2020-08-28 10:56:44 -04:00
|
|
|
/*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version 2
|
|
|
|
* of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/** \file
|
|
|
|
* \ingroup bli
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "BLI_double2.hh"
|
|
|
|
#include "BLI_double3.hh"
|
|
|
|
#include "BLI_float2.hh"
|
|
|
|
#include "BLI_float3.hh"
|
|
|
|
#include "BLI_hash.hh"
|
|
|
|
#include "BLI_math_boolean.hh"
|
|
|
|
#include "BLI_math_mpq.hh"
|
|
|
|
#include "BLI_mpq2.hh"
|
|
|
|
#include "BLI_mpq3.hh"
|
|
|
|
#include "BLI_span.hh"
|
|
|
|
#include "BLI_utildefines.h"
|
|
|
|
|
|
|
|
namespace blender {
|
|
|
|
|
|
|
|
#ifdef WITH_GMP
|
|
|
|
int orient2d(const mpq2 &a, const mpq2 &b, const mpq2 &c)
|
|
|
|
{
|
|
|
|
mpq_class detleft = (a[0] - c[0]) * (b[1] - c[1]);
|
|
|
|
mpq_class detright = (a[1] - c[1]) * (b[0] - c[0]);
|
|
|
|
mpq_class det = detleft - detright;
|
|
|
|
return sgn(det);
|
|
|
|
}
|
|
|
|
|
|
|
|
int incircle(const mpq2 &a, const mpq2 &b, const mpq2 &c, const mpq2 &d)
|
|
|
|
{
|
|
|
|
mpq_class adx = a[0] - d[0];
|
|
|
|
mpq_class bdx = b[0] - d[0];
|
|
|
|
mpq_class cdx = c[0] - d[0];
|
|
|
|
mpq_class ady = a[1] - d[1];
|
|
|
|
mpq_class bdy = b[1] - d[1];
|
|
|
|
mpq_class cdy = c[1] - d[1];
|
|
|
|
|
|
|
|
mpq_class bdxcdy = bdx * cdy;
|
|
|
|
mpq_class cdxbdy = cdx * bdy;
|
|
|
|
mpq_class alift = adx * adx + ady * ady;
|
|
|
|
|
|
|
|
mpq_class cdxady = cdx * ady;
|
|
|
|
mpq_class adxcdy = adx * cdy;
|
|
|
|
mpq_class blift = bdx * bdx + bdy * bdy;
|
|
|
|
|
|
|
|
mpq_class adxbdy = adx * bdy;
|
|
|
|
mpq_class bdxady = bdx * ady;
|
|
|
|
mpq_class clift = cdx * cdx + cdy * cdy;
|
|
|
|
|
|
|
|
mpq_class det = alift * (bdxcdy - cdxbdy) + blift * (cdxady - adxcdy) +
|
|
|
|
clift * (adxbdy - bdxady);
|
|
|
|
return sgn(det);
|
|
|
|
}
|
|
|
|
|
|
|
|
int orient3d(const mpq3 &a, const mpq3 &b, const mpq3 &c, const mpq3 &d)
|
|
|
|
{
|
|
|
|
mpq_class adx = a[0] - d[0];
|
|
|
|
mpq_class bdx = b[0] - d[0];
|
|
|
|
mpq_class cdx = c[0] - d[0];
|
|
|
|
mpq_class ady = a[1] - d[1];
|
|
|
|
mpq_class bdy = b[1] - d[1];
|
|
|
|
mpq_class cdy = c[1] - d[1];
|
|
|
|
mpq_class adz = a[2] - d[2];
|
|
|
|
mpq_class bdz = b[2] - d[2];
|
|
|
|
mpq_class cdz = c[2] - d[2];
|
|
|
|
|
|
|
|
mpq_class bdxcdy = bdx * cdy;
|
|
|
|
mpq_class cdxbdy = cdx * bdy;
|
|
|
|
|
|
|
|
mpq_class cdxady = cdx * ady;
|
|
|
|
mpq_class adxcdy = adx * cdy;
|
|
|
|
|
|
|
|
mpq_class adxbdy = adx * bdy;
|
|
|
|
mpq_class bdxady = bdx * ady;
|
|
|
|
|
|
|
|
mpq_class det = adz * (bdxcdy - cdxbdy) + bdz * (cdxady - adxcdy) + cdz * (adxbdy - bdxady);
|
|
|
|
return sgn(det);
|
|
|
|
}
|
|
|
|
#endif /* WITH_GMP */
|
|
|
|
|
|
|
|
/**
|
|
|
|
* For double versions of orient and incircle functions, use robust predicates
|
|
|
|
* that give exact answers for double inputs.
|
2020-09-06 01:45:38 +10:00
|
|
|
* First, encapsulate functions from Jonathan Shewchuk's implementation.
|
|
|
|
* After this name-space, see the implementation of the double3 primitives.
|
2020-08-28 10:56:44 -04:00
|
|
|
*/
|
|
|
|
namespace robust_pred {
|
|
|
|
|
|
|
|
/* Using Shewchuk's file here, edited to removed unneeded functions,
|
|
|
|
* change REAL to double everywhere, added const to some arguments,
|
|
|
|
* and to export only the following declared non-static functions.
|
|
|
|
*
|
|
|
|
* Since this is C++, an instantiated singleton class is used to make
|
2020-09-02 09:58:26 +10:00
|
|
|
* sure that #exactinit() is called once.
|
|
|
|
* (Because it's undefined when this is called in initialization of all modules,
|
2020-10-14 15:24:42 +11:00
|
|
|
* other modules shouldn't use these functions in initialization.)
|
2020-08-28 10:56:44 -04:00
|
|
|
*/
|
|
|
|
|
|
|
|
void exactinit();
|
|
|
|
double orient2dfast(const double *pa, const double *pb, const double *pc);
|
|
|
|
double orient2d(const double *pa, const double *pb, const double *pc);
|
|
|
|
double orient3dfast(const double *pa, const double *pb, const double *pc, const double *pd);
|
|
|
|
double orient3d(const double *pa, const double *pb, const double *pc, const double *pd);
|
|
|
|
double incirclefast(const double *pa, const double *pb, const double *pc, const double *pd);
|
|
|
|
double incircle(const double *pa, const double *pb, const double *pc, const double *pd);
|
|
|
|
double inspherefast(
|
|
|
|
const double *pa, const double *pb, const double *pc, const double *pd, const double *pe);
|
|
|
|
double insphere(
|
|
|
|
const double *pa, const double *pb, const double *pc, const double *pd, const double *pe);
|
|
|
|
|
|
|
|
class RobustInitCaller {
|
|
|
|
public:
|
|
|
|
RobustInitCaller()
|
|
|
|
{
|
|
|
|
exactinit();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static RobustInitCaller init_caller;
|
|
|
|
|
|
|
|
/* Routines for Arbitrary Precision Floating-point Arithmetic
|
|
|
|
* and Fast Robust Geometric Predicates
|
|
|
|
* (predicates.c)
|
|
|
|
*
|
|
|
|
* May 18, 1996
|
|
|
|
*
|
|
|
|
* Placed in the public domain by
|
|
|
|
* Jonathan Richard Shewchuk
|
|
|
|
* School of Computer Science
|
|
|
|
* Carnegie Mellon University
|
|
|
|
* 5000 Forbes Avenue
|
|
|
|
* Pittsburgh, Pennsylvania 15213-3891
|
2021-01-24 16:07:36 +11:00
|
|
|
* <jrs@cs.cmu.edu>
|
2020-08-28 10:56:44 -04:00
|
|
|
*
|
|
|
|
* This file contains C implementation of algorithms for exact addition
|
|
|
|
* and multiplication of floating-point numbers, and predicates for
|
|
|
|
* robustly performing the orientation and incircle tests used in
|
|
|
|
* computational geometry. The algorithms and underlying theory are
|
|
|
|
* described in Jonathan Richard Shewchuk. "Adaptive Precision Floating-
|
|
|
|
* Point Arithmetic and Fast Robust Geometric Predicates." Technical
|
|
|
|
* Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon
|
|
|
|
* University, Pittsburgh, Pennsylvania, May 1996. (Submitted to
|
|
|
|
* Discrete & Computational Geometry.)
|
|
|
|
*
|
|
|
|
* This file, the paper listed above, and other information are available
|
|
|
|
* from the Web page http://www.cs.cmu.edu/~quake/robust.html .
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* Using this code:
|
|
|
|
*
|
|
|
|
* First, read the short or long version of the paper (from the Web page above).
|
|
|
|
*
|
|
|
|
* Be sure to call #exactinit() once, before calling any of the arithmetic
|
|
|
|
* functions or geometric predicates. Also be sure to turn on the
|
|
|
|
* optimizer when compiling this file.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* On some machines, the exact arithmetic routines might be defeated by the
|
|
|
|
* use of internal extended precision floating-point registers. Sometimes
|
|
|
|
* this problem can be fixed by defining certain values to be volatile,
|
|
|
|
* thus forcing them to be stored to memory and rounded off. This isn't
|
|
|
|
* a great solution, though, as it slows the arithmetic down.
|
|
|
|
*
|
|
|
|
* To try this out, write "#define INEXACT volatile" below. Normally,
|
|
|
|
* however, INEXACT should be defined to be nothing. ("#define INEXACT".)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define INEXACT /* Nothing */
|
|
|
|
/* #define INEXACT volatile */
|
|
|
|
|
|
|
|
/* Which of the following two methods of finding the absolute values is
|
|
|
|
* fastest is compiler-dependent. A few compilers can inline and optimize
|
|
|
|
* the fabs() call; but most will incur the overhead of a function call,
|
|
|
|
* which is disastrously slow. A faster way on IEEE machines might be to
|
|
|
|
* mask the appropriate bit, but that's difficult to do in C.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define Absolute(a) ((a) >= 0.0 ? (a) : -(a))
|
|
|
|
/* #define Absolute(a) fabs(a) */
|
|
|
|
|
|
|
|
/* Many of the operations are broken up into two pieces, a main part that
|
|
|
|
* performs an approximate operation, and a "tail" that computes the
|
|
|
|
* round-off error of that operation.
|
|
|
|
*
|
|
|
|
* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(),
|
|
|
|
* Split(), and Two_Product() are all implemented as described in the
|
|
|
|
* reference. Each of these macros requires certain variables to be
|
|
|
|
* defined in the calling routine. The variables `bvirt', `c', `abig',
|
|
|
|
* `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because
|
|
|
|
* they store the result of an operation that may incur round-off error.
|
|
|
|
* The input parameter `x' (or the highest numbered `x_' parameter) must
|
|
|
|
* also be declared `INEXACT'.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define Fast_Two_Sum_Tail(a, b, x, y) \
|
|
|
|
bvirt = x - a; \
|
|
|
|
y = b - bvirt
|
|
|
|
|
|
|
|
#define Fast_Two_Sum(a, b, x, y) \
|
|
|
|
x = (double)(a + b); \
|
|
|
|
Fast_Two_Sum_Tail(a, b, x, y)
|
|
|
|
|
|
|
|
#define Fast_Two_Diff_Tail(a, b, x, y) \
|
|
|
|
bvirt = a - x; \
|
|
|
|
y = bvirt - b
|
|
|
|
|
|
|
|
#define Fast_Two_Diff(a, b, x, y) \
|
|
|
|
x = (double)(a - b); \
|
|
|
|
Fast_Two_Diff_Tail(a, b, x, y)
|
|
|
|
|
|
|
|
#define Two_Sum_Tail(a, b, x, y) \
|
|
|
|
bvirt = (double)(x - a); \
|
|
|
|
avirt = x - bvirt; \
|
|
|
|
bround = b - bvirt; \
|
|
|
|
around = a - avirt; \
|
|
|
|
y = around + bround
|
|
|
|
|
|
|
|
#define Two_Sum(a, b, x, y) \
|
|
|
|
x = (double)(a + b); \
|
|
|
|
Two_Sum_Tail(a, b, x, y)
|
|
|
|
|
|
|
|
#define Two_Diff_Tail(a, b, x, y) \
|
|
|
|
bvirt = (double)(a - x); \
|
|
|
|
avirt = x + bvirt; \
|
|
|
|
bround = bvirt - b; \
|
|
|
|
around = a - avirt; \
|
|
|
|
y = around + bround
|
|
|
|
|
|
|
|
#define Two_Diff(a, b, x, y) \
|
|
|
|
x = (double)(a - b); \
|
|
|
|
Two_Diff_Tail(a, b, x, y)
|
|
|
|
|
|
|
|
#define Split(a, ahi, alo) \
|
|
|
|
c = (double)(splitter * a); \
|
|
|
|
abig = (double)(c - a); \
|
|
|
|
ahi = c - abig; \
|
|
|
|
alo = a - ahi
|
|
|
|
|
|
|
|
#define Two_Product_Tail(a, b, x, y) \
|
|
|
|
Split(a, ahi, alo); \
|
|
|
|
Split(b, bhi, blo); \
|
|
|
|
err1 = x - (ahi * bhi); \
|
|
|
|
err2 = err1 - (alo * bhi); \
|
|
|
|
err3 = err2 - (ahi * blo); \
|
|
|
|
y = (alo * blo) - err3
|
|
|
|
|
|
|
|
#define Two_Product(a, b, x, y) \
|
|
|
|
x = (double)(a * b); \
|
|
|
|
Two_Product_Tail(a, b, x, y)
|
|
|
|
|
|
|
|
#define Two_Product_Presplit(a, b, bhi, blo, x, y) \
|
|
|
|
x = (double)(a * b); \
|
|
|
|
Split(a, ahi, alo); \
|
|
|
|
err1 = x - (ahi * bhi); \
|
|
|
|
err2 = err1 - (alo * bhi); \
|
|
|
|
err3 = err2 - (ahi * blo); \
|
|
|
|
y = (alo * blo) - err3
|
|
|
|
|
|
|
|
#define Two_Product_2Presplit(a, ahi, alo, b, bhi, blo, x, y) \
|
|
|
|
x = (double)(a * b); \
|
|
|
|
err1 = x - (ahi * bhi); \
|
|
|
|
err2 = err1 - (alo * bhi); \
|
|
|
|
err3 = err2 - (ahi * blo); \
|
|
|
|
y = (alo * blo) - err3
|
|
|
|
|
|
|
|
#define Square_Tail(a, x, y) \
|
|
|
|
Split(a, ahi, alo); \
|
|
|
|
err1 = x - (ahi * ahi); \
|
|
|
|
err3 = err1 - ((ahi + ahi) * alo); \
|
|
|
|
y = (alo * alo) - err3
|
|
|
|
|
|
|
|
#define Square(a, x, y) \
|
|
|
|
x = (double)(a * a); \
|
|
|
|
Square_Tail(a, x, y)
|
|
|
|
|
|
|
|
#define Two_One_Sum(a1, a0, b, x2, x1, x0) \
|
|
|
|
Two_Sum(a0, b, _i, x0); \
|
|
|
|
Two_Sum(a1, _i, x2, x1)
|
|
|
|
|
|
|
|
#define Two_One_Diff(a1, a0, b, x2, x1, x0) \
|
|
|
|
Two_Diff(a0, b, _i, x0); \
|
|
|
|
Two_Sum(a1, _i, x2, x1)
|
|
|
|
|
|
|
|
#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
|
|
|
|
Two_One_Sum(a1, a0, b0, _j, _0, x0); \
|
|
|
|
Two_One_Sum(_j, _0, b1, x3, x2, x1)
|
|
|
|
|
|
|
|
#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
|
|
|
|
Two_One_Diff(a1, a0, b0, _j, _0, x0); \
|
|
|
|
Two_One_Diff(_j, _0, b1, x3, x2, x1)
|
|
|
|
|
|
|
|
#define Four_One_Sum(a3, a2, a1, a0, b, x4, x3, x2, x1, x0) \
|
|
|
|
Two_One_Sum(a1, a0, b, _j, x1, x0); \
|
|
|
|
Two_One_Sum(a3, a2, _j, x4, x3, x2)
|
|
|
|
|
|
|
|
#define Four_Two_Sum(a3, a2, a1, a0, b1, b0, x5, x4, x3, x2, x1, x0) \
|
|
|
|
Four_One_Sum(a3, a2, a1, a0, b0, _k, _2, _1, _0, x0); \
|
|
|
|
Four_One_Sum(_k, _2, _1, _0, b1, x5, x4, x3, x2, x1)
|
|
|
|
|
|
|
|
#define Four_Four_Sum(a3, a2, a1, a0, b4, b3, b1, b0, x7, x6, x5, x4, x3, x2, x1, x0) \
|
|
|
|
Four_Two_Sum(a3, a2, a1, a0, b1, b0, _l, _2, _1, _0, x1, x0); \
|
|
|
|
Four_Two_Sum(_l, _2, _1, _0, b4, b3, x7, x6, x5, x4, x3, x2)
|
|
|
|
|
|
|
|
#define Eight_One_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b, x8, x7, x6, x5, x4, x3, x2, x1, x0) \
|
|
|
|
Four_One_Sum(a3, a2, a1, a0, b, _j, x3, x2, x1, x0); \
|
|
|
|
Four_One_Sum(a7, a6, a5, a4, _j, x8, x7, x6, x5, x4)
|
|
|
|
|
|
|
|
#define Eight_Two_Sum( \
|
|
|
|
a7, a6, a5, a4, a3, a2, a1, a0, b1, b0, x9, x8, x7, x6, x5, x4, x3, x2, x1, x0) \
|
|
|
|
Eight_One_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b0, _k, _6, _5, _4, _3, _2, _1, _0, x0); \
|
|
|
|
Eight_One_Sum(_k, _6, _5, _4, _3, _2, _1, _0, b1, x9, x8, x7, x6, x5, x4, x3, x2, x1)
|
|
|
|
|
|
|
|
#define Eight_Four_Sum(a7, \
|
|
|
|
a6, \
|
|
|
|
a5, \
|
|
|
|
a4, \
|
|
|
|
a3, \
|
|
|
|
a2, \
|
|
|
|
a1, \
|
|
|
|
a0, \
|
|
|
|
b4, \
|
|
|
|
b3, \
|
|
|
|
b1, \
|
|
|
|
b0, \
|
|
|
|
x11, \
|
|
|
|
x10, \
|
|
|
|
x9, \
|
|
|
|
x8, \
|
|
|
|
x7, \
|
|
|
|
x6, \
|
|
|
|
x5, \
|
|
|
|
x4, \
|
|
|
|
x3, \
|
|
|
|
x2, \
|
|
|
|
x1, \
|
|
|
|
x0) \
|
|
|
|
Eight_Two_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b1, b0, _l, _6, _5, _4, _3, _2, _1, _0, x1, x0); \
|
|
|
|
Eight_Two_Sum(_l, _6, _5, _4, _3, _2, _1, _0, b4, b3, x11, x10, x9, x8, x7, x6, x5, x4, x3, x2)
|
|
|
|
|
|
|
|
#define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \
|
|
|
|
Split(b, bhi, blo); \
|
|
|
|
Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \
|
|
|
|
Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \
|
|
|
|
Two_Sum(_i, _0, _k, x1); \
|
|
|
|
Fast_Two_Sum(_j, _k, x3, x2)
|
|
|
|
|
|
|
|
#define Four_One_Product(a3, a2, a1, a0, b, x7, x6, x5, x4, x3, x2, x1, x0) \
|
|
|
|
Split(b, bhi, blo); \
|
|
|
|
Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \
|
|
|
|
Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \
|
|
|
|
Two_Sum(_i, _0, _k, x1); \
|
|
|
|
Fast_Two_Sum(_j, _k, _i, x2); \
|
|
|
|
Two_Product_Presplit(a2, b, bhi, blo, _j, _0); \
|
|
|
|
Two_Sum(_i, _0, _k, x3); \
|
|
|
|
Fast_Two_Sum(_j, _k, _i, x4); \
|
|
|
|
Two_Product_Presplit(a3, b, bhi, blo, _j, _0); \
|
|
|
|
Two_Sum(_i, _0, _k, x5); \
|
|
|
|
Fast_Two_Sum(_j, _k, x7, x6)
|
|
|
|
|
|
|
|
#define Two_Two_Product(a1, a0, b1, b0, x7, x6, x5, x4, x3, x2, x1, x0) \
|
|
|
|
Split(a0, a0hi, a0lo); \
|
|
|
|
Split(b0, bhi, blo); \
|
|
|
|
Two_Product_2Presplit(a0, a0hi, a0lo, b0, bhi, blo, _i, x0); \
|
|
|
|
Split(a1, a1hi, a1lo); \
|
|
|
|
Two_Product_2Presplit(a1, a1hi, a1lo, b0, bhi, blo, _j, _0); \
|
|
|
|
Two_Sum(_i, _0, _k, _1); \
|
|
|
|
Fast_Two_Sum(_j, _k, _l, _2); \
|
|
|
|
Split(b1, bhi, blo); \
|
|
|
|
Two_Product_2Presplit(a0, a0hi, a0lo, b1, bhi, blo, _i, _0); \
|
|
|
|
Two_Sum(_1, _0, _k, x1); \
|
|
|
|
Two_Sum(_2, _k, _j, _1); \
|
|
|
|
Two_Sum(_l, _j, _m, _2); \
|
|
|
|
Two_Product_2Presplit(a1, a1hi, a1lo, b1, bhi, blo, _j, _0); \
|
|
|
|
Two_Sum(_i, _0, _n, _0); \
|
|
|
|
Two_Sum(_1, _0, _i, x2); \
|
|
|
|
Two_Sum(_2, _i, _k, _1); \
|
|
|
|
Two_Sum(_m, _k, _l, _2); \
|
|
|
|
Two_Sum(_j, _n, _k, _0); \
|
|
|
|
Two_Sum(_1, _0, _j, x3); \
|
|
|
|
Two_Sum(_2, _j, _i, _1); \
|
|
|
|
Two_Sum(_l, _i, _m, _2); \
|
|
|
|
Two_Sum(_1, _k, _i, x4); \
|
|
|
|
Two_Sum(_2, _i, _k, x5); \
|
|
|
|
Two_Sum(_m, _k, x7, x6)
|
|
|
|
|
|
|
|
#define Two_Square(a1, a0, x5, x4, x3, x2, x1, x0) \
|
|
|
|
Square(a0, _j, x0); \
|
|
|
|
_0 = a0 + a0; \
|
|
|
|
Two_Product(a1, _0, _k, _1); \
|
|
|
|
Two_One_Sum(_k, _1, _j, _l, _2, x1); \
|
|
|
|
Square(a1, _j, _1); \
|
|
|
|
Two_Two_Sum(_j, _1, _l, _2, x5, x4, x3, x2)
|
|
|
|
|
|
|
|
static double splitter; /* = 2^ceiling(p / 2) + 1. Used to split floats in half. */
|
|
|
|
static double epsilon; /* = 2^(-p). Used to estimate round-off errors. */
|
|
|
|
/* A set of coefficients used to calculate maximum round-off errors. */
|
|
|
|
static double resulterrbound;
|
|
|
|
static double ccwerrboundA, ccwerrboundB, ccwerrboundC;
|
|
|
|
static double o3derrboundA, o3derrboundB, o3derrboundC;
|
|
|
|
static double iccerrboundA, iccerrboundB, iccerrboundC;
|
|
|
|
static double isperrboundA, isperrboundB, isperrboundC;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* exactinit() Initialize the variables used for exact arithmetic.
|
|
|
|
*
|
|
|
|
* `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in
|
|
|
|
* floating-point arithmetic. `epsilon' bounds the relative round-off
|
|
|
|
* error. It is used for floating-point error analysis.
|
|
|
|
*
|
2020-08-29 13:41:02 +10:00
|
|
|
* `splitter' is used to split floating-point numbers into two half-length
|
|
|
|
* significant for exact multiplication.
|
2020-08-28 10:56:44 -04:00
|
|
|
*
|
|
|
|
* I imagine that a highly optimizing compiler might be too smart for its
|
|
|
|
* own good, and somehow cause this routine to fail, if it pretends that
|
|
|
|
* floating-point arithmetic is too much like real arithmetic.
|
|
|
|
*
|
|
|
|
* Don't change this routine unless you fully understand it.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void exactinit()
|
|
|
|
{
|
|
|
|
double half;
|
|
|
|
double check, lastcheck;
|
|
|
|
int every_other;
|
|
|
|
|
|
|
|
every_other = 1;
|
|
|
|
half = 0.5;
|
|
|
|
epsilon = 1.0;
|
|
|
|
splitter = 1.0;
|
|
|
|
check = 1.0;
|
|
|
|
/* Repeatedly divide `epsilon' by two until it is too small to add to
|
|
|
|
* one without causing round-off. (Also check if the sum is equal to
|
|
|
|
* the previous sum, for machines that round up instead of using exact
|
|
|
|
* rounding. Not that this library will work on such machines anyway. */
|
|
|
|
do {
|
|
|
|
lastcheck = check;
|
|
|
|
epsilon *= half;
|
|
|
|
if (every_other) {
|
|
|
|
splitter *= 2.0;
|
|
|
|
}
|
|
|
|
every_other = !every_other;
|
|
|
|
check = 1.0 + epsilon;
|
2020-11-06 12:30:59 +11:00
|
|
|
} while (!ELEM(check, 1.0, lastcheck));
|
2020-08-28 10:56:44 -04:00
|
|
|
splitter += 1.0;
|
|
|
|
|
|
|
|
/* Error bounds for orientation and #incircle tests. */
|
|
|
|
resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;
|
|
|
|
ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;
|
|
|
|
ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;
|
|
|
|
ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;
|
|
|
|
o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon;
|
|
|
|
o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon;
|
|
|
|
o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon;
|
|
|
|
iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;
|
|
|
|
iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;
|
|
|
|
iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;
|
|
|
|
isperrboundA = (16.0 + 224.0 * epsilon) * epsilon;
|
|
|
|
isperrboundB = (5.0 + 72.0 * epsilon) * epsilon;
|
|
|
|
isperrboundC = (71.0 + 1408.0 * epsilon) * epsilon * epsilon;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fast_expansion_sum_zeroelim() Sum two expansions, eliminating zero
|
|
|
|
* components from the output expansion.
|
|
|
|
*
|
|
|
|
* Sets h = e + f. See the long version of my paper for details.
|
|
|
|
* h cannot be e or f.
|
|
|
|
*/
|
|
|
|
static int fast_expansion_sum_zeroelim(
|
|
|
|
int elen, const double *e, int flen, const double *f, double *h)
|
|
|
|
{
|
|
|
|
double Q;
|
|
|
|
INEXACT double Qnew;
|
|
|
|
INEXACT double hh;
|
|
|
|
INEXACT double bvirt;
|
|
|
|
double avirt, bround, around;
|
|
|
|
int eindex, findex, hindex;
|
|
|
|
double enow, fnow;
|
|
|
|
|
|
|
|
enow = e[0];
|
|
|
|
fnow = f[0];
|
|
|
|
eindex = findex = 0;
|
|
|
|
if ((fnow > enow) == (fnow > -enow)) {
|
|
|
|
Q = enow;
|
|
|
|
enow = e[++eindex];
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
Q = fnow;
|
|
|
|
fnow = f[++findex];
|
|
|
|
}
|
|
|
|
hindex = 0;
|
|
|
|
if ((eindex < elen) && (findex < flen)) {
|
|
|
|
if ((fnow > enow) == (fnow > -enow)) {
|
|
|
|
Fast_Two_Sum(enow, Q, Qnew, hh);
|
|
|
|
enow = e[++eindex];
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
Fast_Two_Sum(fnow, Q, Qnew, hh);
|
|
|
|
fnow = f[++findex];
|
|
|
|
}
|
|
|
|
Q = Qnew;
|
|
|
|
if (hh != 0.0) {
|
|
|
|
h[hindex++] = hh;
|
|
|
|
}
|
|
|
|
while ((eindex < elen) && (findex < flen)) {
|
|
|
|
if ((fnow > enow) == (fnow > -enow)) {
|
|
|
|
Two_Sum(Q, enow, Qnew, hh);
|
|
|
|
enow = e[++eindex];
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
Two_Sum(Q, fnow, Qnew, hh);
|
|
|
|
fnow = f[++findex];
|
|
|
|
}
|
|
|
|
Q = Qnew;
|
|
|
|
if (hh != 0.0) {
|
|
|
|
h[hindex++] = hh;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
while (eindex < elen) {
|
|
|
|
Two_Sum(Q, enow, Qnew, hh);
|
|
|
|
enow = e[++eindex];
|
|
|
|
Q = Qnew;
|
|
|
|
if (hh != 0.0) {
|
|
|
|
h[hindex++] = hh;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
while (findex < flen) {
|
|
|
|
Two_Sum(Q, fnow, Qnew, hh);
|
|
|
|
fnow = f[++findex];
|
|
|
|
Q = Qnew;
|
|
|
|
if (hh != 0.0) {
|
|
|
|
h[hindex++] = hh;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ((Q != 0.0) || (hindex == 0)) {
|
|
|
|
h[hindex++] = Q;
|
|
|
|
}
|
|
|
|
return hindex;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* scale_expansion_zeroelim() Multiply an expansion by a scalar,
|
|
|
|
* eliminating zero components from the
|
|
|
|
* output expansion.
|
|
|
|
*
|
|
|
|
* Sets h = be. See either version of my paper for details.
|
|
|
|
* e and h cannot be the same.
|
|
|
|
*/
|
|
|
|
static int scale_expansion_zeroelim(int elen, const double *e, double b, double *h)
|
|
|
|
{
|
|
|
|
INEXACT double Q, sum;
|
|
|
|
double hh;
|
|
|
|
INEXACT double product1;
|
|
|
|
double product0;
|
|
|
|
int eindex, hindex;
|
|
|
|
double enow;
|
|
|
|
INEXACT double bvirt;
|
|
|
|
double avirt, bround, around;
|
|
|
|
INEXACT double c;
|
|
|
|
INEXACT double abig;
|
|
|
|
double ahi, alo, bhi, blo;
|
|
|
|
double err1, err2, err3;
|
|
|
|
|
|
|
|
Split(b, bhi, blo);
|
|
|
|
Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);
|
|
|
|
hindex = 0;
|
|
|
|
if (hh != 0) {
|
|
|
|
h[hindex++] = hh;
|
|
|
|
}
|
|
|
|
for (eindex = 1; eindex < elen; eindex++) {
|
|
|
|
enow = e[eindex];
|
|
|
|
Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
|
|
|
|
Two_Sum(Q, product0, sum, hh);
|
|
|
|
if (hh != 0) {
|
|
|
|
h[hindex++] = hh;
|
|
|
|
}
|
|
|
|
Fast_Two_Sum(product1, sum, Q, hh);
|
|
|
|
if (hh != 0) {
|
|
|
|
h[hindex++] = hh;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ((Q != 0.0) || (hindex == 0)) {
|
|
|
|
h[hindex++] = Q;
|
|
|
|
}
|
|
|
|
return hindex;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* estimate() Produce a one-word estimate of an expansion's value. */
|
|
|
|
static double estimate(int elen, const double *e)
|
|
|
|
{
|
|
|
|
double Q;
|
|
|
|
int eindex;
|
|
|
|
|
|
|
|
Q = e[0];
|
|
|
|
for (eindex = 1; eindex < elen; eindex++) {
|
|
|
|
Q += e[eindex];
|
|
|
|
}
|
|
|
|
return Q;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* orient2dfast() Approximate 2D orientation test. Non-robust.
|
|
|
|
* orient2d() Adaptive exact 2D orientation test. Robust.
|
|
|
|
* Return a positive value if the points pa, pb, and pc occur
|
|
|
|
* in counterclockwise order; a negative value if they occur
|
|
|
|
* in clockwise order; and zero if they are co-linear. The
|
|
|
|
* result is also a rough approximation of twice the signed
|
|
|
|
* area of the triangle defined by the three points.
|
|
|
|
*
|
|
|
|
* The second uses exact arithmetic to ensure a correct answer. The
|
|
|
|
* result returned is the determinant of a matrix. In orient2d() only,
|
|
|
|
* this determinant is computed adaptively, in the sense that exact
|
|
|
|
* arithmetic is used only to the degree it is needed to ensure that the
|
|
|
|
* returned value has the correct sign. Hence, orient2d() is usually quite
|
|
|
|
* fast, but will run more slowly when the input points are co-linear or
|
|
|
|
* nearly so.
|
|
|
|
*/
|
|
|
|
|
|
|
|
double orient2dfast(const double *pa, const double *pb, const double *pc)
|
|
|
|
{
|
|
|
|
double acx, bcx, acy, bcy;
|
|
|
|
|
|
|
|
acx = pa[0] - pc[0];
|
|
|
|
bcx = pb[0] - pc[0];
|
|
|
|
acy = pa[1] - pc[1];
|
|
|
|
bcy = pb[1] - pc[1];
|
|
|
|
return acx * bcy - acy * bcx;
|
|
|
|
}
|
|
|
|
|
|
|
|
static double orient2dadapt(const double *pa, const double *pb, const double *pc, double detsum)
|
|
|
|
{
|
|
|
|
INEXACT double acx, acy, bcx, bcy;
|
|
|
|
double acxtail, acytail, bcxtail, bcytail;
|
|
|
|
INEXACT double detleft, detright;
|
|
|
|
double detlefttail, detrighttail;
|
|
|
|
double det, errbound;
|
|
|
|
double B[4], C1[8], C2[12], D[16];
|
|
|
|
INEXACT double B3;
|
|
|
|
int C1length, C2length, Dlength;
|
|
|
|
double u[4];
|
|
|
|
INEXACT double u3;
|
|
|
|
INEXACT double s1, t1;
|
|
|
|
double s0, t0;
|
|
|
|
|
|
|
|
INEXACT double bvirt;
|
|
|
|
double avirt, bround, around;
|
|
|
|
INEXACT double c;
|
|
|
|
INEXACT double abig;
|
|
|
|
double ahi, alo, bhi, blo;
|
|
|
|
double err1, err2, err3;
|
|
|
|
INEXACT double _i, _j;
|
|
|
|
double _0;
|
|
|
|
|
|
|
|
acx = (double)(pa[0] - pc[0]);
|
|
|
|
bcx = (double)(pb[0] - pc[0]);
|
|
|
|
acy = (double)(pa[1] - pc[1]);
|
|
|
|
bcy = (double)(pb[1] - pc[1]);
|
|
|
|
|
|
|
|
Two_Product(acx, bcy, detleft, detlefttail);
|
|
|
|
Two_Product(acy, bcx, detright, detrighttail);
|
|
|
|
|
|
|
|
Two_Two_Diff(detleft, detlefttail, detright, detrighttail, B3, B[2], B[1], B[0]);
|
|
|
|
B[3] = B3;
|
|
|
|
|
|
|
|
det = estimate(4, B);
|
|
|
|
errbound = ccwerrboundB * detsum;
|
|
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
Two_Diff_Tail(pa[0], pc[0], acx, acxtail);
|
|
|
|
Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail);
|
|
|
|
Two_Diff_Tail(pa[1], pc[1], acy, acytail);
|
|
|
|
Two_Diff_Tail(pb[1], pc[1], bcy, bcytail);
|
|
|
|
|
|
|
|
if ((acxtail == 0.0) && (acytail == 0.0) && (bcxtail == 0.0) && (bcytail == 0.0)) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det);
|
|
|
|
det += (acx * bcytail + bcy * acxtail) - (acy * bcxtail + bcx * acytail);
|
|
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
Two_Product(acxtail, bcy, s1, s0);
|
|
|
|
Two_Product(acytail, bcx, t1, t0);
|
|
|
|
Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1);
|
|
|
|
|
|
|
|
Two_Product(acx, bcytail, s1, s0);
|
|
|
|
Two_Product(acy, bcxtail, t1, t0);
|
|
|
|
Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2);
|
|
|
|
|
|
|
|
Two_Product(acxtail, bcytail, s1, s0);
|
|
|
|
Two_Product(acytail, bcxtail, t1, t0);
|
|
|
|
Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D);
|
|
|
|
|
|
|
|
return (D[Dlength - 1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
double orient2d(const double *pa, const double *pb, const double *pc)
|
|
|
|
{
|
|
|
|
double detleft, detright, det;
|
|
|
|
double detsum, errbound;
|
|
|
|
|
|
|
|
detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]);
|
|
|
|
detright = (pa[1] - pc[1]) * (pb[0] - pc[0]);
|
|
|
|
det = detleft - detright;
|
|
|
|
|
|
|
|
if (detleft > 0.0) {
|
|
|
|
if (detright <= 0.0) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
detsum = detleft + detright;
|
|
|
|
}
|
|
|
|
else if (detleft < 0.0) {
|
|
|
|
if (detright >= 0.0) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
detsum = -detleft - detright;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
errbound = ccwerrboundA * detsum;
|
|
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
return orient2dadapt(pa, pb, pc, detsum);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2020-08-29 13:41:02 +10:00
|
|
|
* orient3dfast() Approximate 3D orientation test. Non-robust.
|
2020-08-28 10:56:44 -04:00
|
|
|
* orient3d() Adaptive exact 3D orientation test. Robust.
|
|
|
|
*
|
|
|
|
* Return a positive value if the point pd lies below the
|
|
|
|
* plane passing through pa, pb, and pc; "below" is defined so
|
|
|
|
* that pa, pb, and pc appear in counterclockwise order when
|
|
|
|
* viewed from above the plane. Returns a negative value if
|
|
|
|
* pd lies above the plane. Returns zero if the points are
|
|
|
|
* co-planar. The result is also a rough approximation of six
|
|
|
|
* times the signed volume of the tetrahedron defined by the
|
|
|
|
* four points.
|
|
|
|
*
|
|
|
|
* The second uses exact arithmetic to ensure a correct answer. The
|
|
|
|
* result returned is the determinant of a matrix. In orient3d() only,
|
|
|
|
* this determinant is computed adaptively, in the sense that exact
|
|
|
|
* arithmetic is used only to the degree it is needed to ensure that the
|
|
|
|
* returned value has the correct sign. Hence, orient3d() is usually quite
|
|
|
|
* fast, but will run more slowly when the input points are co-planar or
|
|
|
|
* nearly so.
|
|
|
|
*/
|
|
|
|
|
|
|
|
double orient3dfast(const double *pa, const double *pb, const double *pc, const double *pd)
|
|
|
|
{
|
|
|
|
double adx, bdx, cdx;
|
|
|
|
double ady, bdy, cdy;
|
|
|
|
double adz, bdz, cdz;
|
|
|
|
|
|
|
|
adx = pa[0] - pd[0];
|
|
|
|
bdx = pb[0] - pd[0];
|
|
|
|
cdx = pc[0] - pd[0];
|
|
|
|
ady = pa[1] - pd[1];
|
|
|
|
bdy = pb[1] - pd[1];
|
|
|
|
cdy = pc[1] - pd[1];
|
|
|
|
adz = pa[2] - pd[2];
|
|
|
|
bdz = pb[2] - pd[2];
|
|
|
|
cdz = pc[2] - pd[2];
|
|
|
|
|
|
|
|
return adx * (bdy * cdz - bdz * cdy) + bdx * (cdy * adz - cdz * ady) +
|
|
|
|
cdx * (ady * bdz - adz * bdy);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* \note since this code comes from an external source, prefer not to break it
|
|
|
|
* up to fix this clang-tidy warning.
|
|
|
|
*/
|
2020-08-28 16:12:47 -05:00
|
|
|
/* NOLINTNEXTLINE: readability-function-size */
|
2020-08-28 10:56:44 -04:00
|
|
|
static double orient3dadapt(
|
|
|
|
const double *pa, const double *pb, const double *pc, const double *pd, double permanent)
|
|
|
|
{
|
|
|
|
INEXACT double adx, bdx, cdx, ady, bdy, cdy, adz, bdz, cdz;
|
|
|
|
double det, errbound;
|
|
|
|
|
|
|
|
INEXACT double bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
|
|
|
|
double bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
|
|
|
|
double bc[4], ca[4], ab[4];
|
|
|
|
INEXACT double bc3, ca3, ab3;
|
|
|
|
double adet[8], bdet[8], cdet[8];
|
|
|
|
int alen, blen, clen;
|
|
|
|
double abdet[16];
|
|
|
|
int ablen;
|
|
|
|
double *finnow, *finother, *finswap;
|
|
|
|
double fin1[192], fin2[192];
|
|
|
|
int finlength;
|
|
|
|
|
|
|
|
double adxtail, bdxtail, cdxtail;
|
|
|
|
double adytail, bdytail, cdytail;
|
|
|
|
double adztail, bdztail, cdztail;
|
|
|
|
INEXACT double at_blarge, at_clarge;
|
|
|
|
INEXACT double bt_clarge, bt_alarge;
|
|
|
|
INEXACT double ct_alarge, ct_blarge;
|
|
|
|
double at_b[4], at_c[4], bt_c[4], bt_a[4], ct_a[4], ct_b[4];
|
|
|
|
int at_blen, at_clen, bt_clen, bt_alen, ct_alen, ct_blen;
|
|
|
|
INEXACT double bdxt_cdy1, cdxt_bdy1, cdxt_ady1;
|
|
|
|
INEXACT double adxt_cdy1, adxt_bdy1, bdxt_ady1;
|
|
|
|
double bdxt_cdy0, cdxt_bdy0, cdxt_ady0;
|
|
|
|
double adxt_cdy0, adxt_bdy0, bdxt_ady0;
|
|
|
|
INEXACT double bdyt_cdx1, cdyt_bdx1, cdyt_adx1;
|
|
|
|
INEXACT double adyt_cdx1, adyt_bdx1, bdyt_adx1;
|
|
|
|
double bdyt_cdx0, cdyt_bdx0, cdyt_adx0;
|
|
|
|
double adyt_cdx0, adyt_bdx0, bdyt_adx0;
|
|
|
|
double bct[8], cat[8], abt[8];
|
|
|
|
int bctlen, catlen, abtlen;
|
|
|
|
INEXACT double bdxt_cdyt1, cdxt_bdyt1, cdxt_adyt1;
|
|
|
|
INEXACT double adxt_cdyt1, adxt_bdyt1, bdxt_adyt1;
|
|
|
|
double bdxt_cdyt0, cdxt_bdyt0, cdxt_adyt0;
|
|
|
|
double adxt_cdyt0, adxt_bdyt0, bdxt_adyt0;
|
|
|
|
double u[4], v[12], w[16];
|
|
|
|
INEXACT double u3;
|
|
|
|
int vlength, wlength;
|
|
|
|
double negate;
|
|
|
|
|
|
|
|
INEXACT double bvirt;
|
|
|
|
double avirt, bround, around;
|
|
|
|
INEXACT double c;
|
|
|
|
INEXACT double abig;
|
|
|
|
double ahi, alo, bhi, blo;
|
|
|
|
double err1, err2, err3;
|
|
|
|
INEXACT double _i, _j, _k;
|
|
|
|
double _0;
|
|
|
|
|
|
|
|
adx = (double)(pa[0] - pd[0]);
|
|
|
|
bdx = (double)(pb[0] - pd[0]);
|
|
|
|
cdx = (double)(pc[0] - pd[0]);
|
|
|
|
ady = (double)(pa[1] - pd[1]);
|
|
|
|
bdy = (double)(pb[1] - pd[1]);
|
|
|
|
cdy = (double)(pc[1] - pd[1]);
|
|
|
|
adz = (double)(pa[2] - pd[2]);
|
|
|
|
bdz = (double)(pb[2] - pd[2]);
|
|
|
|
cdz = (double)(pc[2] - pd[2]);
|
|
|
|
|
|
|
|
Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
|
|
|
|
Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
|
|
|
|
Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
|
|
|
|
bc[3] = bc3;
|
|
|
|
alen = scale_expansion_zeroelim(4, bc, adz, adet);
|
|
|
|
|
|
|
|
Two_Product(cdx, ady, cdxady1, cdxady0);
|
|
|
|
Two_Product(adx, cdy, adxcdy1, adxcdy0);
|
|
|
|
Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
|
|
|
|
ca[3] = ca3;
|
|
|
|
blen = scale_expansion_zeroelim(4, ca, bdz, bdet);
|
|
|
|
|
|
|
|
Two_Product(adx, bdy, adxbdy1, adxbdy0);
|
|
|
|
Two_Product(bdx, ady, bdxady1, bdxady0);
|
|
|
|
Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
|
|
|
|
ab[3] = ab3;
|
|
|
|
clen = scale_expansion_zeroelim(4, ab, cdz, cdet);
|
|
|
|
|
|
|
|
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
|
|
|
|
|
|
|
|
det = estimate(finlength, fin1);
|
|
|
|
errbound = o3derrboundB * permanent;
|
|
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
|
|
|
|
Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
|
|
|
|
Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
|
|
|
|
Two_Diff_Tail(pa[1], pd[1], ady, adytail);
|
|
|
|
Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
|
|
|
|
Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
|
|
|
|
Two_Diff_Tail(pa[2], pd[2], adz, adztail);
|
|
|
|
Two_Diff_Tail(pb[2], pd[2], bdz, bdztail);
|
|
|
|
Two_Diff_Tail(pc[2], pd[2], cdz, cdztail);
|
|
|
|
|
|
|
|
if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) && (adytail == 0.0) &&
|
|
|
|
(bdytail == 0.0) && (cdytail == 0.0) && (adztail == 0.0) && (bdztail == 0.0) &&
|
|
|
|
(cdztail == 0.0)) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
errbound = o3derrboundC * permanent + resulterrbound * Absolute(det);
|
|
|
|
det += (adz * ((bdx * cdytail + cdy * bdxtail) - (bdy * cdxtail + cdx * bdytail)) +
|
|
|
|
adztail * (bdx * cdy - bdy * cdx)) +
|
|
|
|
(bdz * ((cdx * adytail + ady * cdxtail) - (cdy * adxtail + adx * cdytail)) +
|
|
|
|
bdztail * (cdx * ady - cdy * adx)) +
|
|
|
|
(cdz * ((adx * bdytail + bdy * adxtail) - (ady * bdxtail + bdx * adytail)) +
|
|
|
|
cdztail * (adx * bdy - ady * bdx));
|
|
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
finnow = fin1;
|
|
|
|
finother = fin2;
|
|
|
|
|
|
|
|
if (adxtail == 0.0) {
|
|
|
|
if (adytail == 0.0) {
|
|
|
|
at_b[0] = 0.0;
|
|
|
|
at_blen = 1;
|
|
|
|
at_c[0] = 0.0;
|
|
|
|
at_clen = 1;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
negate = -adytail;
|
|
|
|
Two_Product(negate, bdx, at_blarge, at_b[0]);
|
|
|
|
at_b[1] = at_blarge;
|
|
|
|
at_blen = 2;
|
|
|
|
Two_Product(adytail, cdx, at_clarge, at_c[0]);
|
|
|
|
at_c[1] = at_clarge;
|
|
|
|
at_clen = 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
if (adytail == 0.0) {
|
|
|
|
Two_Product(adxtail, bdy, at_blarge, at_b[0]);
|
|
|
|
at_b[1] = at_blarge;
|
|
|
|
at_blen = 2;
|
|
|
|
negate = -adxtail;
|
|
|
|
Two_Product(negate, cdy, at_clarge, at_c[0]);
|
|
|
|
at_c[1] = at_clarge;
|
|
|
|
at_clen = 2;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
Two_Product(adxtail, bdy, adxt_bdy1, adxt_bdy0);
|
|
|
|
Two_Product(adytail, bdx, adyt_bdx1, adyt_bdx0);
|
|
|
|
Two_Two_Diff(
|
|
|
|
adxt_bdy1, adxt_bdy0, adyt_bdx1, adyt_bdx0, at_blarge, at_b[2], at_b[1], at_b[0]);
|
|
|
|
at_b[3] = at_blarge;
|
|
|
|
at_blen = 4;
|
|
|
|
Two_Product(adytail, cdx, adyt_cdx1, adyt_cdx0);
|
|
|
|
Two_Product(adxtail, cdy, adxt_cdy1, adxt_cdy0);
|
|
|
|
Two_Two_Diff(
|
|
|
|
adyt_cdx1, adyt_cdx0, adxt_cdy1, adxt_cdy0, at_clarge, at_c[2], at_c[1], at_c[0]);
|
|
|
|
at_c[3] = at_clarge;
|
|
|
|
at_clen = 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (bdxtail == 0.0) {
|
|
|
|
if (bdytail == 0.0) {
|
|
|
|
bt_c[0] = 0.0;
|
|
|
|
bt_clen = 1;
|
|
|
|
bt_a[0] = 0.0;
|
|
|
|
bt_alen = 1;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
negate = -bdytail;
|
|
|
|
Two_Product(negate, cdx, bt_clarge, bt_c[0]);
|
|
|
|
bt_c[1] = bt_clarge;
|
|
|
|
bt_clen = 2;
|
|
|
|
Two_Product(bdytail, adx, bt_alarge, bt_a[0]);
|
|
|
|
bt_a[1] = bt_alarge;
|
|
|
|
bt_alen = 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
if (bdytail == 0.0) {
|
|
|
|
Two_Product(bdxtail, cdy, bt_clarge, bt_c[0]);
|
|
|
|
bt_c[1] = bt_clarge;
|
|
|
|
bt_clen = 2;
|
|
|
|
negate = -bdxtail;
|
|
|
|
Two_Product(negate, ady, bt_alarge, bt_a[0]);
|
|
|
|
bt_a[1] = bt_alarge;
|
|
|
|
bt_alen = 2;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
Two_Product(bdxtail, cdy, bdxt_cdy1, bdxt_cdy0);
|
|
|
|
Two_Product(bdytail, cdx, bdyt_cdx1, bdyt_cdx0);
|
|
|
|
Two_Two_Diff(
|
|
|
|
bdxt_cdy1, bdxt_cdy0, bdyt_cdx1, bdyt_cdx0, bt_clarge, bt_c[2], bt_c[1], bt_c[0]);
|
|
|
|
bt_c[3] = bt_clarge;
|
|
|
|
bt_clen = 4;
|
|
|
|
Two_Product(bdytail, adx, bdyt_adx1, bdyt_adx0);
|
|
|
|
Two_Product(bdxtail, ady, bdxt_ady1, bdxt_ady0);
|
|
|
|
Two_Two_Diff(
|
|
|
|
bdyt_adx1, bdyt_adx0, bdxt_ady1, bdxt_ady0, bt_alarge, bt_a[2], bt_a[1], bt_a[0]);
|
|
|
|
bt_a[3] = bt_alarge;
|
|
|
|
bt_alen = 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (cdxtail == 0.0) {
|
|
|
|
if (cdytail == 0.0) {
|
|
|
|
ct_a[0] = 0.0;
|
|
|
|
ct_alen = 1;
|
|
|
|
ct_b[0] = 0.0;
|
|
|
|
ct_blen = 1;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
negate = -cdytail;
|
|
|
|
Two_Product(negate, adx, ct_alarge, ct_a[0]);
|
|
|
|
ct_a[1] = ct_alarge;
|
|
|
|
ct_alen = 2;
|
|
|
|
Two_Product(cdytail, bdx, ct_blarge, ct_b[0]);
|
|
|
|
ct_b[1] = ct_blarge;
|
|
|
|
ct_blen = 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
if (cdytail == 0.0) {
|
|
|
|
Two_Product(cdxtail, ady, ct_alarge, ct_a[0]);
|
|
|
|
ct_a[1] = ct_alarge;
|
|
|
|
ct_alen = 2;
|
|
|
|
negate = -cdxtail;
|
|
|
|
Two_Product(negate, bdy, ct_blarge, ct_b[0]);
|
|
|
|
ct_b[1] = ct_blarge;
|
|
|
|
ct_blen = 2;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
Two_Product(cdxtail, ady, cdxt_ady1, cdxt_ady0);
|
|
|
|
Two_Product(cdytail, adx, cdyt_adx1, cdyt_adx0);
|
|
|
|
Two_Two_Diff(
|
|
|
|
cdxt_ady1, cdxt_ady0, cdyt_adx1, cdyt_adx0, ct_alarge, ct_a[2], ct_a[1], ct_a[0]);
|
|
|
|
ct_a[3] = ct_alarge;
|
|
|
|
ct_alen = 4;
|
|
|
|
Two_Product(cdytail, bdx, cdyt_bdx1, cdyt_bdx0);
|
|
|
|
Two_Product(cdxtail, bdy, cdxt_bdy1, cdxt_bdy0);
|
|
|
|
Two_Two_Diff(
|
|
|
|
cdyt_bdx1, cdyt_bdx0, cdxt_bdy1, cdxt_bdy0, ct_blarge, ct_b[2], ct_b[1], ct_b[0]);
|
|
|
|
ct_b[3] = ct_blarge;
|
|
|
|
ct_blen = 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bctlen = fast_expansion_sum_zeroelim(bt_clen, bt_c, ct_blen, ct_b, bct);
|
|
|
|
wlength = scale_expansion_zeroelim(bctlen, bct, adz, w);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
|
|
|
|
catlen = fast_expansion_sum_zeroelim(ct_alen, ct_a, at_clen, at_c, cat);
|
|
|
|
wlength = scale_expansion_zeroelim(catlen, cat, bdz, w);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
|
|
|
|
abtlen = fast_expansion_sum_zeroelim(at_blen, at_b, bt_alen, bt_a, abt);
|
|
|
|
wlength = scale_expansion_zeroelim(abtlen, abt, cdz, w);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
|
|
|
|
if (adztail != 0.0) {
|
|
|
|
vlength = scale_expansion_zeroelim(4, bc, adztail, v);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
if (bdztail != 0.0) {
|
|
|
|
vlength = scale_expansion_zeroelim(4, ca, bdztail, v);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
if (cdztail != 0.0) {
|
|
|
|
vlength = scale_expansion_zeroelim(4, ab, cdztail, v);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (adxtail != 0.0) {
|
|
|
|
if (bdytail != 0.0) {
|
|
|
|
Two_Product(adxtail, bdytail, adxt_bdyt1, adxt_bdyt0);
|
|
|
|
Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdz, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
if (cdztail != 0.0) {
|
|
|
|
Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdztail, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (cdytail != 0.0) {
|
|
|
|
negate = -adxtail;
|
|
|
|
Two_Product(negate, cdytail, adxt_cdyt1, adxt_cdyt0);
|
|
|
|
Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdz, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
if (bdztail != 0.0) {
|
|
|
|
Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdztail, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (bdxtail != 0.0) {
|
|
|
|
if (cdytail != 0.0) {
|
|
|
|
Two_Product(bdxtail, cdytail, bdxt_cdyt1, bdxt_cdyt0);
|
|
|
|
Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adz, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
if (adztail != 0.0) {
|
|
|
|
Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adztail, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (adytail != 0.0) {
|
|
|
|
negate = -bdxtail;
|
|
|
|
Two_Product(negate, adytail, bdxt_adyt1, bdxt_adyt0);
|
|
|
|
Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdz, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
if (cdztail != 0.0) {
|
|
|
|
Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdztail, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (cdxtail != 0.0) {
|
|
|
|
if (adytail != 0.0) {
|
|
|
|
Two_Product(cdxtail, adytail, cdxt_adyt1, cdxt_adyt0);
|
|
|
|
Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdz, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
if (bdztail != 0.0) {
|
|
|
|
Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdztail, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (bdytail != 0.0) {
|
|
|
|
negate = -cdxtail;
|
|
|
|
Two_Product(negate, bdytail, cdxt_bdyt1, cdxt_bdyt0);
|
|
|
|
Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adz, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
if (adztail != 0.0) {
|
|
|
|
Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adztail, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (adztail != 0.0) {
|
|
|
|
wlength = scale_expansion_zeroelim(bctlen, bct, adztail, w);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
if (bdztail != 0.0) {
|
|
|
|
wlength = scale_expansion_zeroelim(catlen, cat, bdztail, w);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
if (cdztail != 0.0) {
|
|
|
|
wlength = scale_expansion_zeroelim(abtlen, abt, cdztail, w);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
|
|
|
|
return finnow[finlength - 1];
|
|
|
|
}
|
|
|
|
|
|
|
|
double orient3d(const double *pa, const double *pb, const double *pc, const double *pd)
|
|
|
|
{
|
|
|
|
double adx, bdx, cdx, ady, bdy, cdy, adz, bdz, cdz;
|
|
|
|
double bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
|
|
|
|
double det;
|
|
|
|
double permanent, errbound;
|
|
|
|
|
|
|
|
adx = pa[0] - pd[0];
|
|
|
|
bdx = pb[0] - pd[0];
|
|
|
|
cdx = pc[0] - pd[0];
|
|
|
|
ady = pa[1] - pd[1];
|
|
|
|
bdy = pb[1] - pd[1];
|
|
|
|
cdy = pc[1] - pd[1];
|
|
|
|
adz = pa[2] - pd[2];
|
|
|
|
bdz = pb[2] - pd[2];
|
|
|
|
cdz = pc[2] - pd[2];
|
|
|
|
|
|
|
|
bdxcdy = bdx * cdy;
|
|
|
|
cdxbdy = cdx * bdy;
|
|
|
|
|
|
|
|
cdxady = cdx * ady;
|
|
|
|
adxcdy = adx * cdy;
|
|
|
|
|
|
|
|
adxbdy = adx * bdy;
|
|
|
|
bdxady = bdx * ady;
|
|
|
|
|
|
|
|
det = adz * (bdxcdy - cdxbdy) + bdz * (cdxady - adxcdy) + cdz * (adxbdy - bdxady);
|
|
|
|
|
|
|
|
permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * Absolute(adz) +
|
|
|
|
(Absolute(cdxady) + Absolute(adxcdy)) * Absolute(bdz) +
|
|
|
|
(Absolute(adxbdy) + Absolute(bdxady)) * Absolute(cdz);
|
|
|
|
errbound = o3derrboundA * permanent;
|
|
|
|
if ((det > errbound) || (-det > errbound)) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
return orient3dadapt(pa, pb, pc, pd, permanent);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* incirclefast() Approximate 2D incircle test. Non-robust.
|
|
|
|
* incircle()
|
|
|
|
*
|
|
|
|
* Return a positive value if the point pd lies inside the
|
|
|
|
* circle passing through pa, pb, and pc; a negative value if
|
|
|
|
* it lies outside; and zero if the four points are co-circular.
|
|
|
|
* The points pa, pb, and pc must be in counterclockwise
|
|
|
|
* order, or the sign of the result will be reversed.
|
|
|
|
*
|
|
|
|
* The second uses exact arithmetic to ensure a correct answer. The
|
|
|
|
* result returned is the determinant of a matrix. In incircle() only,
|
|
|
|
* this determinant is computed adaptively, in the sense that exact
|
|
|
|
* arithmetic is used only to the degree it is needed to ensure that the
|
|
|
|
* returned value has the correct sign. Hence, incircle() is usually quite
|
|
|
|
* fast, but will run more slowly when the input points are co-circular or
|
|
|
|
* nearly so.
|
|
|
|
*/
|
|
|
|
|
|
|
|
double incirclefast(const double *pa, const double *pb, const double *pc, const double *pd)
|
|
|
|
{
|
|
|
|
double adx, ady, bdx, bdy, cdx, cdy;
|
|
|
|
double abdet, bcdet, cadet;
|
|
|
|
double alift, blift, clift;
|
|
|
|
|
|
|
|
adx = pa[0] - pd[0];
|
|
|
|
ady = pa[1] - pd[1];
|
|
|
|
bdx = pb[0] - pd[0];
|
|
|
|
bdy = pb[1] - pd[1];
|
|
|
|
cdx = pc[0] - pd[0];
|
|
|
|
cdy = pc[1] - pd[1];
|
|
|
|
|
|
|
|
abdet = adx * bdy - bdx * ady;
|
|
|
|
bcdet = bdx * cdy - cdx * bdy;
|
|
|
|
cadet = cdx * ady - adx * cdy;
|
|
|
|
alift = adx * adx + ady * ady;
|
|
|
|
blift = bdx * bdx + bdy * bdy;
|
|
|
|
clift = cdx * cdx + cdy * cdy;
|
|
|
|
|
|
|
|
return alift * bcdet + blift * cadet + clift * abdet;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* \note since this code comes from an external source, prefer not to break it
|
|
|
|
* up to fix this clang-tidy warning.
|
|
|
|
*/
|
2020-08-28 16:12:47 -05:00
|
|
|
/* NOLINTNEXTLINE: readability-function-size */
|
2020-08-28 10:56:44 -04:00
|
|
|
static double incircleadapt(
|
|
|
|
const double *pa, const double *pb, const double *pc, const double *pd, double permanent)
|
|
|
|
{
|
|
|
|
INEXACT double adx, bdx, cdx, ady, bdy, cdy;
|
|
|
|
double det, errbound;
|
|
|
|
|
|
|
|
INEXACT double bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
|
|
|
|
double bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
|
|
|
|
double bc[4], ca[4], ab[4];
|
|
|
|
INEXACT double bc3, ca3, ab3;
|
|
|
|
double axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];
|
|
|
|
int axbclen, axxbclen, aybclen, ayybclen, alen;
|
|
|
|
double bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];
|
|
|
|
int bxcalen, bxxcalen, bycalen, byycalen, blen;
|
|
|
|
double cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];
|
|
|
|
int cxablen, cxxablen, cyablen, cyyablen, clen;
|
|
|
|
double abdet[64];
|
|
|
|
int ablen;
|
|
|
|
double fin1[1152], fin2[1152];
|
|
|
|
double *finnow, *finother, *finswap;
|
|
|
|
int finlength;
|
|
|
|
|
|
|
|
double adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
|
|
|
|
INEXACT double adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;
|
|
|
|
double adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;
|
|
|
|
double aa[4], bb[4], cc[4];
|
|
|
|
INEXACT double aa3, bb3, cc3;
|
|
|
|
INEXACT double ti1, tj1;
|
|
|
|
double ti0, tj0;
|
|
|
|
double u[4], v[4];
|
|
|
|
INEXACT double u3, v3;
|
|
|
|
double temp8[8], temp16a[16], temp16b[16], temp16c[16];
|
|
|
|
double temp32a[32], temp32b[32], temp48[48], temp64[64];
|
|
|
|
int temp8len, temp16alen, temp16blen, temp16clen;
|
|
|
|
int temp32alen, temp32blen, temp48len, temp64len;
|
|
|
|
double axtbb[8], axtcc[8], aytbb[8], aytcc[8];
|
|
|
|
int axtbblen, axtcclen, aytbblen, aytcclen;
|
|
|
|
double bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];
|
|
|
|
int bxtaalen, bxtcclen, bytaalen, bytcclen;
|
|
|
|
double cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];
|
|
|
|
int cxtaalen, cxtbblen, cytaalen, cytbblen;
|
|
|
|
double axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];
|
|
|
|
int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
|
|
|
|
double axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];
|
|
|
|
int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;
|
|
|
|
double axtbctt[8], aytbctt[8], bxtcatt[8];
|
|
|
|
double bytcatt[8], cxtabtt[8], cytabtt[8];
|
|
|
|
int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;
|
|
|
|
double abt[8], bct[8], cat[8];
|
|
|
|
int abtlen, bctlen, catlen;
|
|
|
|
double abtt[4], bctt[4], catt[4];
|
|
|
|
int abttlen, bcttlen, cattlen;
|
|
|
|
INEXACT double abtt3, bctt3, catt3;
|
|
|
|
double negate;
|
|
|
|
|
|
|
|
INEXACT double bvirt;
|
|
|
|
double avirt, bround, around;
|
|
|
|
INEXACT double c;
|
|
|
|
INEXACT double abig;
|
|
|
|
double ahi, alo, bhi, blo;
|
|
|
|
double err1, err2, err3;
|
|
|
|
INEXACT double _i, _j;
|
|
|
|
double _0;
|
|
|
|
|
|
|
|
adx = (double)(pa[0] - pd[0]);
|
|
|
|
bdx = (double)(pb[0] - pd[0]);
|
|
|
|
cdx = (double)(pc[0] - pd[0]);
|
|
|
|
ady = (double)(pa[1] - pd[1]);
|
|
|
|
bdy = (double)(pb[1] - pd[1]);
|
|
|
|
cdy = (double)(pc[1] - pd[1]);
|
|
|
|
|
|
|
|
Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
|
|
|
|
Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
|
|
|
|
Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
|
|
|
|
bc[3] = bc3;
|
|
|
|
axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);
|
|
|
|
axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);
|
|
|
|
aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);
|
|
|
|
ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);
|
|
|
|
alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);
|
|
|
|
|
|
|
|
Two_Product(cdx, ady, cdxady1, cdxady0);
|
|
|
|
Two_Product(adx, cdy, adxcdy1, adxcdy0);
|
|
|
|
Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
|
|
|
|
ca[3] = ca3;
|
|
|
|
bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);
|
|
|
|
bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);
|
|
|
|
bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);
|
|
|
|
byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);
|
|
|
|
blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);
|
|
|
|
|
|
|
|
Two_Product(adx, bdy, adxbdy1, adxbdy0);
|
|
|
|
Two_Product(bdx, ady, bdxady1, bdxady0);
|
|
|
|
Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
|
|
|
|
ab[3] = ab3;
|
|
|
|
cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);
|
|
|
|
cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);
|
|
|
|
cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);
|
|
|
|
cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);
|
|
|
|
clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);
|
|
|
|
|
|
|
|
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
|
|
|
|
|
|
|
|
det = estimate(finlength, fin1);
|
|
|
|
errbound = iccerrboundB * permanent;
|
|
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
|
|
|
|
Two_Diff_Tail(pa[1], pd[1], ady, adytail);
|
|
|
|
Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
|
|
|
|
Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
|
|
|
|
Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
|
|
|
|
Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
|
|
|
|
if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) && (adytail == 0.0) &&
|
|
|
|
(bdytail == 0.0) && (cdytail == 0.0)) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);
|
|
|
|
det += ((adx * adx + ady * ady) *
|
|
|
|
((bdx * cdytail + cdy * bdxtail) - (bdy * cdxtail + cdx * bdytail)) +
|
|
|
|
2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx)) +
|
|
|
|
((bdx * bdx + bdy * bdy) *
|
|
|
|
((cdx * adytail + ady * cdxtail) - (cdy * adxtail + adx * cdytail)) +
|
|
|
|
2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx)) +
|
|
|
|
((cdx * cdx + cdy * cdy) *
|
|
|
|
((adx * bdytail + bdy * adxtail) - (ady * bdxtail + bdx * adytail)) +
|
|
|
|
2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
|
|
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
finnow = fin1;
|
|
|
|
finother = fin2;
|
|
|
|
|
|
|
|
if ((bdxtail != 0.0) || (bdytail != 0.0) || (cdxtail != 0.0) || (cdytail != 0.0)) {
|
|
|
|
Square(adx, adxadx1, adxadx0);
|
|
|
|
Square(ady, adyady1, adyady0);
|
|
|
|
Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);
|
|
|
|
aa[3] = aa3;
|
|
|
|
}
|
|
|
|
if ((cdxtail != 0.0) || (cdytail != 0.0) || (adxtail != 0.0) || (adytail != 0.0)) {
|
|
|
|
Square(bdx, bdxbdx1, bdxbdx0);
|
|
|
|
Square(bdy, bdybdy1, bdybdy0);
|
|
|
|
Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);
|
|
|
|
bb[3] = bb3;
|
|
|
|
}
|
|
|
|
if ((adxtail != 0.0) || (adytail != 0.0) || (bdxtail != 0.0) || (bdytail != 0.0)) {
|
|
|
|
Square(cdx, cdxcdx1, cdxcdx0);
|
|
|
|
Square(cdy, cdycdy1, cdycdy0);
|
|
|
|
Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);
|
|
|
|
cc[3] = cc3;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (adxtail != 0.0) {
|
|
|
|
axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);
|
|
|
|
temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx, temp16a);
|
|
|
|
|
|
|
|
axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);
|
|
|
|
temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);
|
|
|
|
|
|
|
|
axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);
|
|
|
|
temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);
|
|
|
|
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
|
|
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
if (adytail != 0.0) {
|
|
|
|
aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);
|
|
|
|
temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady, temp16a);
|
|
|
|
|
|
|
|
aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);
|
|
|
|
temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);
|
|
|
|
|
|
|
|
aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);
|
|
|
|
temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);
|
|
|
|
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
|
|
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
if (bdxtail != 0.0) {
|
|
|
|
bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);
|
|
|
|
temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx, temp16a);
|
|
|
|
|
|
|
|
bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);
|
|
|
|
temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);
|
|
|
|
|
|
|
|
bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);
|
|
|
|
temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);
|
|
|
|
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
|
|
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
if (bdytail != 0.0) {
|
|
|
|
bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);
|
|
|
|
temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy, temp16a);
|
|
|
|
|
|
|
|
bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);
|
|
|
|
temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);
|
|
|
|
|
|
|
|
bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);
|
|
|
|
temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);
|
|
|
|
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
|
|
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
if (cdxtail != 0.0) {
|
|
|
|
cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);
|
|
|
|
temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx, temp16a);
|
|
|
|
|
|
|
|
cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);
|
|
|
|
temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);
|
|
|
|
|
|
|
|
cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);
|
|
|
|
temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);
|
|
|
|
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
|
|
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
if (cdytail != 0.0) {
|
|
|
|
cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);
|
|
|
|
temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy, temp16a);
|
|
|
|
|
|
|
|
cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);
|
|
|
|
temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);
|
|
|
|
|
|
|
|
cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);
|
|
|
|
temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);
|
|
|
|
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
|
|
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((adxtail != 0.0) || (adytail != 0.0)) {
|
|
|
|
if ((bdxtail != 0.0) || (bdytail != 0.0) || (cdxtail != 0.0) || (cdytail != 0.0)) {
|
|
|
|
Two_Product(bdxtail, cdy, ti1, ti0);
|
|
|
|
Two_Product(bdx, cdytail, tj1, tj0);
|
|
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
negate = -bdy;
|
|
|
|
Two_Product(cdxtail, negate, ti1, ti0);
|
|
|
|
negate = -bdytail;
|
|
|
|
Two_Product(cdx, negate, tj1, tj0);
|
|
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
|
|
|
|
v[3] = v3;
|
|
|
|
bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);
|
|
|
|
|
|
|
|
Two_Product(bdxtail, cdytail, ti1, ti0);
|
|
|
|
Two_Product(cdxtail, bdytail, tj1, tj0);
|
|
|
|
Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);
|
|
|
|
bctt[3] = bctt3;
|
|
|
|
bcttlen = 4;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
bct[0] = 0.0;
|
|
|
|
bctlen = 1;
|
|
|
|
bctt[0] = 0.0;
|
|
|
|
bcttlen = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (adxtail != 0.0) {
|
|
|
|
temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);
|
|
|
|
axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);
|
|
|
|
temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx, temp32a);
|
|
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
if (bdytail != 0.0) {
|
|
|
|
temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);
|
|
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, temp16a);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
if (cdytail != 0.0) {
|
|
|
|
temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);
|
|
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, temp16a);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
|
|
|
|
temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail, temp32a);
|
|
|
|
axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);
|
|
|
|
temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx, temp16a);
|
|
|
|
temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail, temp16b);
|
|
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b);
|
|
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
if (adytail != 0.0) {
|
|
|
|
temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);
|
|
|
|
aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);
|
|
|
|
temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady, temp32a);
|
|
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
|
|
|
|
temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail, temp32a);
|
|
|
|
aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);
|
|
|
|
temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady, temp16a);
|
|
|
|
temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail, temp16b);
|
|
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b);
|
|
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ((bdxtail != 0.0) || (bdytail != 0.0)) {
|
|
|
|
if ((cdxtail != 0.0) || (cdytail != 0.0) || (adxtail != 0.0) || (adytail != 0.0)) {
|
|
|
|
Two_Product(cdxtail, ady, ti1, ti0);
|
|
|
|
Two_Product(cdx, adytail, tj1, tj0);
|
|
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
negate = -cdy;
|
|
|
|
Two_Product(adxtail, negate, ti1, ti0);
|
|
|
|
negate = -cdytail;
|
|
|
|
Two_Product(adx, negate, tj1, tj0);
|
|
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
|
|
|
|
v[3] = v3;
|
|
|
|
catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);
|
|
|
|
|
|
|
|
Two_Product(cdxtail, adytail, ti1, ti0);
|
|
|
|
Two_Product(adxtail, cdytail, tj1, tj0);
|
|
|
|
Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);
|
|
|
|
catt[3] = catt3;
|
|
|
|
cattlen = 4;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
cat[0] = 0.0;
|
|
|
|
catlen = 1;
|
|
|
|
catt[0] = 0.0;
|
|
|
|
cattlen = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bdxtail != 0.0) {
|
|
|
|
temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);
|
|
|
|
bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);
|
|
|
|
temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx, temp32a);
|
|
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
if (cdytail != 0.0) {
|
|
|
|
temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);
|
|
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, temp16a);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
if (adytail != 0.0) {
|
|
|
|
temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);
|
|
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, temp16a);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
|
|
|
|
temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail, temp32a);
|
|
|
|
bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);
|
|
|
|
temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx, temp16a);
|
|
|
|
temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail, temp16b);
|
|
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b);
|
|
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
if (bdytail != 0.0) {
|
|
|
|
temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);
|
|
|
|
bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);
|
|
|
|
temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy, temp32a);
|
|
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
|
|
|
|
temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail, temp32a);
|
|
|
|
bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);
|
|
|
|
temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy, temp16a);
|
|
|
|
temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail, temp16b);
|
|
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b);
|
|
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ((cdxtail != 0.0) || (cdytail != 0.0)) {
|
|
|
|
if ((adxtail != 0.0) || (adytail != 0.0) || (bdxtail != 0.0) || (bdytail != 0.0)) {
|
|
|
|
Two_Product(adxtail, bdy, ti1, ti0);
|
|
|
|
Two_Product(adx, bdytail, tj1, tj0);
|
|
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
|
|
|
|
u[3] = u3;
|
|
|
|
negate = -ady;
|
|
|
|
Two_Product(bdxtail, negate, ti1, ti0);
|
|
|
|
negate = -adytail;
|
|
|
|
Two_Product(bdx, negate, tj1, tj0);
|
|
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
|
|
|
|
v[3] = v3;
|
|
|
|
abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);
|
|
|
|
|
|
|
|
Two_Product(adxtail, bdytail, ti1, ti0);
|
|
|
|
Two_Product(bdxtail, adytail, tj1, tj0);
|
|
|
|
Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);
|
|
|
|
abtt[3] = abtt3;
|
|
|
|
abttlen = 4;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
abt[0] = 0.0;
|
|
|
|
abtlen = 1;
|
|
|
|
abtt[0] = 0.0;
|
|
|
|
abttlen = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cdxtail != 0.0) {
|
|
|
|
temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);
|
|
|
|
cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);
|
|
|
|
temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx, temp32a);
|
|
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
if (adytail != 0.0) {
|
|
|
|
temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);
|
|
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, temp16a);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
if (bdytail != 0.0) {
|
|
|
|
temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);
|
|
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, temp16a);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
|
|
|
|
temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail, temp32a);
|
|
|
|
cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);
|
|
|
|
temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx, temp16a);
|
|
|
|
temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail, temp16b);
|
|
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b);
|
|
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
if (cdytail != 0.0) {
|
|
|
|
temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);
|
|
|
|
cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);
|
|
|
|
temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy, temp32a);
|
|
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
|
|
|
|
temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail, temp32a);
|
|
|
|
cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);
|
|
|
|
temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy, temp16a);
|
|
|
|
temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail, temp16b);
|
|
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b);
|
|
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
|
|
|
|
finswap = finnow;
|
|
|
|
finnow = finother;
|
|
|
|
finother = finswap;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return finnow[finlength - 1];
|
|
|
|
}
|
|
|
|
|
|
|
|
double incircle(const double *pa, const double *pb, const double *pc, const double *pd)
|
|
|
|
{
|
|
|
|
double adx, bdx, cdx, ady, bdy, cdy;
|
|
|
|
double bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
|
|
|
|
double alift, blift, clift;
|
|
|
|
double det;
|
|
|
|
double permanent, errbound;
|
|
|
|
|
|
|
|
adx = pa[0] - pd[0];
|
|
|
|
bdx = pb[0] - pd[0];
|
|
|
|
cdx = pc[0] - pd[0];
|
|
|
|
ady = pa[1] - pd[1];
|
|
|
|
bdy = pb[1] - pd[1];
|
|
|
|
cdy = pc[1] - pd[1];
|
|
|
|
|
|
|
|
bdxcdy = bdx * cdy;
|
|
|
|
cdxbdy = cdx * bdy;
|
|
|
|
alift = adx * adx + ady * ady;
|
|
|
|
|
|
|
|
cdxady = cdx * ady;
|
|
|
|
adxcdy = adx * cdy;
|
|
|
|
blift = bdx * bdx + bdy * bdy;
|
|
|
|
|
|
|
|
adxbdy = adx * bdy;
|
|
|
|
bdxady = bdx * ady;
|
|
|
|
clift = cdx * cdx + cdy * cdy;
|
|
|
|
|
|
|
|
det = alift * (bdxcdy - cdxbdy) + blift * (cdxady - adxcdy) + clift * (adxbdy - bdxady);
|
|
|
|
|
|
|
|
permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift +
|
|
|
|
(Absolute(cdxady) + Absolute(adxcdy)) * blift +
|
|
|
|
(Absolute(adxbdy) + Absolute(bdxady)) * clift;
|
|
|
|
errbound = iccerrboundA * permanent;
|
|
|
|
if ((det > errbound) || (-det > errbound)) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
return incircleadapt(pa, pb, pc, pd, permanent);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* inspherefast() Approximate 3D insphere test. Non-robust.
|
|
|
|
* insphere() Adaptive exact 3D insphere test. Robust.
|
|
|
|
*
|
|
|
|
* Return a positive value if the point pe lies inside the
|
|
|
|
* sphere passing through pa, pb, pc, and pd; a negative value
|
|
|
|
* if it lies outside; and zero if the five points are
|
|
|
|
* co-spherical. The points pa, pb, pc, and pd must be ordered
|
|
|
|
* so that they have a positive orientation (as defined by
|
|
|
|
* orient3d()), or the sign of the result will be reversed.
|
|
|
|
*
|
|
|
|
* The second uses exact arithmetic to ensure a correct answer. The
|
|
|
|
* result returned is the determinant of a matrix. In insphere() only,
|
|
|
|
* this determinant is computed adaptively, in the sense that exact
|
|
|
|
* arithmetic is used only to the degree it is needed to ensure that the
|
|
|
|
* returned value has the correct sign. Hence, insphere() is usually quite
|
|
|
|
* fast, but will run more slowly when the input points are co-spherical or
|
|
|
|
* nearly so.
|
|
|
|
*/
|
|
|
|
|
|
|
|
double inspherefast(
|
|
|
|
const double *pa, const double *pb, const double *pc, const double *pd, const double *pe)
|
|
|
|
{
|
|
|
|
double aex, bex, cex, dex;
|
|
|
|
double aey, bey, cey, dey;
|
|
|
|
double aez, bez, cez, dez;
|
|
|
|
double alift, blift, clift, dlift;
|
|
|
|
double ab, bc, cd, da, ac, bd;
|
|
|
|
double abc, bcd, cda, dab;
|
|
|
|
|
|
|
|
aex = pa[0] - pe[0];
|
|
|
|
bex = pb[0] - pe[0];
|
|
|
|
cex = pc[0] - pe[0];
|
|
|
|
dex = pd[0] - pe[0];
|
|
|
|
aey = pa[1] - pe[1];
|
|
|
|
bey = pb[1] - pe[1];
|
|
|
|
cey = pc[1] - pe[1];
|
|
|
|
dey = pd[1] - pe[1];
|
|
|
|
aez = pa[2] - pe[2];
|
|
|
|
bez = pb[2] - pe[2];
|
|
|
|
cez = pc[2] - pe[2];
|
|
|
|
dez = pd[2] - pe[2];
|
|
|
|
|
|
|
|
ab = aex * bey - bex * aey;
|
|
|
|
bc = bex * cey - cex * bey;
|
|
|
|
cd = cex * dey - dex * cey;
|
|
|
|
da = dex * aey - aex * dey;
|
|
|
|
|
|
|
|
ac = aex * cey - cex * aey;
|
|
|
|
bd = bex * dey - dex * bey;
|
|
|
|
|
|
|
|
abc = aez * bc - bez * ac + cez * ab;
|
|
|
|
bcd = bez * cd - cez * bd + dez * bc;
|
|
|
|
cda = cez * da + dez * ac + aez * cd;
|
|
|
|
dab = dez * ab + aez * bd + bez * da;
|
|
|
|
|
|
|
|
alift = aex * aex + aey * aey + aez * aez;
|
|
|
|
blift = bex * bex + bey * bey + bez * bez;
|
|
|
|
clift = cex * cex + cey * cey + cez * cez;
|
|
|
|
dlift = dex * dex + dey * dey + dez * dez;
|
|
|
|
|
|
|
|
return (dlift * abc - clift * dab) + (blift * cda - alift * bcd);
|
|
|
|
}
|
|
|
|
|
|
|
|
static double insphereexact(
|
|
|
|
const double *pa, const double *pb, const double *pc, const double *pd, const double *pe)
|
|
|
|
{
|
|
|
|
INEXACT double axby1, bxcy1, cxdy1, dxey1, exay1;
|
|
|
|
INEXACT double bxay1, cxby1, dxcy1, exdy1, axey1;
|
|
|
|
INEXACT double axcy1, bxdy1, cxey1, dxay1, exby1;
|
|
|
|
INEXACT double cxay1, dxby1, excy1, axdy1, bxey1;
|
|
|
|
double axby0, bxcy0, cxdy0, dxey0, exay0;
|
|
|
|
double bxay0, cxby0, dxcy0, exdy0, axey0;
|
|
|
|
double axcy0, bxdy0, cxey0, dxay0, exby0;
|
|
|
|
double cxay0, dxby0, excy0, axdy0, bxey0;
|
|
|
|
double ab[4], bc[4], cd[4], de[4], ea[4];
|
|
|
|
double ac[4], bd[4], ce[4], da[4], eb[4];
|
|
|
|
double temp8a[8], temp8b[8], temp16[16];
|
|
|
|
int temp8alen, temp8blen, temp16len;
|
|
|
|
double abc[24], bcd[24], cde[24], dea[24], eab[24];
|
|
|
|
double abd[24], bce[24], cda[24], deb[24], eac[24];
|
|
|
|
int abclen, bcdlen, cdelen, dealen, eablen;
|
|
|
|
int abdlen, bcelen, cdalen, deblen, eaclen;
|
|
|
|
double temp48a[48], temp48b[48];
|
|
|
|
int temp48alen, temp48blen;
|
|
|
|
double abcd[96], bcde[96], cdea[96], deab[96], eabc[96];
|
|
|
|
int abcdlen, bcdelen, cdealen, deablen, eabclen;
|
|
|
|
double temp192[192];
|
|
|
|
double det384x[384], det384y[384], det384z[384];
|
|
|
|
int xlen, ylen, zlen;
|
|
|
|
double detxy[768];
|
|
|
|
int xylen;
|
|
|
|
double adet[1152], bdet[1152], cdet[1152], ddet[1152], edet[1152];
|
|
|
|
int alen, blen, clen, dlen, elen;
|
|
|
|
double abdet[2304], cddet[2304], cdedet[3456];
|
|
|
|
int ablen, cdlen;
|
|
|
|
double deter[5760];
|
|
|
|
int deterlen;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
INEXACT double bvirt;
|
|
|
|
double avirt, bround, around;
|
|
|
|
INEXACT double c;
|
|
|
|
INEXACT double abig;
|
|
|
|
double ahi, alo, bhi, blo;
|
|
|
|
double err1, err2, err3;
|
|
|
|
INEXACT double _i, _j;
|
|
|
|
double _0;
|
|
|
|
|
|
|
|
Two_Product(pa[0], pb[1], axby1, axby0);
|
|
|
|
Two_Product(pb[0], pa[1], bxay1, bxay0);
|
|
|
|
Two_Two_Diff(axby1, axby0, bxay1, bxay0, ab[3], ab[2], ab[1], ab[0]);
|
|
|
|
|
|
|
|
Two_Product(pb[0], pc[1], bxcy1, bxcy0);
|
|
|
|
Two_Product(pc[0], pb[1], cxby1, cxby0);
|
|
|
|
Two_Two_Diff(bxcy1, bxcy0, cxby1, cxby0, bc[3], bc[2], bc[1], bc[0]);
|
|
|
|
|
|
|
|
Two_Product(pc[0], pd[1], cxdy1, cxdy0);
|
|
|
|
Two_Product(pd[0], pc[1], dxcy1, dxcy0);
|
|
|
|
Two_Two_Diff(cxdy1, cxdy0, dxcy1, dxcy0, cd[3], cd[2], cd[1], cd[0]);
|
|
|
|
|
|
|
|
Two_Product(pd[0], pe[1], dxey1, dxey0);
|
|
|
|
Two_Product(pe[0], pd[1], exdy1, exdy0);
|
|
|
|
Two_Two_Diff(dxey1, dxey0, exdy1, exdy0, de[3], de[2], de[1], de[0]);
|
|
|
|
|
|
|
|
Two_Product(pe[0], pa[1], exay1, exay0);
|
|
|
|
Two_Product(pa[0], pe[1], axey1, axey0);
|
|
|
|
Two_Two_Diff(exay1, exay0, axey1, axey0, ea[3], ea[2], ea[1], ea[0]);
|
|
|
|
|
|
|
|
Two_Product(pa[0], pc[1], axcy1, axcy0);
|
|
|
|
Two_Product(pc[0], pa[1], cxay1, cxay0);
|
|
|
|
Two_Two_Diff(axcy1, axcy0, cxay1, cxay0, ac[3], ac[2], ac[1], ac[0]);
|
|
|
|
|
|
|
|
Two_Product(pb[0], pd[1], bxdy1, bxdy0);
|
|
|
|
Two_Product(pd[0], pb[1], dxby1, dxby0);
|
|
|
|
Two_Two_Diff(bxdy1, bxdy0, dxby1, dxby0, bd[3], bd[2], bd[1], bd[0]);
|
|
|
|
|
|
|
|
Two_Product(pc[0], pe[1], cxey1, cxey0);
|
|
|
|
Two_Product(pe[0], pc[1], excy1, excy0);
|
|
|
|
Two_Two_Diff(cxey1, cxey0, excy1, excy0, ce[3], ce[2], ce[1], ce[0]);
|
|
|
|
|
|
|
|
Two_Product(pd[0], pa[1], dxay1, dxay0);
|
|
|
|
Two_Product(pa[0], pd[1], axdy1, axdy0);
|
|
|
|
Two_Two_Diff(dxay1, dxay0, axdy1, axdy0, da[3], da[2], da[1], da[0]);
|
|
|
|
|
|
|
|
Two_Product(pe[0], pb[1], exby1, exby0);
|
|
|
|
Two_Product(pb[0], pe[1], bxey1, bxey0);
|
|
|
|
Two_Two_Diff(exby1, exby0, bxey1, bxey0, eb[3], eb[2], eb[1], eb[0]);
|
|
|
|
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, bc, pa[2], temp8a);
|
|
|
|
temp8blen = scale_expansion_zeroelim(4, ac, -pb[2], temp8b);
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, ab, pc[2], temp8a);
|
|
|
|
abclen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, abc);
|
|
|
|
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, cd, pb[2], temp8a);
|
|
|
|
temp8blen = scale_expansion_zeroelim(4, bd, -pc[2], temp8b);
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, bc, pd[2], temp8a);
|
|
|
|
bcdlen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, bcd);
|
|
|
|
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, de, pc[2], temp8a);
|
|
|
|
temp8blen = scale_expansion_zeroelim(4, ce, -pd[2], temp8b);
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, cd, pe[2], temp8a);
|
|
|
|
cdelen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, cde);
|
|
|
|
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, ea, pd[2], temp8a);
|
|
|
|
temp8blen = scale_expansion_zeroelim(4, da, -pe[2], temp8b);
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, de, pa[2], temp8a);
|
|
|
|
dealen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, dea);
|
|
|
|
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, ab, pe[2], temp8a);
|
|
|
|
temp8blen = scale_expansion_zeroelim(4, eb, -pa[2], temp8b);
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, ea, pb[2], temp8a);
|
|
|
|
eablen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, eab);
|
|
|
|
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, bd, pa[2], temp8a);
|
|
|
|
temp8blen = scale_expansion_zeroelim(4, da, pb[2], temp8b);
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, ab, pd[2], temp8a);
|
|
|
|
abdlen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, abd);
|
|
|
|
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, ce, pb[2], temp8a);
|
|
|
|
temp8blen = scale_expansion_zeroelim(4, eb, pc[2], temp8b);
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, bc, pe[2], temp8a);
|
|
|
|
bcelen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, bce);
|
|
|
|
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, da, pc[2], temp8a);
|
|
|
|
temp8blen = scale_expansion_zeroelim(4, ac, pd[2], temp8b);
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, cd, pa[2], temp8a);
|
|
|
|
cdalen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, cda);
|
|
|
|
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, eb, pd[2], temp8a);
|
|
|
|
temp8blen = scale_expansion_zeroelim(4, bd, pe[2], temp8b);
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, de, pb[2], temp8a);
|
|
|
|
deblen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, deb);
|
|
|
|
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, ac, pe[2], temp8a);
|
|
|
|
temp8blen = scale_expansion_zeroelim(4, ce, pa[2], temp8b);
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, ea, pc[2], temp8a);
|
|
|
|
eaclen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, eac);
|
|
|
|
|
|
|
|
temp48alen = fast_expansion_sum_zeroelim(cdelen, cde, bcelen, bce, temp48a);
|
|
|
|
temp48blen = fast_expansion_sum_zeroelim(deblen, deb, bcdlen, bcd, temp48b);
|
|
|
|
for (i = 0; i < temp48blen; i++) {
|
|
|
|
temp48b[i] = -temp48b[i];
|
|
|
|
}
|
|
|
|
bcdelen = fast_expansion_sum_zeroelim(temp48alen, temp48a, temp48blen, temp48b, bcde);
|
|
|
|
xlen = scale_expansion_zeroelim(bcdelen, bcde, pa[0], temp192);
|
|
|
|
xlen = scale_expansion_zeroelim(xlen, temp192, pa[0], det384x);
|
|
|
|
ylen = scale_expansion_zeroelim(bcdelen, bcde, pa[1], temp192);
|
|
|
|
ylen = scale_expansion_zeroelim(ylen, temp192, pa[1], det384y);
|
|
|
|
zlen = scale_expansion_zeroelim(bcdelen, bcde, pa[2], temp192);
|
|
|
|
zlen = scale_expansion_zeroelim(zlen, temp192, pa[2], det384z);
|
|
|
|
xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy);
|
|
|
|
alen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, adet);
|
|
|
|
|
|
|
|
temp48alen = fast_expansion_sum_zeroelim(dealen, dea, cdalen, cda, temp48a);
|
|
|
|
temp48blen = fast_expansion_sum_zeroelim(eaclen, eac, cdelen, cde, temp48b);
|
|
|
|
for (i = 0; i < temp48blen; i++) {
|
|
|
|
temp48b[i] = -temp48b[i];
|
|
|
|
}
|
|
|
|
cdealen = fast_expansion_sum_zeroelim(temp48alen, temp48a, temp48blen, temp48b, cdea);
|
|
|
|
xlen = scale_expansion_zeroelim(cdealen, cdea, pb[0], temp192);
|
|
|
|
xlen = scale_expansion_zeroelim(xlen, temp192, pb[0], det384x);
|
|
|
|
ylen = scale_expansion_zeroelim(cdealen, cdea, pb[1], temp192);
|
|
|
|
ylen = scale_expansion_zeroelim(ylen, temp192, pb[1], det384y);
|
|
|
|
zlen = scale_expansion_zeroelim(cdealen, cdea, pb[2], temp192);
|
|
|
|
zlen = scale_expansion_zeroelim(zlen, temp192, pb[2], det384z);
|
|
|
|
xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy);
|
|
|
|
blen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, bdet);
|
|
|
|
|
|
|
|
temp48alen = fast_expansion_sum_zeroelim(eablen, eab, deblen, deb, temp48a);
|
|
|
|
temp48blen = fast_expansion_sum_zeroelim(abdlen, abd, dealen, dea, temp48b);
|
|
|
|
for (i = 0; i < temp48blen; i++) {
|
|
|
|
temp48b[i] = -temp48b[i];
|
|
|
|
}
|
|
|
|
deablen = fast_expansion_sum_zeroelim(temp48alen, temp48a, temp48blen, temp48b, deab);
|
|
|
|
xlen = scale_expansion_zeroelim(deablen, deab, pc[0], temp192);
|
|
|
|
xlen = scale_expansion_zeroelim(xlen, temp192, pc[0], det384x);
|
|
|
|
ylen = scale_expansion_zeroelim(deablen, deab, pc[1], temp192);
|
|
|
|
ylen = scale_expansion_zeroelim(ylen, temp192, pc[1], det384y);
|
|
|
|
zlen = scale_expansion_zeroelim(deablen, deab, pc[2], temp192);
|
|
|
|
zlen = scale_expansion_zeroelim(zlen, temp192, pc[2], det384z);
|
|
|
|
xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy);
|
|
|
|
clen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, cdet);
|
|
|
|
|
|
|
|
temp48alen = fast_expansion_sum_zeroelim(abclen, abc, eaclen, eac, temp48a);
|
|
|
|
temp48blen = fast_expansion_sum_zeroelim(bcelen, bce, eablen, eab, temp48b);
|
|
|
|
for (i = 0; i < temp48blen; i++) {
|
|
|
|
temp48b[i] = -temp48b[i];
|
|
|
|
}
|
|
|
|
eabclen = fast_expansion_sum_zeroelim(temp48alen, temp48a, temp48blen, temp48b, eabc);
|
|
|
|
xlen = scale_expansion_zeroelim(eabclen, eabc, pd[0], temp192);
|
|
|
|
xlen = scale_expansion_zeroelim(xlen, temp192, pd[0], det384x);
|
|
|
|
ylen = scale_expansion_zeroelim(eabclen, eabc, pd[1], temp192);
|
|
|
|
ylen = scale_expansion_zeroelim(ylen, temp192, pd[1], det384y);
|
|
|
|
zlen = scale_expansion_zeroelim(eabclen, eabc, pd[2], temp192);
|
|
|
|
zlen = scale_expansion_zeroelim(zlen, temp192, pd[2], det384z);
|
|
|
|
xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy);
|
|
|
|
dlen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, ddet);
|
|
|
|
|
|
|
|
temp48alen = fast_expansion_sum_zeroelim(bcdlen, bcd, abdlen, abd, temp48a);
|
|
|
|
temp48blen = fast_expansion_sum_zeroelim(cdalen, cda, abclen, abc, temp48b);
|
|
|
|
for (i = 0; i < temp48blen; i++) {
|
|
|
|
temp48b[i] = -temp48b[i];
|
|
|
|
}
|
|
|
|
abcdlen = fast_expansion_sum_zeroelim(temp48alen, temp48a, temp48blen, temp48b, abcd);
|
|
|
|
xlen = scale_expansion_zeroelim(abcdlen, abcd, pe[0], temp192);
|
|
|
|
xlen = scale_expansion_zeroelim(xlen, temp192, pe[0], det384x);
|
|
|
|
ylen = scale_expansion_zeroelim(abcdlen, abcd, pe[1], temp192);
|
|
|
|
ylen = scale_expansion_zeroelim(ylen, temp192, pe[1], det384y);
|
|
|
|
zlen = scale_expansion_zeroelim(abcdlen, abcd, pe[2], temp192);
|
|
|
|
zlen = scale_expansion_zeroelim(zlen, temp192, pe[2], det384z);
|
|
|
|
xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy);
|
|
|
|
elen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, edet);
|
|
|
|
|
|
|
|
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
|
|
|
|
cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet);
|
|
|
|
cdelen = fast_expansion_sum_zeroelim(cdlen, cddet, elen, edet, cdedet);
|
|
|
|
deterlen = fast_expansion_sum_zeroelim(ablen, abdet, cdelen, cdedet, deter);
|
|
|
|
|
|
|
|
return deter[deterlen - 1];
|
|
|
|
}
|
|
|
|
|
|
|
|
static double insphereadapt(const double *pa,
|
|
|
|
const double *pb,
|
|
|
|
const double *pc,
|
|
|
|
const double *pd,
|
|
|
|
const double *pe,
|
|
|
|
double permanent)
|
|
|
|
{
|
|
|
|
INEXACT double aex, bex, cex, dex, aey, bey, cey, dey, aez, bez, cez, dez;
|
|
|
|
double det, errbound;
|
|
|
|
|
|
|
|
INEXACT double aexbey1, bexaey1, bexcey1, cexbey1;
|
|
|
|
INEXACT double cexdey1, dexcey1, dexaey1, aexdey1;
|
|
|
|
INEXACT double aexcey1, cexaey1, bexdey1, dexbey1;
|
|
|
|
double aexbey0, bexaey0, bexcey0, cexbey0;
|
|
|
|
double cexdey0, dexcey0, dexaey0, aexdey0;
|
|
|
|
double aexcey0, cexaey0, bexdey0, dexbey0;
|
|
|
|
double ab[4], bc[4], cd[4], da[4], ac[4], bd[4];
|
|
|
|
INEXACT double ab3, bc3, cd3, da3, ac3, bd3;
|
|
|
|
double abeps, bceps, cdeps, daeps, aceps, bdeps;
|
|
|
|
double temp8a[8], temp8b[8], temp8c[8], temp16[16], temp24[24], temp48[48];
|
|
|
|
int temp8alen, temp8blen, temp8clen, temp16len, temp24len, temp48len;
|
|
|
|
double xdet[96], ydet[96], zdet[96], xydet[192];
|
|
|
|
int xlen, ylen, zlen, xylen;
|
|
|
|
double adet[288], bdet[288], cdet[288], ddet[288];
|
|
|
|
int alen, blen, clen, dlen;
|
|
|
|
double abdet[576], cddet[576];
|
|
|
|
int ablen, cdlen;
|
|
|
|
double fin1[1152];
|
|
|
|
int finlength;
|
|
|
|
|
|
|
|
double aextail, bextail, cextail, dextail;
|
|
|
|
double aeytail, beytail, ceytail, deytail;
|
|
|
|
double aeztail, beztail, ceztail, deztail;
|
|
|
|
|
|
|
|
INEXACT double bvirt;
|
|
|
|
double avirt, bround, around;
|
|
|
|
INEXACT double c;
|
|
|
|
INEXACT double abig;
|
|
|
|
double ahi, alo, bhi, blo;
|
|
|
|
double err1, err2, err3;
|
|
|
|
INEXACT double _i, _j;
|
|
|
|
double _0;
|
|
|
|
|
|
|
|
aex = (double)(pa[0] - pe[0]);
|
|
|
|
bex = (double)(pb[0] - pe[0]);
|
|
|
|
cex = (double)(pc[0] - pe[0]);
|
|
|
|
dex = (double)(pd[0] - pe[0]);
|
|
|
|
aey = (double)(pa[1] - pe[1]);
|
|
|
|
bey = (double)(pb[1] - pe[1]);
|
|
|
|
cey = (double)(pc[1] - pe[1]);
|
|
|
|
dey = (double)(pd[1] - pe[1]);
|
|
|
|
aez = (double)(pa[2] - pe[2]);
|
|
|
|
bez = (double)(pb[2] - pe[2]);
|
|
|
|
cez = (double)(pc[2] - pe[2]);
|
|
|
|
dez = (double)(pd[2] - pe[2]);
|
|
|
|
|
|
|
|
Two_Product(aex, bey, aexbey1, aexbey0);
|
|
|
|
Two_Product(bex, aey, bexaey1, bexaey0);
|
|
|
|
Two_Two_Diff(aexbey1, aexbey0, bexaey1, bexaey0, ab3, ab[2], ab[1], ab[0]);
|
|
|
|
ab[3] = ab3;
|
|
|
|
|
|
|
|
Two_Product(bex, cey, bexcey1, bexcey0);
|
|
|
|
Two_Product(cex, bey, cexbey1, cexbey0);
|
|
|
|
Two_Two_Diff(bexcey1, bexcey0, cexbey1, cexbey0, bc3, bc[2], bc[1], bc[0]);
|
|
|
|
bc[3] = bc3;
|
|
|
|
|
|
|
|
Two_Product(cex, dey, cexdey1, cexdey0);
|
|
|
|
Two_Product(dex, cey, dexcey1, dexcey0);
|
|
|
|
Two_Two_Diff(cexdey1, cexdey0, dexcey1, dexcey0, cd3, cd[2], cd[1], cd[0]);
|
|
|
|
cd[3] = cd3;
|
|
|
|
|
|
|
|
Two_Product(dex, aey, dexaey1, dexaey0);
|
|
|
|
Two_Product(aex, dey, aexdey1, aexdey0);
|
|
|
|
Two_Two_Diff(dexaey1, dexaey0, aexdey1, aexdey0, da3, da[2], da[1], da[0]);
|
|
|
|
da[3] = da3;
|
|
|
|
|
|
|
|
Two_Product(aex, cey, aexcey1, aexcey0);
|
|
|
|
Two_Product(cex, aey, cexaey1, cexaey0);
|
|
|
|
Two_Two_Diff(aexcey1, aexcey0, cexaey1, cexaey0, ac3, ac[2], ac[1], ac[0]);
|
|
|
|
ac[3] = ac3;
|
|
|
|
|
|
|
|
Two_Product(bex, dey, bexdey1, bexdey0);
|
|
|
|
Two_Product(dex, bey, dexbey1, dexbey0);
|
|
|
|
Two_Two_Diff(bexdey1, bexdey0, dexbey1, dexbey0, bd3, bd[2], bd[1], bd[0]);
|
|
|
|
bd[3] = bd3;
|
|
|
|
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, cd, bez, temp8a);
|
|
|
|
temp8blen = scale_expansion_zeroelim(4, bd, -cez, temp8b);
|
|
|
|
temp8clen = scale_expansion_zeroelim(4, bc, dez, temp8c);
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16);
|
|
|
|
temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c, temp16len, temp16, temp24);
|
|
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, aex, temp48);
|
|
|
|
xlen = scale_expansion_zeroelim(temp48len, temp48, -aex, xdet);
|
|
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, aey, temp48);
|
|
|
|
ylen = scale_expansion_zeroelim(temp48len, temp48, -aey, ydet);
|
|
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, aez, temp48);
|
|
|
|
zlen = scale_expansion_zeroelim(temp48len, temp48, -aez, zdet);
|
|
|
|
xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet);
|
|
|
|
alen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, adet);
|
|
|
|
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, da, cez, temp8a);
|
|
|
|
temp8blen = scale_expansion_zeroelim(4, ac, dez, temp8b);
|
|
|
|
temp8clen = scale_expansion_zeroelim(4, cd, aez, temp8c);
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16);
|
|
|
|
temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c, temp16len, temp16, temp24);
|
|
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, bex, temp48);
|
|
|
|
xlen = scale_expansion_zeroelim(temp48len, temp48, bex, xdet);
|
|
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, bey, temp48);
|
|
|
|
ylen = scale_expansion_zeroelim(temp48len, temp48, bey, ydet);
|
|
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, bez, temp48);
|
|
|
|
zlen = scale_expansion_zeroelim(temp48len, temp48, bez, zdet);
|
|
|
|
xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet);
|
|
|
|
blen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, bdet);
|
|
|
|
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, ab, dez, temp8a);
|
|
|
|
temp8blen = scale_expansion_zeroelim(4, bd, aez, temp8b);
|
|
|
|
temp8clen = scale_expansion_zeroelim(4, da, bez, temp8c);
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16);
|
|
|
|
temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c, temp16len, temp16, temp24);
|
|
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, cex, temp48);
|
|
|
|
xlen = scale_expansion_zeroelim(temp48len, temp48, -cex, xdet);
|
|
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, cey, temp48);
|
|
|
|
ylen = scale_expansion_zeroelim(temp48len, temp48, -cey, ydet);
|
|
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, cez, temp48);
|
|
|
|
zlen = scale_expansion_zeroelim(temp48len, temp48, -cez, zdet);
|
|
|
|
xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet);
|
|
|
|
clen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, cdet);
|
|
|
|
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, bc, aez, temp8a);
|
|
|
|
temp8blen = scale_expansion_zeroelim(4, ac, -bez, temp8b);
|
|
|
|
temp8clen = scale_expansion_zeroelim(4, ab, cez, temp8c);
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16);
|
|
|
|
temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c, temp16len, temp16, temp24);
|
|
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, dex, temp48);
|
|
|
|
xlen = scale_expansion_zeroelim(temp48len, temp48, dex, xdet);
|
|
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, dey, temp48);
|
|
|
|
ylen = scale_expansion_zeroelim(temp48len, temp48, dey, ydet);
|
|
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, dez, temp48);
|
|
|
|
zlen = scale_expansion_zeroelim(temp48len, temp48, dez, zdet);
|
|
|
|
xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet);
|
|
|
|
dlen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, ddet);
|
|
|
|
|
|
|
|
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
|
|
|
|
cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet);
|
|
|
|
finlength = fast_expansion_sum_zeroelim(ablen, abdet, cdlen, cddet, fin1);
|
|
|
|
|
|
|
|
det = estimate(finlength, fin1);
|
|
|
|
errbound = isperrboundB * permanent;
|
|
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
Two_Diff_Tail(pa[0], pe[0], aex, aextail);
|
|
|
|
Two_Diff_Tail(pa[1], pe[1], aey, aeytail);
|
|
|
|
Two_Diff_Tail(pa[2], pe[2], aez, aeztail);
|
|
|
|
Two_Diff_Tail(pb[0], pe[0], bex, bextail);
|
|
|
|
Two_Diff_Tail(pb[1], pe[1], bey, beytail);
|
|
|
|
Two_Diff_Tail(pb[2], pe[2], bez, beztail);
|
|
|
|
Two_Diff_Tail(pc[0], pe[0], cex, cextail);
|
|
|
|
Two_Diff_Tail(pc[1], pe[1], cey, ceytail);
|
|
|
|
Two_Diff_Tail(pc[2], pe[2], cez, ceztail);
|
|
|
|
Two_Diff_Tail(pd[0], pe[0], dex, dextail);
|
|
|
|
Two_Diff_Tail(pd[1], pe[1], dey, deytail);
|
|
|
|
Two_Diff_Tail(pd[2], pe[2], dez, deztail);
|
|
|
|
if ((aextail == 0.0) && (aeytail == 0.0) && (aeztail == 0.0) && (bextail == 0.0) &&
|
|
|
|
(beytail == 0.0) && (beztail == 0.0) && (cextail == 0.0) && (ceytail == 0.0) &&
|
|
|
|
(ceztail == 0.0) && (dextail == 0.0) && (deytail == 0.0) && (deztail == 0.0)) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
errbound = isperrboundC * permanent + resulterrbound * Absolute(det);
|
|
|
|
abeps = (aex * beytail + bey * aextail) - (aey * bextail + bex * aeytail);
|
|
|
|
bceps = (bex * ceytail + cey * bextail) - (bey * cextail + cex * beytail);
|
|
|
|
cdeps = (cex * deytail + dey * cextail) - (cey * dextail + dex * ceytail);
|
|
|
|
daeps = (dex * aeytail + aey * dextail) - (dey * aextail + aex * deytail);
|
|
|
|
aceps = (aex * ceytail + cey * aextail) - (aey * cextail + cex * aeytail);
|
|
|
|
bdeps = (bex * deytail + dey * bextail) - (bey * dextail + dex * beytail);
|
|
|
|
det +=
|
|
|
|
(((bex * bex + bey * bey + bez * bez) * ((cez * daeps + dez * aceps + aez * cdeps) +
|
|
|
|
(ceztail * da3 + deztail * ac3 + aeztail * cd3)) +
|
|
|
|
(dex * dex + dey * dey + dez * dez) * ((aez * bceps - bez * aceps + cez * abeps) +
|
|
|
|
(aeztail * bc3 - beztail * ac3 + ceztail * ab3))) -
|
|
|
|
((aex * aex + aey * aey + aez * aez) * ((bez * cdeps - cez * bdeps + dez * bceps) +
|
|
|
|
(beztail * cd3 - ceztail * bd3 + deztail * bc3)) +
|
|
|
|
(cex * cex + cey * cey + cez * cez) * ((dez * abeps + aez * bdeps + bez * daeps) +
|
|
|
|
(deztail * ab3 + aeztail * bd3 + beztail * da3)))) +
|
|
|
|
2.0 *
|
|
|
|
(((bex * bextail + bey * beytail + bez * beztail) * (cez * da3 + dez * ac3 + aez * cd3) +
|
|
|
|
(dex * dextail + dey * deytail + dez * deztail) *
|
|
|
|
(aez * bc3 - bez * ac3 + cez * ab3)) -
|
|
|
|
((aex * aextail + aey * aeytail + aez * aeztail) * (bez * cd3 - cez * bd3 + dez * bc3) +
|
|
|
|
(cex * cextail + cey * ceytail + cez * ceztail) *
|
|
|
|
(dez * ab3 + aez * bd3 + bez * da3)));
|
|
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
return insphereexact(pa, pb, pc, pd, pe);
|
|
|
|
}
|
|
|
|
|
|
|
|
double insphere(
|
|
|
|
const double *pa, const double *pb, const double *pc, const double *pd, const double *pe)
|
|
|
|
{
|
|
|
|
double aex, bex, cex, dex;
|
|
|
|
double aey, bey, cey, dey;
|
|
|
|
double aez, bez, cez, dez;
|
|
|
|
double aexbey, bexaey, bexcey, cexbey, cexdey, dexcey, dexaey, aexdey;
|
|
|
|
double aexcey, cexaey, bexdey, dexbey;
|
|
|
|
double alift, blift, clift, dlift;
|
|
|
|
double ab, bc, cd, da, ac, bd;
|
|
|
|
double abc, bcd, cda, dab;
|
|
|
|
double aezplus, bezplus, cezplus, dezplus;
|
|
|
|
double aexbeyplus, bexaeyplus, bexceyplus, cexbeyplus;
|
|
|
|
double cexdeyplus, dexceyplus, dexaeyplus, aexdeyplus;
|
|
|
|
double aexceyplus, cexaeyplus, bexdeyplus, dexbeyplus;
|
|
|
|
double det;
|
|
|
|
double permanent, errbound;
|
|
|
|
|
|
|
|
aex = pa[0] - pe[0];
|
|
|
|
bex = pb[0] - pe[0];
|
|
|
|
cex = pc[0] - pe[0];
|
|
|
|
dex = pd[0] - pe[0];
|
|
|
|
aey = pa[1] - pe[1];
|
|
|
|
bey = pb[1] - pe[1];
|
|
|
|
cey = pc[1] - pe[1];
|
|
|
|
dey = pd[1] - pe[1];
|
|
|
|
aez = pa[2] - pe[2];
|
|
|
|
bez = pb[2] - pe[2];
|
|
|
|
cez = pc[2] - pe[2];
|
|
|
|
dez = pd[2] - pe[2];
|
|
|
|
|
|
|
|
aexbey = aex * bey;
|
|
|
|
bexaey = bex * aey;
|
|
|
|
ab = aexbey - bexaey;
|
|
|
|
bexcey = bex * cey;
|
|
|
|
cexbey = cex * bey;
|
|
|
|
bc = bexcey - cexbey;
|
|
|
|
cexdey = cex * dey;
|
|
|
|
dexcey = dex * cey;
|
|
|
|
cd = cexdey - dexcey;
|
|
|
|
dexaey = dex * aey;
|
|
|
|
aexdey = aex * dey;
|
|
|
|
da = dexaey - aexdey;
|
|
|
|
|
|
|
|
aexcey = aex * cey;
|
|
|
|
cexaey = cex * aey;
|
|
|
|
ac = aexcey - cexaey;
|
|
|
|
bexdey = bex * dey;
|
|
|
|
dexbey = dex * bey;
|
|
|
|
bd = bexdey - dexbey;
|
|
|
|
|
|
|
|
abc = aez * bc - bez * ac + cez * ab;
|
|
|
|
bcd = bez * cd - cez * bd + dez * bc;
|
|
|
|
cda = cez * da + dez * ac + aez * cd;
|
|
|
|
dab = dez * ab + aez * bd + bez * da;
|
|
|
|
|
|
|
|
alift = aex * aex + aey * aey + aez * aez;
|
|
|
|
blift = bex * bex + bey * bey + bez * bez;
|
|
|
|
clift = cex * cex + cey * cey + cez * cez;
|
|
|
|
dlift = dex * dex + dey * dey + dez * dez;
|
|
|
|
|
|
|
|
det = (dlift * abc - clift * dab) + (blift * cda - alift * bcd);
|
|
|
|
|
|
|
|
aezplus = Absolute(aez);
|
|
|
|
bezplus = Absolute(bez);
|
|
|
|
cezplus = Absolute(cez);
|
|
|
|
dezplus = Absolute(dez);
|
|
|
|
aexbeyplus = Absolute(aexbey);
|
|
|
|
bexaeyplus = Absolute(bexaey);
|
|
|
|
bexceyplus = Absolute(bexcey);
|
|
|
|
cexbeyplus = Absolute(cexbey);
|
|
|
|
cexdeyplus = Absolute(cexdey);
|
|
|
|
dexceyplus = Absolute(dexcey);
|
|
|
|
dexaeyplus = Absolute(dexaey);
|
|
|
|
aexdeyplus = Absolute(aexdey);
|
|
|
|
aexceyplus = Absolute(aexcey);
|
|
|
|
cexaeyplus = Absolute(cexaey);
|
|
|
|
bexdeyplus = Absolute(bexdey);
|
|
|
|
dexbeyplus = Absolute(dexbey);
|
|
|
|
permanent = ((cexdeyplus + dexceyplus) * bezplus + (dexbeyplus + bexdeyplus) * cezplus +
|
|
|
|
(bexceyplus + cexbeyplus) * dezplus) *
|
|
|
|
alift +
|
|
|
|
((dexaeyplus + aexdeyplus) * cezplus + (aexceyplus + cexaeyplus) * dezplus +
|
|
|
|
(cexdeyplus + dexceyplus) * aezplus) *
|
|
|
|
blift +
|
|
|
|
((aexbeyplus + bexaeyplus) * dezplus + (bexdeyplus + dexbeyplus) * aezplus +
|
|
|
|
(dexaeyplus + aexdeyplus) * bezplus) *
|
|
|
|
clift +
|
|
|
|
((bexceyplus + cexbeyplus) * aezplus + (cexaeyplus + aexceyplus) * bezplus +
|
|
|
|
(aexbeyplus + bexaeyplus) * cezplus) *
|
|
|
|
dlift;
|
|
|
|
errbound = isperrboundA * permanent;
|
|
|
|
if ((det > errbound) || (-det > errbound)) {
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
return insphereadapt(pa, pb, pc, pd, pe, permanent);
|
|
|
|
}
|
|
|
|
|
|
|
|
} /* namespace robust_pred */
|
|
|
|
|
|
|
|
static int sgn(double x)
|
|
|
|
{
|
|
|
|
return (x > 0) ? 1 : ((x < 0) ? -1 : 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
int orient2d(const double2 &a, const double2 &b, const double2 &c)
|
|
|
|
{
|
|
|
|
return sgn(blender::robust_pred::orient2d(a, b, c));
|
|
|
|
}
|
|
|
|
|
|
|
|
int orient2d_fast(const double2 &a, const double2 &b, const double2 &c)
|
|
|
|
{
|
|
|
|
return sgn(blender::robust_pred::orient2dfast(a, b, c));
|
|
|
|
}
|
|
|
|
|
|
|
|
int incircle(const double2 &a, const double2 &b, const double2 &c, const double2 &d)
|
|
|
|
{
|
|
|
|
return sgn(robust_pred::incircle(a, b, c, d));
|
|
|
|
}
|
|
|
|
|
|
|
|
int incircle_fast(const double2 &a, const double2 &b, const double2 &c, const double2 &d)
|
|
|
|
{
|
|
|
|
return sgn(robust_pred::incirclefast(a, b, c, d));
|
|
|
|
}
|
|
|
|
|
|
|
|
int orient3d(const double3 &a, const double3 &b, const double3 &c, const double3 &d)
|
|
|
|
{
|
|
|
|
return sgn(robust_pred::orient3d(a, b, c, d));
|
|
|
|
}
|
|
|
|
|
|
|
|
int orient3d_fast(const double3 &a, const double3 &b, const double3 &c, const double3 &d)
|
|
|
|
{
|
|
|
|
return sgn(robust_pred::orient3dfast(a, b, c, d));
|
|
|
|
}
|
|
|
|
|
|
|
|
int insphere(
|
|
|
|
const double3 &a, const double3 &b, const double3 &c, const double3 &d, const double3 &e)
|
|
|
|
{
|
|
|
|
return sgn(robust_pred::insphere(a, b, c, d, e));
|
|
|
|
}
|
|
|
|
|
|
|
|
int insphere_fast(
|
|
|
|
const double3 &a, const double3 &b, const double3 &c, const double3 &d, const double3 &e)
|
|
|
|
{
|
|
|
|
return sgn(robust_pred::inspherefast(a, b, c, d, e));
|
|
|
|
}
|
|
|
|
|
2020-08-28 10:04:26 -06:00
|
|
|
} // namespace blender
|