This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/draw/engines/eevee/eevee_sampling.c

130 lines
4.1 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2019, Blender Foundation.
*/
/** \file
* \ingroup EEVEE
*/
#include "eevee_private.h"
#include "BLI_rand.h"
/**
* Special ball distribution:
* Point are distributed in a way that when they are orthogonally
* projected into any plane, the resulting distribution is (close to)
* a uniform disc distribution.
*/
void EEVEE_sample_ball(int sample_ofs, float radius, float rsample[3])
{
double ht_point[3];
double ht_offset[3] = {0.0, 0.0, 0.0};
const uint ht_primes[3] = {2, 3, 7};
BLI_halton_3d(ht_primes, ht_offset, sample_ofs, ht_point);
/* Decorelate AA and shadow samples. (see T68594) */
ht_point[0] = fmod(ht_point[0] * 1151.0, 1.0);
ht_point[1] = fmod(ht_point[1] * 1069.0, 1.0);
ht_point[2] = fmod(ht_point[2] * 1151.0, 1.0);
float omega = ht_point[1] * 2.0f * M_PI;
rsample[2] = ht_point[0] * 2.0f - 1.0f; /* cos theta */
float r = sqrtf(fmaxf(0.0f, 1.0f - rsample[2] * rsample[2])); /* sin theta */
rsample[0] = r * cosf(omega);
rsample[1] = r * sinf(omega);
radius *= sqrt(sqrt(ht_point[2]));
mul_v3_fl(rsample, radius);
}
void EEVEE_sample_rectangle(int sample_ofs,
const float x_axis[3],
const float y_axis[3],
float size_x,
float size_y,
float rsample[3])
{
double ht_point[2];
double ht_offset[2] = {0.0, 0.0};
const uint ht_primes[2] = {2, 3};
BLI_halton_2d(ht_primes, ht_offset, sample_ofs, ht_point);
/* Decorelate AA and shadow samples. (see T68594) */
ht_point[0] = fmod(ht_point[0] * 1151.0, 1.0);
ht_point[1] = fmod(ht_point[1] * 1069.0, 1.0);
/* Change ditribution center to be 0,0 */
ht_point[0] = (ht_point[0] > 0.5f) ? ht_point[0] - 1.0f : ht_point[0];
ht_point[1] = (ht_point[1] > 0.5f) ? ht_point[1] - 1.0f : ht_point[1];
zero_v3(rsample);
madd_v3_v3fl(rsample, x_axis, (ht_point[0] * 2.0f) * size_x);
madd_v3_v3fl(rsample, y_axis, (ht_point[1] * 2.0f) * size_y);
}
void EEVEE_sample_ellipse(int sample_ofs,
const float x_axis[3],
const float y_axis[3],
float size_x,
float size_y,
float rsample[3])
{
double ht_point[2];
double ht_offset[2] = {0.0, 0.0};
const uint ht_primes[2] = {2, 3};
BLI_halton_2d(ht_primes, ht_offset, sample_ofs, ht_point);
/* Decorelate AA and shadow samples. (see T68594) */
ht_point[0] = fmod(ht_point[0] * 1151.0, 1.0);
ht_point[1] = fmod(ht_point[1] * 1069.0, 1.0);
/* Uniform disc sampling. */
float omega = ht_point[1] * 2.0f * M_PI;
float r = sqrtf(ht_point[0]);
ht_point[0] = r * cosf(omega) * size_x;
ht_point[1] = r * sinf(omega) * size_y;
zero_v3(rsample);
madd_v3_v3fl(rsample, x_axis, ht_point[0]);
madd_v3_v3fl(rsample, y_axis, ht_point[1]);
}
void EEVEE_random_rotation_m4(int sample_ofs, float scale, float r_mat[4][4])
{
double ht_point[3];
double ht_offset[3] = {0.0, 0.0, 0.0};
const uint ht_primes[3] = {2, 3, 5};
BLI_halton_3d(ht_primes, ht_offset, sample_ofs, ht_point);
/* Decorelate AA and shadow samples. (see T68594) */
ht_point[0] = fmod(ht_point[0] * 1151.0, 1.0);
ht_point[1] = fmod(ht_point[1] * 1069.0, 1.0);
ht_point[2] = fmod(ht_point[2] * 1151.0, 1.0);
rotate_m4(r_mat, 'X', ht_point[0] * scale);
rotate_m4(r_mat, 'Y', ht_point[1] * scale);
rotate_m4(r_mat, 'Z', ht_point[2] * scale);
}