This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/constraint.c

1662 lines
39 KiB
C
Raw Normal View History

2002-10-12 11:37:38 +00:00
/**
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
2002-10-12 11:37:38 +00:00
#include "MEM_guardedalloc.h"
#include "nla.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_object_types.h"
#include "DNA_action_types.h"
#include "DNA_curve_types.h"
#include "DNA_scene_types.h"
2002-10-12 11:37:38 +00:00
#include "BKE_utildefines.h"
#include "BKE_action.h"
#include "BKE_anim.h" // for the curve calculation part
2002-10-12 11:37:38 +00:00
#include "BKE_armature.h"
#include "BKE_blender.h"
#include "BKE_constraint.h"
#include "BKE_object.h"
#include "BKE_ipo.h"
#include "BKE_global.h"
#include "BKE_library.h"
#include "blendef.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
2002-10-12 11:37:38 +00:00
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
/* used by object.c */
void Mat4BlendMat4(float [][4], float [][4], float [][4], float );
2002-10-12 11:37:38 +00:00
/* Local function prototypes */
/* Functions */
char constraint_has_target (bConstraint *con) {
switch (con->type){
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
case CONSTRAINT_TYPE_ACTION:
{
bActionConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data = con->data;
if (data->tar)
return 1;
}
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
}
// Unknown types or CONSTRAINT_TYPE_NULL or no target
return 0;
}
Object *get_constraint_target(bConstraint *con)
{
/*
* If the target for this constraint is target, return a pointer
* to the name for this constraints subtarget ... NULL otherwise
*/
switch (con->type) {
case CONSTRAINT_TYPE_ACTION:
{
bActionConstraint *data = con->data;
return data->tar;
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data = con->data;
return data->tar;
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data = con->data;
return data->tar;
}
break;
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data = con->data;
return data->tar;
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data = con->data;
return data->tar;
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data = con->data;
return data->tar;
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data = con->data;
return data->tar;
}
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data = con->data;
return (data->tar);
}
break;
}
return NULL;
}
void unique_constraint_name (bConstraint *con, ListBase *list){
char tempname[64];
int number;
char *dot;
int exists = 0;
bConstraint *curcon;
/* See if we even need to do this */
for (curcon = list->first; curcon; curcon=curcon->next){
if (curcon!=con){
if (!strcmp(curcon->name, con->name)){
exists = 1;
break;
}
}
}
if (!exists)
return;
/* Strip off the suffix */
dot=strchr(con->name, '.');
if (dot)
*dot=0;
for (number = 1; number <=999; number++){
sprintf (tempname, "%s.%03d", con->name, number);
exists = 0;
for (curcon=list->first; curcon; curcon=curcon->next){
if (con!=curcon){
if (!strcmp (curcon->name, tempname)){
exists = 1;
break;
}
}
}
if (!exists){
strcpy (con->name, tempname);
return;
}
}
}
void *new_constraint_data (short type)
{
void *result;
switch (type){
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data;
data = MEM_callocN(sizeof(bKinematicConstraint), "kinematicConstraint");
data->tolerance = (float)0.001;
data->iterations = 500;
result = data;
}
break;
case CONSTRAINT_TYPE_NULL:
{
result = NULL;
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data;
data = MEM_callocN(sizeof(bTrackToConstraint), "tracktoConstraint");
data->reserved1 = TRACK_Y;
data->reserved2 = UP_Z;
result = data;
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data;
data = MEM_callocN(sizeof(bRotateLikeConstraint), "rotlikeConstraint");
result = data;
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data;
data = MEM_callocN(sizeof(bLocateLikeConstraint), "loclikeConstraint");
data->flag |= LOCLIKE_X|LOCLIKE_Y|LOCLIKE_Z;
result = data;
}
break;
case CONSTRAINT_TYPE_ACTION:
{
bActionConstraint *data;
data = MEM_callocN(sizeof(bActionConstraint), "actionConstraint");
result = data;
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data;
data = MEM_callocN(sizeof(bLockTrackConstraint), "locktrackConstraint");
data->trackflag = TRACK_Y;
data->lockflag = LOCK_Z;
result = data;
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data;
data = MEM_callocN(sizeof(bFollowPathConstraint), "followpathConstraint");
data->trackflag = TRACK_Y;
data->upflag = UP_Z;
data->offset = 0;
data->followflag = 0;
result = data;
}
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data;
data = MEM_callocN(sizeof(bStretchToConstraint), "StretchToConstraint");
data->volmode = 0;
data->plane = 0;
data->orglength = 0.0;
data->bulge = 1.0;
result = data;
}
break;
default:
result = NULL;
break;
}
return result;
}
2002-10-12 11:37:38 +00:00
bConstraintChannel *find_constraint_channel (ListBase *list, const char *name){
bConstraintChannel *chan;
for (chan = list->first; chan; chan=chan->next){
if (!strcmp(name, chan->name)){
return chan;
}
}
return NULL;
}
void do_constraint_channels (ListBase *conbase, ListBase *chanbase, float ctime)
{
bConstraint *con;
bConstraintChannel *chan;
IpoCurve *icu;
for (con=conbase->first; con; con=con->next){
chan = find_constraint_channel(chanbase, con->name);
if (chan && chan->ipo){
calc_ipo(chan->ipo, ctime);
for (icu=chan->ipo->curve.first; icu; icu=icu->next){
switch (icu->adrcode){
case CO_ENFORCE:
con->enforce = icu->curval;
if (con->enforce<0) con->enforce=0;
else if (con->enforce>1) con->enforce=1;
break;
}
}
}
}
}
void Mat4BlendMat4(float out[][4], float dst[][4], float src[][4], float srcweight)
{
float squat[4], dquat[4], fquat[4];
float ssize[3], dsize[3], fsize[4];
float sloc[3], dloc[3], floc[3];
float mat3[3][3], dstweight;
float qmat[3][3], smat[3][3];
int i;
dstweight = 1.0F-srcweight;
Mat3CpyMat4(mat3, dst);
Mat3ToQuat(mat3, dquat);
Mat3ToSize(mat3, dsize);
VECCOPY (dloc, dst[3]);
Mat3CpyMat4(mat3, src);
Mat3ToQuat(mat3, squat);
Mat3ToSize(mat3, ssize);
VECCOPY (sloc, src[3]);
/* Do the actual blend */
for (i=0; i<3; i++){
floc[i] = (dloc[i]*dstweight) + (sloc[i]*srcweight);
fsize[i] = 1.0f + ((dsize[i]-1.0f)*dstweight) + ((ssize[i]-1.0f)*srcweight);
fquat[i+1] = (dquat[i+1]*dstweight) + (squat[i+1]*srcweight);
}
/* Do one more iteration for the quaternions only and normalize the quaternion if needed */
fquat[0] = 1.0f + ((dquat[0]-1.0f)*dstweight) + ((squat[0]-1.0f)*srcweight);
NormalQuat (fquat);
QuatToMat3(fquat, qmat);
SizeToMat3(fsize, smat);
Mat3MulMat3(mat3, qmat, smat);
Mat4CpyMat3(out, mat3);
VECCOPY (out[3], floc);
}
static void constraint_target_to_mat4 (Object *ob, const char *substring, float mat[][4], float size[3], float ctime)
{
/* Update the location of the target object */
//where_is_object_time (ob, ctime);
2002-10-12 11:37:38 +00:00
/* Case OBJECT */
if (!strlen(substring)){
Mat4CpyMat4 (mat, ob->obmat);
VECCOPY (size, ob->size);
return;
}
/* Case BONE */
else {
bArmature *arm;
Bone *bone;
float bmat[4][4];
float bsize[3]={1, 1, 1};
arm = get_armature(ob);
/**
* Locate the bone (if there is one)
* Ensures that the bone's transformation is fully constrained
* (Cyclical relationships are disallowed elsewhere)
*/
bone = get_named_bone(arm, substring);
if (bone){
where_is_bone_time(ob, bone, ctime);
get_objectspace_bone_matrix(bone, bmat, 1, 1);
VECCOPY(bsize, bone->size);
}
else
Mat4One (bmat);
/**
* Multiply the objectspace bonematrix by the skeletons's global
* transform to obtain the worldspace transformation of the target
*/
VECCOPY(size, bsize);
Mat4MulMat4 (mat, bmat, ob->obmat);
return;
}
}
void clear_object_constraint_status (Object *ob)
{
bConstraint *con;
if (!ob) return;
/* Clear the object's constraints */
for (con = ob->constraints.first; con; con=con->next){
con->flag &= ~CONSTRAINT_DONE;
}
/* Clear the object's subdata constraints */
switch (ob->type){
case OB_ARMATURE:
{
clear_pose_constraint_status (ob);
}
break;
default:
break;
}
}
void clear_all_constraints(void)
{
Base *base;
/* Clear the constraint "done" flags -- this must be done
* before displists are calculated for objects that are
* deformed by armatures */
for (base = G.scene->base.first; base; base=base->next){
clear_object_constraint_status(base->object);
}
}
void rebuild_all_armature_displists(void) {
Base *base;
for (base = G.scene->base.first; base; base=base->next){
clear_object_constraint_status(base->object);
make_displists_by_armature(base->object);
}
}
short get_constraint_target_matrix (bConstraint *con, short ownertype, void* ownerdata, float mat[][4], float size[3], float ctime)
2002-10-12 11:37:38 +00:00
{
short valid=0;
switch (con->type){
case CONSTRAINT_TYPE_NULL:
{
Mat4One(mat);
}
break;
case CONSTRAINT_TYPE_ACTION:
{
if (ownertype == TARGET_BONE){
bActionConstraint *data = (bActionConstraint*)con->data;
bPose *pose=NULL;
bPoseChannel *pchan=NULL;
float tempmat[4][4], imat[4][4], ans[4][4], restmat[4][4], irestmat[4][4];
float tempmat3[3][3];
float eul[3], size[3];
float s,t;
Bone *curBone;
Bone tbone;
int i;
curBone = (Bone*)ownerdata;
if (data->tar){
/* Update the location of the target object */
where_is_object_time (data->tar, ctime);
2002-10-12 11:37:38 +00:00
constraint_target_to_mat4(data->tar, data->subtarget, tempmat, size, ctime);
valid=1;
}
else
Mat4One (tempmat);
/* If this is a bone, undo parent transforms */
if (strlen(data->subtarget)){
Bone* bone;
Mat4Invert(imat, data->tar->obmat);
bone = get_named_bone(get_armature(data->tar), data->subtarget);
if (bone){
get_objectspace_bone_matrix(bone, restmat, 1, 0);
Mat4Invert(irestmat, restmat);
}
}
else{
Mat4One(imat);
Mat4One(irestmat);
}
Mat4MulSerie(ans, imat, tempmat, irestmat, NULL, NULL, NULL, NULL, NULL);
Mat3CpyMat4(tempmat3, ans);
Mat3ToEul(tempmat3, eul);
eul[0]*=(float)(180.0/M_PI);
eul[1]*=(float)(180.0/M_PI);
eul[2]*=(float)(180.0/M_PI);
/* Target is the animation */
s = (eul[data->type]-data->min)/(data->max-data->min);
if (s<0)
s=0;
if (s>1)
s=1;
t = ( s * (data->end-data->start)) + data->start;
/* Get the appropriate information from the action */
pose = MEM_callocN(sizeof(bPose), "pose");
verify_pose_channel(pose, curBone->name);
get_pose_from_action (&pose, data->act, t);
/* Find the appropriate channel */
pchan = get_pose_channel(pose, curBone->name);
if (pchan){
memset(&tbone, 0x00, sizeof(Bone));
VECCOPY (tbone.loc, pchan->loc);
VECCOPY (tbone.size, pchan->size);
for (i=0; i<4; i++)
tbone.quat[i]=pchan->quat[i];
bone_to_mat4(&tbone, mat);
}
else{
Mat4One(mat);
}
/* Clean up */
clear_pose(pose);
MEM_freeN(pose);
}
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data = (bLocateLikeConstraint*)con->data;
if (data->tar){
/* Update the location of the target object */
where_is_object_time (data->tar, ctime);
2002-10-12 11:37:38 +00:00
constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime);
valid=1;
}
else
Mat4One (mat);
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data;
data = (bRotateLikeConstraint*)con->data;
if (data->tar){
/* Update the location of the target object */
where_is_object_time (data->tar, ctime);
2002-10-12 11:37:38 +00:00
constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime);
valid=1;
}
else
Mat4One (mat);
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data;
data = (bTrackToConstraint*)con->data;
if (data->tar){
// Refresh the object if it isn't a constraint loop
if (!(con->flag & CONSTRAINT_NOREFRESH))
where_is_object_time (data->tar, ctime);
2002-10-12 11:37:38 +00:00
constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime);
valid=1;
}
else
Mat4One (mat);
}
break;
case CONSTRAINT_TYPE_KINEMATIC:
{
bTrackToConstraint *data;
data = (bTrackToConstraint*)con->data;
if (data->tar){
/* Update the location of the target object */
where_is_object_time (data->tar, ctime);
2002-10-12 11:37:38 +00:00
constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime);
valid=1;
}
else
Mat4One (mat);
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data;
data = (bLockTrackConstraint*)con->data;
if (data->tar){
// Refresh the object if it isn't a constraint loop
if (!(con->flag & CONSTRAINT_NOREFRESH))
where_is_object_time (data->tar, ctime);
constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime);
valid=1;
}
else
Mat4One (mat);
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data;
data = (bFollowPathConstraint*)con->data;
if (data->tar){
2003-12-02 00:04:38 +00:00
short OldFlag;
Curve *cu;
float q[4], vec[4], dir[3], *quat, x1, totmat[4][4];
float curvetime;
where_is_object_time (data->tar, ctime);
Mat4One (totmat);
Mat4One (mat);
cu= data->tar->data;
2003-12-02 00:04:38 +00:00
OldFlag = cu->flag;
if(data->followflag) {
if(!(cu->flag & CU_FOLLOW)) cu->flag += CU_FOLLOW;
}
else {
if(cu->flag & CU_FOLLOW) cu->flag -= CU_FOLLOW;
}
if(!(cu->flag & CU_PATH)) cu->flag += CU_PATH;
if(cu->path==NULL)
calc_curvepath(data->tar);
else if (cu->path->data==NULL)
calc_curvepath(data->tar);
if(cu->path && cu->path->data) {
curvetime= bsystem_time(data->tar, data->tar->parent, (float)ctime, 0.0) - data->offset;
if(calc_ipo_spec(cu->ipo, CU_SPEED, &curvetime)==0) {
curvetime /= cu->pathlen;
CLAMP(curvetime, 0.0, 1.0);
}
if(where_on_path(data->tar, curvetime, vec, dir) ) {
if(data->followflag){
quat= vectoquat(dir, (short) data->trackflag, (short) data->upflag);
Normalise(dir);
q[0]= (float)cos(0.5*vec[3]);
x1= (float)sin(0.5*vec[3]);
q[1]= -x1*dir[0];
q[2]= -x1*dir[1];
q[3]= -x1*dir[2];
QuatMul(quat, q, quat);
QuatToMat4(quat, totmat);
}
VECCOPY(totmat[3], vec);
Mat4MulSerie(mat, data->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
}
}
2003-12-02 00:04:38 +00:00
cu->flag = OldFlag;
valid=1;
}
else
Mat4One (mat);
}
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data;
data = (bStretchToConstraint*)con->data;
if (data->tar){
where_is_object_time (data->tar, ctime);
constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime);
valid = 1;
}
else
Mat4One (mat);
}
break;
2002-10-12 11:37:38 +00:00
default:
Mat4One(mat);
break;
}
return valid;
}
void relink_constraints (struct ListBase *list)
{
bConstraint *con;
for (con = list->first; con; con=con->next){
switch (con->type){
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
case CONSTRAINT_TYPE_NULL:
{
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
2002-10-12 11:37:38 +00:00
case CONSTRAINT_TYPE_ACTION:
{
bActionConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
2002-10-12 11:37:38 +00:00
}
}
}
void *copy_constraint_channels (ListBase *dst, ListBase *src)
{
bConstraintChannel *dchan, *schan;
bConstraintChannel *newact=NULL;
dst->first=dst->last=NULL;
duplicatelist(dst, src);
for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next){
dchan->ipo = copy_ipo(schan->ipo);
}
return newact;
}
bConstraintChannel *clone_constraint_channels (ListBase *dst, ListBase *src, bConstraintChannel *oldact)
{
bConstraintChannel *dchan, *schan;
bConstraintChannel *newact=NULL;
dst->first=dst->last=NULL;
duplicatelist(dst, src);
for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next){
id_us_plus((ID *)dchan->ipo);
if (schan==oldact)
newact=dchan;
}
return newact;
}
void copy_constraints (ListBase *dst, ListBase *src)
{
bConstraint *con;
dst->first=dst->last=NULL;
duplicatelist (dst, src);
/* Update specific data */
if (!dst->first)
return;
for (con = dst->first; con; con=con->next){
switch (con->type){
case CONSTRAINT_TYPE_ACTION:
{
bActionConstraint *data;
con->data = MEM_dupallocN (con->data);
data = (bActionConstraint*) con->data;
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data;
con->data = MEM_dupallocN (con->data);
data = (bLocateLikeConstraint*) con->data;
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data;
con->data = MEM_dupallocN (con->data);
data = (bRotateLikeConstraint*) con->data;
}
break;
case CONSTRAINT_TYPE_NULL:
{
con->data = NULL;
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data;
con->data = MEM_dupallocN (con->data);
data = (bTrackToConstraint*) con->data;
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data;
con->data = MEM_dupallocN (con->data);
data = (bLockTrackConstraint*) con->data;
}
break;
2002-10-12 11:37:38 +00:00
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data;
con->data = MEM_dupallocN (con->data);
data = (bKinematicConstraint*) con->data;
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data;
con->data = MEM_dupallocN (con->data);
data = (bFollowPathConstraint*) con->data;
}
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data;
con->data = MEM_dupallocN (con->data);
data = (bStretchToConstraint*) con->data;
}
break;
2002-10-12 11:37:38 +00:00
default:
con->data = MEM_dupallocN (con->data);
break;
}
}
}
void evaluate_constraint (bConstraint *constraint, Object *ob, short ownertype, void *ownerdata, float targetmat[][4])
/* ob is likely to be a workob */
{
float M_oldmat[4][4];
float M_identity[4][4];
if (!constraint || !ob)
return;
Mat4One (M_identity);
/* We've already been calculated */
if (constraint->flag & CONSTRAINT_DONE){
return;
}
switch (constraint->type){
case CONSTRAINT_TYPE_ACTION:
{
float temp[4][4];
bActionConstraint *data;
data = constraint->data;
Mat4CpyMat4 (temp, ob->obmat);
Mat4MulMat4(ob->obmat, targetmat, temp);
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data;
data = constraint->data;
if (data->flag & LOCLIKE_X)
ob->obmat[3][0] = targetmat[3][0];
if (data->flag & LOCLIKE_Y)
ob->obmat[3][1] = targetmat[3][1];
if (data->flag & LOCLIKE_Z)
ob->obmat[3][2] = targetmat[3][2];
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
float tmat[4][4];
float size[3];
Mat4ToSize(ob->obmat, size);
Mat4CpyMat4 (tmat, targetmat);
Mat4Ortho(tmat);
ob->obmat[0][0] = tmat[0][0]*size[0];
ob->obmat[0][1] = tmat[0][1]*size[1];
ob->obmat[0][2] = tmat[0][2]*size[2];
ob->obmat[1][0] = tmat[1][0]*size[0];
ob->obmat[1][1] = tmat[1][1]*size[1];
ob->obmat[1][2] = tmat[1][2]*size[2];
ob->obmat[2][0] = tmat[2][0]*size[0];
ob->obmat[2][1] = tmat[2][1]*size[1];
ob->obmat[2][2] = tmat[2][2]*size[2];
}
break;
case CONSTRAINT_TYPE_NULL:
{
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data;
float size[3];
float *quat;
float vec[3];
float totmat[3][3];
float tmat[4][4];
2002-10-12 11:37:38 +00:00
data=(bTrackToConstraint*)constraint->data;
if (data->tar){
/* Get size property, since ob->size is only the object's own relative size, not its global one */
2002-10-12 11:37:38 +00:00
Mat4ToSize (ob->obmat, size);
Mat4CpyMat4 (M_oldmat, ob->obmat);
// Clear the object's rotation
ob->obmat[0][0]=size[0];
2002-10-12 11:37:38 +00:00
ob->obmat[0][1]=0;
ob->obmat[0][2]=0;
ob->obmat[1][0]=0;
ob->obmat[1][1]=size[1];
2002-10-12 11:37:38 +00:00
ob->obmat[1][2]=0;
ob->obmat[2][0]=0;
ob->obmat[2][1]=0;
ob->obmat[2][2]=size[2];
2002-10-12 11:37:38 +00:00
VecSubf(vec, ob->obmat[3], targetmat[3]);
quat= vectoquat(vec, (short)data->reserved1, (short)data->reserved2);
QuatToMat3(quat, totmat);
Mat4CpyMat4(tmat, ob->obmat);
Mat4MulMat34(ob->obmat, totmat, tmat);
2002-10-12 11:37:38 +00:00
}
}
break;
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data;
float imat[4][4];
float temp[4][4];
float totmat[4][4];
data=(bKinematicConstraint*)constraint->data;
if (data->tar && ownertype==TARGET_BONE && ownerdata){
Bone *curBone = (Bone*)ownerdata;
PoseChain *chain;
Object *armob;
/* Retrieve the owner armature object from the workob */
armob = ob->parent;
/* Make an IK chain */
chain = ik_chain_to_posechain(armob, curBone);
if (!chain)
return;
chain->iterations = data->iterations;
chain->tolerance = data->tolerance;
{
float parmat[4][4];
/* Take the obmat to objectspace */
Mat4CpyMat4 (temp, curBone->obmat);
Mat4One (curBone->obmat);
get_objectspace_bone_matrix(curBone, parmat, 1, 1);
Mat4CpyMat4 (curBone->obmat, temp);
Mat4MulMat4 (totmat, parmat, ob->parent->obmat);
Mat4Invert (imat, totmat);
Mat4CpyMat4 (temp, ob->obmat);
Mat4MulMat4 (ob->obmat, temp, imat);
}
/* Solve it */
if (chain->solver){
VECCOPY (chain->goal, targetmat[3]);
solve_posechain(chain);
}
free_posechain(chain);
{
float parmat[4][4];
/* Take the obmat to worldspace */
Mat4CpyMat4 (temp, curBone->obmat);
Mat4One (curBone->obmat);
get_objectspace_bone_matrix(curBone, parmat, 1, 1);
Mat4CpyMat4 (curBone->obmat, temp);
Mat4MulMat4 (totmat, parmat, ob->parent->obmat);
Mat4CpyMat4 (temp, ob->obmat);
Mat4MulMat4 (ob->obmat, temp, totmat);
}
}
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data;
float vec[3],vec2[3];
float totmat[3][3];
float tmpmat[3][3];
float invmat[3][3];
float tmat[4][4];
float mdet;
data=(bLockTrackConstraint*)constraint->data;
if (data->tar){
Mat4CpyMat4 (M_oldmat, ob->obmat);
/* Vector object -> target */
VecSubf(vec, targetmat[3], ob->obmat[3]);
switch (data->lockflag){
case LOCK_X: /* LOCK X */
{
switch (data->trackflag){
case TRACK_Y: /* LOCK X TRACK Y */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[0]);
VecSubf(totmat[1], vec, vec2);
Normalise(totmat[1]);
/* the x axis is fixed*/
totmat[0][0] = ob->obmat[0][0];
totmat[0][1] = ob->obmat[0][1];
totmat[0][2] = ob->obmat[0][2];
Normalise(totmat[0]);
/* the z axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[2], totmat[0], totmat[1]);
}
break;
case TRACK_Z: /* LOCK X TRACK Z */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[0]);
VecSubf(totmat[2], vec, vec2);
Normalise(totmat[2]);
/* the x axis is fixed*/
totmat[0][0] = ob->obmat[0][0];
totmat[0][1] = ob->obmat[0][1];
totmat[0][2] = ob->obmat[0][2];
Normalise(totmat[0]);
/* the z axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
case TRACK_nY: /* LOCK X TRACK -Y */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[0]);
VecSubf(totmat[1], vec, vec2);
Normalise(totmat[1]);
VecMulf(totmat[1],-1);
/* the x axis is fixed*/
totmat[0][0] = ob->obmat[0][0];
totmat[0][1] = ob->obmat[0][1];
totmat[0][2] = ob->obmat[0][2];
Normalise(totmat[0]);
/* the z axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[2], totmat[0], totmat[1]);
}
break;
case TRACK_nZ: /* LOCK X TRACK -Z */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[0]);
VecSubf(totmat[2], vec, vec2);
Normalise(totmat[2]);
VecMulf(totmat[2],-1);
/* the x axis is fixed*/
totmat[0][0] = ob->obmat[0][0];
totmat[0][1] = ob->obmat[0][1];
totmat[0][2] = ob->obmat[0][2];
Normalise(totmat[0]);
/* the z axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
default:
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
break;
}
}
break;
case LOCK_Y: /* LOCK Y */
{
switch (data->trackflag){
case TRACK_X: /* LOCK Y TRACK X */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[1]);
VecSubf(totmat[0], vec, vec2);
Normalise(totmat[0]);
/* the y axis is fixed*/
totmat[1][0] = ob->obmat[1][0];
totmat[1][1] = ob->obmat[1][1];
totmat[1][2] = ob->obmat[1][2];
Normalise(totmat[1]);
/* the z axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[2], totmat[0], totmat[1]);
}
break;
case TRACK_Z: /* LOCK Y TRACK Z */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[1]);
VecSubf(totmat[2], vec, vec2);
Normalise(totmat[2]);
/* the y axis is fixed*/
totmat[1][0] = ob->obmat[1][0];
totmat[1][1] = ob->obmat[1][1];
totmat[1][2] = ob->obmat[1][2];
Normalise(totmat[1]);
/* the z axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
case TRACK_nX: /* LOCK Y TRACK -X */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[1]);
VecSubf(totmat[0], vec, vec2);
Normalise(totmat[0]);
VecMulf(totmat[0],-1);
/* the y axis is fixed*/
totmat[1][0] = ob->obmat[1][0];
totmat[1][1] = ob->obmat[1][1];
totmat[1][2] = ob->obmat[1][2];
Normalise(totmat[1]);
/* the z axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[2], totmat[0], totmat[1]);
}
break;
case TRACK_nZ: /* LOCK Y TRACK -Z */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[1]);
VecSubf(totmat[2], vec, vec2);
Normalise(totmat[2]);
VecMulf(totmat[2],-1);
/* the y axis is fixed*/
totmat[1][0] = ob->obmat[1][0];
totmat[1][1] = ob->obmat[1][1];
totmat[1][2] = ob->obmat[1][2];
Normalise(totmat[1]);
/* the z axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
default:
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
break;
}
}
break;
case LOCK_Z: /* LOCK Z */
{
switch (data->trackflag){
case TRACK_X: /* LOCK Z TRACK X */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[2]);
VecSubf(totmat[0], vec, vec2);
Normalise(totmat[0]);
/* the z axis is fixed*/
totmat[2][0] = ob->obmat[2][0];
totmat[2][1] = ob->obmat[2][1];
totmat[2][2] = ob->obmat[2][2];
Normalise(totmat[2]);
/* the x axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
case TRACK_Y: /* LOCK Z TRACK Y */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[2]);
VecSubf(totmat[1], vec, vec2);
Normalise(totmat[1]);
/* the z axis is fixed*/
totmat[2][0] = ob->obmat[2][0];
totmat[2][1] = ob->obmat[2][1];
totmat[2][2] = ob->obmat[2][2];
Normalise(totmat[2]);
/* the x axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
case TRACK_nX: /* LOCK Z TRACK -X */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[2]);
VecSubf(totmat[0], vec, vec2);
Normalise(totmat[0]);
VecMulf(totmat[0],-1);
/* the z axis is fixed*/
totmat[2][0] = ob->obmat[2][0];
totmat[2][1] = ob->obmat[2][1];
totmat[2][2] = ob->obmat[2][2];
Normalise(totmat[2]);
/* the x axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
case TRACK_nY: /* LOCK Z TRACK -Y */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[2]);
VecSubf(totmat[1], vec, vec2);
Normalise(totmat[1]);
VecMulf(totmat[1],-1);
/* the z axis is fixed*/
totmat[2][0] = ob->obmat[2][0];
totmat[2][1] = ob->obmat[2][1];
totmat[2][2] = ob->obmat[2][2];
Normalise(totmat[2]);
/* the x axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
default:
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
break;
}
}
break;
default:
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
break;
}
/* Block to keep matrix heading */
tmpmat[0][0] = ob->obmat[0][0];tmpmat[0][1] = ob->obmat[0][1];tmpmat[0][2] = ob->obmat[0][2];
tmpmat[1][0] = ob->obmat[1][0];tmpmat[1][1] = ob->obmat[1][1];tmpmat[1][2] = ob->obmat[1][2];
tmpmat[2][0] = ob->obmat[2][0];tmpmat[2][1] = ob->obmat[2][1];tmpmat[2][2] = ob->obmat[2][2];
Normalise(tmpmat[0]);
Normalise(tmpmat[1]);
Normalise(tmpmat[2]);
Mat3Inv(invmat,tmpmat);
Mat3MulMat3(tmpmat,totmat,invmat);
totmat[0][0] = tmpmat[0][0];totmat[0][1] = tmpmat[0][1];totmat[0][2] = tmpmat[0][2];
totmat[1][0] = tmpmat[1][0];totmat[1][1] = tmpmat[1][1];totmat[1][2] = tmpmat[1][2];
totmat[2][0] = tmpmat[2][0];totmat[2][1] = tmpmat[2][1];totmat[2][2] = tmpmat[2][2];
Mat4CpyMat4(tmat, ob->obmat);
mdet = Det3x3( totmat[0][0],totmat[0][1],totmat[0][2],
totmat[1][0],totmat[1][1],totmat[1][2],
totmat[2][0],totmat[2][1],totmat[2][2]);
if (mdet==0)
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
/* apply out transformaton to the object */
Mat4MulMat34(ob->obmat, totmat, tmat);
}
}
break;
2002-10-12 11:37:38 +00:00
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data;
float obmat[4][4];
data=(bFollowPathConstraint*)constraint->data;
if (data->tar) {
object_to_mat4(ob, obmat);
Mat4MulSerie(ob->obmat, targetmat, obmat, NULL, NULL, NULL, NULL, NULL, NULL);
}
}
2002-10-12 11:37:38 +00:00
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data;
float size[3],scale[3],vec[3],xx[3],zz[3],orth[3];
float totmat[3][3];
float tmat[4][4];
float dist;
data=(bStretchToConstraint*)constraint->data;
Mat4ToSize (ob->obmat, size);
if (data->tar){
/* store X orientation before destroying obmat */
xx[0] = ob->obmat[0][0];
xx[1] = ob->obmat[0][1];
xx[2] = ob->obmat[0][2];
Normalise(xx);
/* store Z orientation before destroying obmat */
zz[0] = ob->obmat[2][0];
zz[1] = ob->obmat[2][1];
zz[2] = ob->obmat[2][2];
Normalise(zz);
VecSubf(vec, ob->obmat[3], targetmat[3]);
vec[0] /= size[0];
vec[1] /= size[1];
vec[2] /= size[2];
dist = Normalise(vec);
//dist = VecLenf( ob->obmat[3], targetmat[3]);
if (data->orglength == 0) data->orglength = dist;
if (data->bulge ==0) data->bulge = 1.0;
scale[1] = dist/data->orglength;
switch (data->volmode){
/* volume preserving scaling */
case VOLUME_XZ :
scale[0] = 1.0f - (float)sqrt(data->bulge) + (float)sqrt(data->bulge*(data->orglength/dist));
scale[2] = scale[0];
break;
case VOLUME_X:
scale[0] = 1.0f + data->bulge * (data->orglength /dist - 1);
scale[2] = 1.0;
break;
case VOLUME_Z:
scale[0] = 1.0;
scale[2] = 1.0f + data->bulge * (data->orglength /dist - 1);
break;
/* don't care for volume */
case NO_VOLUME:
scale[0] = 1.0;
scale[2] = 1.0;
break;
default: /* should not happen, but in case*/
return;
} /* switch (data->volmode) */
/* Clear the object's rotation and scale */
ob->obmat[0][0]=size[0]*scale[0];
ob->obmat[0][1]=0;
ob->obmat[0][2]=0;
ob->obmat[1][0]=0;
ob->obmat[1][1]=size[1]*scale[1];
ob->obmat[1][2]=0;
ob->obmat[2][0]=0;
ob->obmat[2][1]=0;
ob->obmat[2][2]=size[2]*scale[2];
VecSubf(vec, ob->obmat[3], targetmat[3]);
Normalise(vec);
/* new Y aligns object target connection*/
totmat[1][0] = -vec[0];
totmat[1][1] = -vec[1];
totmat[1][2] = -vec[2];
switch (data->plane){
case PLANE_X:
/* build new Z vector */
/* othogonal to "new Y" "old X! plane */
Crossf(orth, vec, xx);
Normalise(orth);
/* new Z*/
totmat[2][0] = orth[0];
totmat[2][1] = orth[1];
totmat[2][2] = orth[2];
/* we decided to keep X plane*/
Crossf(xx,orth, vec);
Normalise(xx);
totmat[0][0] = xx[0];
totmat[0][1] = xx[1];
totmat[0][2] = xx[2];
break;
case PLANE_Z:
/* build new X vector */
/* othogonal to "new Y" "old Z! plane */
Crossf(orth, vec, zz);
Normalise(orth);
/* new X*/
totmat[0][0] = -orth[0];
totmat[0][1] = -orth[1];
totmat[0][2] = -orth[2];
/* we decided to keep Z */
Crossf(zz,orth, vec);
Normalise(zz);
totmat[2][0] = zz[0];
totmat[2][1] = zz[1];
totmat[2][2] = zz[2];
break;
} /* switch (data->plane) */
Mat4CpyMat4(tmat, ob->obmat);
Mat4MulMat34(ob->obmat, totmat, tmat);
}
}
break;
2002-10-12 11:37:38 +00:00
default:
printf ("Error: Unknown constraint type\n");
break;
}
}
void free_constraint_data (bConstraint *con)
{
if (con->data){
switch (con->type){
default:
break;
};
MEM_freeN (con->data);
}
}
void free_constraints (ListBase *conlist)
{
bConstraint *con;
/* Do any specific freeing */
for (con=conlist->first; con; con=con->next)
{
free_constraint_data (con);
};
/* Free the whole list */
BLI_freelistN(conlist);
}
void free_constraint_channels (ListBase *chanbase)
{
bConstraintChannel *chan;
for (chan=chanbase->first; chan; chan=chan->next)
{
if (chan->ipo){
chan->ipo->id.us--;
}
}
BLI_freelistN(chanbase);
}