock, mix_rgb_color, tosock);
fromsock = (bNodeSocket *)BLI_findlink(&mix_rgb_color->outputs, 0); // Color
tosock = (bNodeSocket *)BLI_findlink(&shader_emission->inputs, 0); // Color
nodeAddLink(ntree, mix_rgb_color, fromsock, shader_emission, tosock);
fromsock = (bNodeSocket *)BLI_findlink(&shader_emission->outputs, 0); // Emission
tosock = (bNodeSocket *)BLI_findlink(&mix_shader_color->inputs, 2); // Shader (second)
nodeAddLink(ntree, shader_emission, fromsock, mix_shader_color, tosock);
fromsock = (bNodeSocket *)BLI_findlink(&input_light_path->outputs, 0); // In Camera Ray
tosock = (bNodeSocket *)BLI_findlink(&mix_shader_color->inputs, 0); // Fac
nodeAddLink(ntree, input_light_path, fromsock, mix_shader_color, tosock);
fromsock = (bNodeSocket *)BLI_findlink(&mix_rgb_alpha->outputs, 0); // Color
tosock = (bNodeSocket *)BLI_findlink(&mix_shader_alpha->inputs, 0); // Fac
nodeAddLink(ntree, mix_rgb_alpha, fromsock, mix_shader_alpha, tosock);
fromsock = (bNodeSocket *)BLI_findlink(&input_attr_alpha->outputs, 0); // Color
tosock = (bNodeSocket *)BLI_findlink(&mix_rgb_alpha->inputs, 1); // Color1
nodeAddLink(ntree, input_attr_alpha, fromsock, mix_rgb_alpha, tosock);
fromsock = (bNodeSocket *)BLI_findlink(&shader_transparent->outputs, 0); // BSDF
tosock = (bNodeSocket *)BLI_findlink(&mix_shader_alpha->inputs, 1); // Shader (first)
nodeAddLink(ntree, shader_transparent, fromsock, mix_shader_alpha, tosock);
fromsock = (bNodeSocket *)BLI_findlink(&mix_shader_color->outputs, 0); // Shader
tosock = (bNodeSocket *)BLI_findlink(&mix_shader_alpha->inputs, 2); // Shader (second)
nodeAddLink(ntree, mix_shader_color, fromsock, mix_shader_alpha, tosock);
fromsock = (bNodeSocket *)BLI_findlink(&mix_shader_alpha->outputs, 0); // Shader
tosock = (bNodeSocket *)BLI_findlink(&output_material->inputs, 0); // Surface
nodeAddLink(ntree, mix_shader_alpha, fromsock, output_material, tosock);
if (output_linestyle) {
bNodeSocket *outsock;
bNodeLink *link;
mix_rgb_color->custom1 = output_linestyle->custom1; // blend_type
mix_rgb_color->custom2 = output_linestyle->custom2; // use_clamp
outsock = (bNodeSocket *)BLI_findlink(&output_linestyle->inputs, 0); // Color
tosock = (bNodeSocket *)BLI_findlink(&mix_rgb_color->inputs, 2); // Color2
link = (bNodeLink *)BLI_findptr(&ntree->links, outsock, offsetof(bNodeLink, tosock));
if (link) {
nodeAddLink(ntree, link->fromnode, link->fromsock, mix_rgb_color, tosock);
}
else {
float color[4];
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, outsock, &fromptr);
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, tosock, &toptr);
RNA_float_get_array(&fromptr, "default_value", color);
RNA_float_set_array(&toptr, "default_value", color);
}
outsock = (bNodeSocket *)BLI_findlink(&output_linestyle->inputs, 1); // Color Fac
tosock = (bNodeSocket *)BLI_findlink(&mix_rgb_color->inputs, 0); // Fac
link = (bNodeLink *)BLI_findptr(&ntree->links, outsock, offsetof(bNodeLink, tosock));
if (link) {
nodeAddLink(ntree, link->fromnode, link->fromsock, mix_rgb_color, tosock);
}
else {
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, outsock, &fromptr);
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, tosock, &toptr);
RNA_float_set(&toptr, "default_value", RNA_float_get(&fromptr, "default_value"));
}
outsock = (bNodeSocket *)BLI_findlink(&output_linestyle->inputs, 2); // Alpha
tosock = (bNodeSocket *)BLI_findlink(&mix_rgb_alpha->inputs, 2); // Color2
link = (bNodeLink *)BLI_findptr(&ntree->links, outsock, offsetof(bNodeLink, tosock));
if (link) {
nodeAddLink(ntree, link->fromnode, link->fromsock, mix_rgb_alpha, tosock);
}
else {
float color[4];
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, outsock, &fromptr);
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, tosock, &toptr);
color[0] = color[1] = color[2] = RNA_float_get(&fromptr, "default_value");
color[3] = 1.0f;
RNA_float_set_array(&toptr, "default_value", color);
}
outsock = (bNodeSocket *)BLI_findlink(&output_linestyle->inputs, 3); // Alpha Fac
tosock = (bNodeSocket *)BLI_findlink(&mix_rgb_alpha->inputs, 0); // Fac
link = (bNodeLink *)BLI_findptr(&ntree->links, outsock, offsetof(bNodeLink, tosock));
if (link) {
nodeAddLink(ntree, link->fromnode, link->fromsock, mix_rgb_alpha, tosock);
}
else {
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, outsock, &fromptr);
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, tosock, &toptr);
RNA_float_set(&toptr, "default_value", RNA_float_get(&fromptr, "default_value"));
}
for (bNode *node = (bNode *)ntree->nodes.first; node; node = node->next) {
if (node->type == SH_NODE_UVALONGSTROKE) {
// UV output of the UV Along Stroke node
bNodeSocket *sock = (bNodeSocket *)BLI_findlink(&node->outputs, 0);
// add new UV Map node
bNode *input_uvmap = nodeAddStaticNode(NULL, ntree, SH_NODE_UVMAP);
input_uvmap->locx = node->locx - 200.0f;
input_uvmap->locy = node->locy;
NodeShaderUVMap *storage = (NodeShaderUVMap *)input_uvmap->storage;
if (node->custom1 & 1) { // use_tips
BLI_strncpy(storage->uv_map, uvNames[1], sizeof(storage->uv_map));
}
else {
BLI_strncpy(storage->uv_map, uvNames[0], sizeof(storage->uv_map));
}
fromsock = (bNodeSocket *)BLI_findlink(&input_uvmap->outputs, 0); // UV
// replace links from the UV Along Stroke node by links from the UV Map node
for (bNodeLink *link = (bNodeLink *)ntree->links.first; link; link = link->next) {
if (link->fromnode == node && link->fromsock == sock) {
nodeAddLink(ntree, input_uvmap, fromsock, link->tonode, link->tosock);
}
}
nodeRemSocketLinks(ntree, sock);
}
}
}
nodeSetActive(ntree, output_material);
ntreeUpdateTree(bmain, ntree);
return ma;
}
void BlenderStrokeRenderer::RenderStrokeRep(StrokeRep *iStrokeRep) const
{
RenderStrokeRepBasic(iStrokeRep);
}
void BlenderStrokeRenderer::RenderStrokeRepBasic(StrokeRep *iStrokeRep) const
{
bNodeTree *nt = iStrokeRep->getNodeTree();
Material *ma = (Material *)BLI_ghash_lookup(_nodetree_hash, nt);
if (!ma) {
ma = BlenderStrokeRenderer::GetStrokeShader(freestyle_bmain, nt, false);
BLI_ghash_insert(_nodetree_hash, nt, ma);
}
iStrokeRep->setMaterial(ma);
const vector<Strip *> &strips = iStrokeRep->getStrips();
const bool hasTex = iStrokeRep->hasTex();
int totvert = 0, totedge = 0, totpoly = 0, totloop = 0;
int visible_faces, visible_segments;
for (vector<Strip *>::const_iterator s = strips.begin(), send = strips.end(); s != send; ++s) {
Strip::vertex_container &strip_vertices = (*s)->vertices();
// count visible faces and strip segments
test_strip_visibility(strip_vertices, &visible_faces, &visible_segments);
if (visible_faces == 0) {
continue;
}
totvert += visible_faces + visible_segments * 2;
totedge += visible_faces * 2 + visible_segments;
totpoly += visible_faces;
totloop += visible_faces * 3;
}
BlenderStrokeRenderer *self = const_cast<BlenderStrokeRenderer *>(this); // FIXME
vector<StrokeGroup *> *groups = hasTex ? &self->texturedStrokeGroups : &self->strokeGroups;
StrokeGroup *group;
if (groups->empty() || !(groups->back()->totvert + totvert < MESH_MAX_VERTS &&
groups->back()->totcol + 1 < MAXMAT)) {
group = new StrokeGroup;
groups->push_back(group);
}
else {
group = groups->back();
}
group->strokes.push_back(iStrokeRep);
group->totvert += totvert;
group->totedge += totedge;
group->totpoly += totpoly;
group->totloop += totloop;
group->totcol++;
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
}
// Check if the triangle is visible (i.e., within the render image boundary)
bool BlenderStrokeRenderer::test_triangle_visibility(StrokeVertexRep *svRep[3]) const
{
int xl, xu, yl, yu;
Vec2r p;
xl = xu = yl = yu = 0;
for (int i = 0; i < 3; i++) {
p = svRep[i]->point2d();
if (p[0] < 0.0) {
xl++;
}
else if (p[0] > _width) {
xu++;
}
if (p[1] < 0.0) {
yl++;
}
else if (p[1] > _height) {
yu++;
}
}
return !(xl == 3 || xu == 3 || yl == 3 || yu == 3);
}
// Check the visibility of faces and strip segments.
void BlenderStrokeRenderer::test_strip_visibility(Strip::vertex_container &strip_vertices,
int *visible_faces,
int *visible_segments) const
{
const int strip_vertex_count = strip_vertices.size();
Strip::vertex_container::iterator v[3];
StrokeVertexRep *svRep[3];
bool visible;
// iterate over all vertices and count visible faces and strip segments
// (note: a strip segment is a series of visible faces, while two strip
// segments are separated by one or more invisible faces)
v[0] = strip_vertices.begin();
v[1] = v[0] + 1;
v[2] = v[0] + 2;
*visible_faces = *visible_segments = 0;
visible = false;
for (int n = 2; n < strip_vertex_count; n++, v[0]++, v[1]++, v[2]++) {
svRep[0] = *(v[0]);
svRep[1] = *(v[1]);
svRep[2] = *(v[2]);
if (test_triangle_visibility(svRep)) {
(*visible_faces)++;
if (!visible) {
(*visible_segments)++;
}
visible = true;
}
else {
visible = false;
}
}
}
// Release allocated memory for stroke groups
void BlenderStrokeRenderer::FreeStrokeGroups()
{
vector<StrokeGroup *>::const_iterator it, itend;
for (it = strokeGroups.begin(), itend = strokeGroups.end(); it != itend; ++it) {
delete (*it);
}
for (it = texturedStrokeGroups.begin(), itend = texturedStrokeGroups.end(); it != itend; ++it) {
delete (*it);
}
}
// Build a scene populated by mesh objects representing stylized strokes
int BlenderStrokeRenderer::GenerateScene()
{
vector<StrokeGroup *>::const_iterator it, itend;
for (it = strokeGroups.begin(), itend = strokeGroups.end(); it != itend; ++it) {
GenerateStrokeMesh(*it, false);
}
for (it = texturedStrokeGroups.begin(), itend = texturedStrokeGroups.end(); it != itend; ++it) {
GenerateStrokeMesh(*it, true);
}
return get_stroke_count();
}
// Return the number of strokes
int BlenderStrokeRenderer::get_stroke_count() const
{
return strokeGroups.size() + texturedStrokeGroups.size();
}
// Build a mesh object representing a group of stylized strokes
void BlenderStrokeRenderer::GenerateStrokeMesh(StrokeGroup *group, bool hasTex)
{
#if 0
Object *object_mesh = BKE_object_add(
freestyle_bmain, freestyle_scene, (ViewLayer *)freestyle_scene->view_layers.first, OB_MESH);
DEG_relations_tag_update(freestyle_bmain);
#else
Object *object_mesh = NewMesh();
#endif
Mesh *mesh = (Mesh *)object_mesh->data;
mesh->totvert = group->totvert;
mesh->totedge = group->totedge;
mesh->totpoly = group->totpoly;
mesh->totloop = group->totloop;
mesh->totcol = group->totcol;
mesh->mvert = (MVert *)CustomData_add_layer(
&mesh->vdata, CD_MVERT, CD_CALLOC, NULL, mesh->totvert);
mesh->medge = (MEdge *)CustomData_add_layer(
&mesh->edata, CD_MEDGE, CD_CALLOC, NULL, mesh->totedge);
mesh->mpoly = (MPoly *)CustomData_add_layer(
&mesh->pdata, CD_MPOLY, CD_CALLOC, NULL, mesh->totpoly);
mesh->mloop = (MLoop *)CustomData_add_layer(
&mesh->ldata, CD_MLOOP, CD_CALLOC, NULL, mesh->totloop);
MVert *vertices = mesh->mvert;
MEdge *edges = mesh->medge;
MPoly *polys = mesh->mpoly;
MLoop *loops = mesh->mloop;
MLoopUV *loopsuv[2] = {NULL};
if (hasTex) {
// First UV layer
CustomData_add_layer_named(
&mesh->ldata, CD_MLOOPUV, CD_CALLOC, NULL, mesh->totloop, uvNames[0]);
CustomData_set_layer_active(&mesh->ldata, CD_MLOOPUV, 0);
BKE_mesh_update_customdata_pointers(mesh, true);
loopsuv[0] = mesh->mloopuv;
// Second UV layer
CustomData_add_layer_named(
&mesh->ldata, CD_MLOOPUV, CD_CALLOC, NULL, mesh->totloop, uvNames[1]);
CustomData_set_layer_active(&mesh->ldata, CD_MLOOPUV, 1);
BKE_mesh_update_customdata_pointers(mesh, true);
loopsuv[1] = mesh->mloopuv;
}
// colors and transparency (the latter represented by grayscale colors)
MLoopCol *colors = (MLoopCol *)CustomData_add_layer_named(
&mesh->ldata, CD_MLOOPCOL, CD_CALLOC, NULL, mesh->totloop, "Color");
MLoopCol *transp = (MLoopCol *)CustomData_add_layer_named(
&mesh->ldata, CD_MLOOPCOL, CD_CALLOC, NULL, mesh->totloop, "Alpha");
mesh->mloopcol = colors;
mesh->mat = (Material **)MEM_mallocN(sizeof(Material *) * mesh->totcol, "MaterialList");
////////////////////
// Data copy
////////////////////
int vertex_index = 0, edge_index = 0, loop_index = 0, material_index = 0;
int visible_faces, visible_segments;
bool visible;
Strip::vertex_container::iterator v[3];
StrokeVertexRep *svRep[3];
Vec2r p;
for (vector<StrokeRep *>::const_iterator it = group->strokes.begin(),
itend = group->strokes.end();
it != itend;
++it) {
mesh->mat[material_index] = (*it)->getMaterial();
id_us_plus(&mesh->mat[material_index]->id);
vector<Strip *> &strips = (*it)->getStrips();
for (vector<Strip *>::const_iterator s = strips.begin(), send = strips.end(); s != send; ++s) {
Strip::vertex_container &strip_vertices = (*s)->vertices();
int strip_vertex_count = strip_vertices.size();
// count visible faces and strip segments
test_strip_visibility(strip_vertices, &visible_faces, &visible_segments);
if (visible_faces == 0) {
continue;
}
v[0] = strip_vertices.begin();
v[1] = v[0] + 1;
v[2] = v[0] + 2;
visible = false;
// Note: Mesh generation in the following loop assumes stroke strips
// to be triangle strips.
for (int n = 2; n < strip_vertex_count; n++, v[0]++, v[1]++, v[2]++) {
svRep[0] = *(v[0]);
svRep[1] = *(v[1]);
svRep[2] = *(v[2]);
if (!test_triangle_visibility(svRep)) {
visible = false;
}
else {
if (!visible) {
// first vertex
vertices->co[0] = svRep[0]->point2d()[0];
vertices->co[1] = svRep[0]->point2d()[1];
vertices->co[2] = get_stroke_vertex_z();
vertices->no[0] = 0;
vertices->no[1] = 0;
vertices->no[2] = SHRT_MAX;
++vertices;
++vertex_index;
// second vertex
vertices->co[0] = svRep[1]->point2d()[0];
vertices->co[1] = svRep[1]->point2d()[1];
vertices->co[2] = get_stroke_vertex_z();
vertices->no[0] = 0;
vertices->no[1] = 0;
vertices->no[2] = SHRT_MAX;
++vertices;
++vertex_index;
// first edge
edges->v1 = vertex_index - 2;
edges->v2 = vertex_index - 1;
++edges;
++edge_index;
}
visible = true;
// vertex
vertices->co[0] = svRep[2]->point2d()[0];
vertices->co[1] = svRep[2]->point2d()[1];
vertices->co[2] = get_stroke_vertex_z();
vertices->no[0] = 0;
vertices->no[1] = 0;
vertices->no[2] = SHRT_MAX;
++vertices;
++vertex_index;
// edges
edges->v1 = vertex_index - 1;
edges->v2 = vertex_index - 3;
++edges;
++edge_index;
edges->v1 = vertex_index - 1;
edges->v2 = vertex_index - 2;
++edges;
++edge_index;
// poly
polys->loopstart = loop_index;
polys->totloop = 3;
polys->mat_nr = material_index;
++polys;
// Even and odd loops connect triangles vertices differently
bool is_odd = n % 2;
// loops
if (is_odd) {
loops[0].v = vertex_index - 1;
loops[0].e = edge_index - 2;
loops[1].v = vertex_index - 3;
loops[1].e = edge_index - 3;
loops[2].v = vertex_index - 2;
loops[2].e = edge_index - 1;
}
else {
loops[0].v = vertex_index - 1;
loops[0].e = edge_index - 1;
loops[1].v = vertex_index - 2;
loops[1].e = edge_index - 3;
loops[2].v = vertex_index - 3;
loops[2].e = edge_index - 2;
}
loops += 3;
loop_index += 3;
// UV
if (hasTex) {
// First UV layer (loopsuv[0]) has no tips (texCoord(0)).
// Second UV layer (loopsuv[1]) has tips: (texCoord(1)).
for (int L = 0; L < 2; L++) {
if (is_odd) {
loopsuv[L][0].uv[0] = svRep[2]->texCoord(L).x();
loopsuv[L][0].uv[1] = svRep[2]->texCoord(L).y();
loopsuv[L][1].uv[0] = svRep[0]->texCoord(L).x();
loopsuv[L][1].uv[1] = svRep[0]->texCoord(L).y();
loopsuv[L][2].uv[0] = svRep[1]->texCoord(L).x();
loopsuv[L][2].uv[1] = svRep[1]->texCoord(L).y();
}
else {
loopsuv[L][0].uv[0] = svRep[2]->texCoord(L).x();
loopsuv[L][0].uv[1] = svRep[2]->texCoord(L).y();
loopsuv[L][1].uv[0] = svRep[1]->texCoord(L).x();
loopsuv[L][1].uv[1] = svRep[1]->texCoord(L).y();
loopsuv[L][2].uv[0] = svRep[0]->texCoord(L).x();
loopsuv[L][2].uv[1] = svRep[0]->texCoord(L).y();
}
loopsuv[L] += 3;
}
}
// colors and alpha transparency. vertex colors are in sRGB
// space by convention, so convert from linear
float rgba[3][4];
for (int i = 0; i < 3; i++) {
copy_v3fl_v3db(rgba[i], &svRep[i]->color()[0]);
rgba[i][3] = svRep[i]->alpha();
}
if (is_odd) {
linearrgb_to_srgb_uchar4(&colors[0].r, rgba[2]);
linearrgb_to_srgb_uchar4(&colors[1].r, rgba[0]);
linearrgb_to_srgb_uchar4(&colors[2].r, rgba[1]);
}
else {
linearrgb_to_srgb_uchar4(&colors[0].r, rgba[2]);
linearrgb_to_srgb_uchar4(&colors[1].r, rgba[1]);
linearrgb_to_srgb_uchar4(&colors[2].r, rgba[0]);
}
transp[0].r = transp[0].g = transp[0].b = colors[0].a;
transp[1].r = transp[1].g = transp[1].b = colors[1].a;
transp[2].r = transp[2].g = transp[2].b = colors[2].a;
colors += 3;
transp += 3;
}
} // loop over strip vertices
} // loop over strips
material_index++;
} // loop over strokes
BKE_object_materials_test(freestyle_bmain, object_mesh, (ID *)mesh);
#if 0 // XXX
BLI_assert(mesh->totvert == vertex_index);
BLI_assert(mesh->totedge == edge_index);
BLI_assert(mesh->totloop == loop_index);
BLI_assert(mesh->totcol == material_index);
BKE_mesh_validate(mesh, true, true);
#endif
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
}
// A replacement of BKE_object_add() for better performance.
Object *BlenderStrokeRenderer::NewMesh() const
{
Object *ob;
char name[MAX_ID_NAME];
unsigned int mesh_id = get_stroke_mesh_id();
BLI_snprintf(name, MAX_ID_NAME, "0%08xOB", mesh_id);
ob = BKE_object_add_only_object(freestyle_bmain, OB_MESH, name);
BLI_snprintf(name, MAX_ID_NAME, "0%08xME", mesh_id);
ob->data = BKE_mesh_add(freestyle_bmain, name);
Collection *collection_master = freestyle_scene->master_collection;
BKE_collection_object_add(freestyle_bmain, collection_master, ob);
DEG_graph_tag_relations_update(freestyle_depsgraph);
DEG_graph_id_tag_update(freestyle_bmain,
freestyle_depsgraph,
&ob->id,
ID_RECALC_TRANSFORM | ID_RECALC_GEOMETRY | ID_RECALC_ANIMATION);
return ob;
}
Render *BlenderStrokeRenderer::RenderScene(Render * /*re*/, bool render)
{
Camera *camera = (Camera *)freestyle_scene->camera->data;
if (camera->clip_end < _z) {
camera->clip_end = _z + _z_delta * 100.0f;
}
#if 0
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "clip_start " << camera->clip_start << ", clip_end " << camera->clip_end << endl;
}
#endif
Render *freestyle_render = RE_NewSceneRender(freestyle_scene);
ViewLayer *view_layer = (ViewLayer *)freestyle_scene->view_layers.first;
DEG_graph_relations_update(freestyle_depsgraph, freestyle_bmain, freestyle_scene, view_layer);
RE_RenderFreestyleStrokes(
freestyle_render, freestyle_bmain, freestyle_scene, render && get_stroke_count() > 0);
return freestyle_render;
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
}
Attempt to fix a potential name conflict between Freestyle and the compositor. A crash in the Freestyle renderer was reported by Ton on IRC with a stack trace below. Note that #2 is in Freestyle, whereas #1 is in the compositor. The problem was observed in a debug build on OS X 10.7 (gcc 4.2, openmp disabled, no llvm). ---------------------------------------------------------------------- Program received signal EXC_BAD_ACCESS, Could not access memory. Reason: 13 at address: 0x0000000000000000 [Switching to process 72386 thread 0xf303] 0x0000000100c129f3 in NodeBase::~NodeBase (this=0x10e501c80) at COM_NodeBase.cpp:43 43 delete (this->m_outputsockets.back()); Current language: auto; currently c++ (gdb) where #0 0x0000000100c129f3 in NodeBase::~NodeBase (this=0x10e501c80) at COM_NodeBase.cpp:43 #1 0x0000000100c29066 in Node::~Node (this=0x10e501c80) at COM_Node.h:49 #2 0x000000010089c273 in NodeShape::~NodeShape (this=0x10e501c80) at NodeShape.cpp:43 #3 0x000000010089910b in NodeGroup::destroy (this=0x10e501da0) at NodeGroup.cpp:61 #4 0x00000001008990cd in NodeGroup::destroy (this=0x10e5014b0) at NodeGroup.cpp:59 #5 0x00000001008990cd in NodeGroup::destroy (this=0x114e18da0) at NodeGroup.cpp:59 #6 0x00000001007e6602 in Controller::ClearRootNode (this=0x114e19640) at Controller.cpp:329 #7 0x00000001007ea52e in Controller::LoadMesh (this=0x114e19640, re=0x10aba4638, srl=0x1140f5258) at Controller.cpp:302 #8 0x00000001008030ad in prepare (re=0x10aba4638, srl=0x1140f5258) at FRS_freestyle.cpp:302 #9 0x000000010080457a in FRS_do_stroke_rendering (re=0x10aba4638, srl=0x1140f5258) at FRS_freestyle.cpp:600 #10 0x00000001006aeb9d in add_freestyle (re=0x10aba4638) at pipeline.c:1584 #11 0x00000001006aceb7 in do_render_3d (re=0x10aba4638) at pipeline.c:1094 #12 0x00000001006ae061 in do_render_fields_blur_3d (re=0x10aba4638) at pipeline.c:1367 #13 0x00000001006afa16 in do_render_composite_fields_blur_3d (re=0x10aba4638) at pipeline.c:1815 #14 0x00000001006b04e4 in do_render_all_options (re=0x10aba4638) at pipeline.c:2021 ---------------------------------------------------------------------- Apparently a name conflict between the two Blender modules is taking place. The present commit hence intends to address it by putting all the Freestyle C++ classes in the namespace 'Freestyle'. This revision will also prevent potential name conflicts with other Blender modules in the future. Special thanks to Lukas Toenne for the help with C++ namespace.
2013-04-09 00:46:49 +00:00
} /* namespace Freestyle */