This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/armature/meshlaplacian.c

1924 lines
48 KiB
C
Raw Normal View History

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* meshlaplacian.c: Algorithms using the mesh laplacian.
*/
#include <math.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_listBase.h"
#include "DNA_object_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_scene_types.h"
#include "BLI_arithb.h"
#include "BLI_edgehash.h"
#include "BLI_memarena.h"
#include "BKE_DerivedMesh.h"
#include "BKE_utildefines.h"
#ifdef RIGID_DEFORM
#include "BLI_editVert.h"
#include "BLI_polardecomp.h"
#endif
#include "RE_raytrace.h"
#include "ONL_opennl.h"
#include "BLO_sys_types.h" // for intptr_t support
#include "meshlaplacian.h"
/* ************* XXX *************** */
static void remove_vert_defgroup() {}
static int mesh_get_x_mirror_vert() {return 0;}
static void waitcursor() {}
static void progress_bar() {}
static void start_progress_bar() {}
static void end_progress_bar() {}
2009-01-05 15:35:49 +00:00
static float get_vert_defgroup() {return 0.0;}
static void add_vert_to_defgroup() {}
#define WEIGHT_REPLACE 0
#define WEIGHT_ADD 0
static void error() {}
/* ************* XXX *************** */
/************************** Laplacian System *****************************/
struct LaplacianSystem {
NLContext context; /* opennl context */
int totvert, totface;
float **verts; /* vertex coordinates */
float *varea; /* vertex weights for laplacian computation */
char *vpinned; /* vertex pinning */
int (*faces)[3]; /* face vertex indices */
float (*fweights)[3]; /* cotangent weights per face */
int areaweights; /* use area in cotangent weights? */
int storeweights; /* store cotangent weights in fweights */
int nlbegun; /* nlBegin(NL_SYSTEM/NL_MATRIX) done */
EdgeHash *edgehash; /* edge hash for construction */
struct HeatWeighting {
Mesh *mesh;
float (*verts)[3]; /* vertex coordinates */
float (*vnors)[3]; /* vertex normals */
float (*root)[3]; /* bone root */
float (*tip)[3]; /* bone tip */
int numbones;
float *H; /* diagonal H matrix */
float *p; /* values from all p vectors */
float *mindist; /* minimum distance to a bone for all vertices */
RayTree *raytree; /* ray tracing acceleration structure */
MFace **vface; /* a face that the vertex belongs to */
} heat;
#ifdef RIGID_DEFORM
struct RigidDeformation {
EditMesh *mesh;
float (*R)[3][3];
float (*rhs)[3];
float (*origco)[3];
int thrownerror;
} rigid;
#endif
};
/* Laplacian matrix construction */
/* Computation of these weights for the laplacian is based on:
"Discrete Differential-Geometry Operators for Triangulated 2-Manifolds",
Meyer et al, 2002. Section 3.5, formula (8).
We do it a bit different by going over faces instead of going over each
vertex and adjacent faces, since we don't store this adjacency. Also, the
formulas are tweaked a bit to work for non-manifold meshes. */
static void laplacian_increase_edge_count(EdgeHash *edgehash, int v1, int v2)
{
void **p = BLI_edgehash_lookup_p(edgehash, v1, v2);
if(p)
*p = (void*)((intptr_t)*p + (intptr_t)1);
else
BLI_edgehash_insert(edgehash, v1, v2, (void*)(intptr_t)1);
}
static int laplacian_edge_count(EdgeHash *edgehash, int v1, int v2)
{
return (int)(intptr_t)BLI_edgehash_lookup(edgehash, v1, v2);
}
static float cotan_weight(float *v1, float *v2, float *v3)
{
float a[3], b[3], c[3], clen;
VecSubf(a, v2, v1);
VecSubf(b, v3, v1);
Crossf(c, a, b);
clen = VecLength(c);
if (clen == 0.0f)
return 0.0f;
return Inpf(a, b)/clen;
}
static void laplacian_triangle_area(LaplacianSystem *sys, int i1, int i2, int i3)
{
float t1, t2, t3, len1, len2, len3, area;
float *varea= sys->varea, *v1, *v2, *v3;
int obtuse = 0;
v1= sys->verts[i1];
v2= sys->verts[i2];
v3= sys->verts[i3];
t1= cotan_weight(v1, v2, v3);
t2= cotan_weight(v2, v3, v1);
t3= cotan_weight(v3, v1, v2);
if(VecAngle3(v2, v1, v3) > 90) obtuse= 1;
else if(VecAngle3(v1, v2, v3) > 90) obtuse= 2;
else if(VecAngle3(v1, v3, v2) > 90) obtuse= 3;
if (obtuse > 0) {
area= AreaT3Dfl(v1, v2, v3);
varea[i1] += (obtuse == 1)? area: area*0.5;
varea[i2] += (obtuse == 2)? area: area*0.5;
varea[i3] += (obtuse == 3)? area: area*0.5;
}
else {
len1= VecLenf(v2, v3);
len2= VecLenf(v1, v3);
len3= VecLenf(v1, v2);
t1 *= len1*len1;
t2 *= len2*len2;
t3 *= len3*len3;
varea[i1] += (t2 + t3)*0.25f;
varea[i2] += (t1 + t3)*0.25f;
varea[i3] += (t1 + t2)*0.25f;
}
}
static void laplacian_triangle_weights(LaplacianSystem *sys, int f, int i1, int i2, int i3)
{
float t1, t2, t3;
float *varea= sys->varea, *v1, *v2, *v3;
v1= sys->verts[i1];
v2= sys->verts[i2];
v3= sys->verts[i3];
/* instead of *0.5 we divided by the number of faces of the edge, it still
needs to be verified that this is indeed the correct thing to do! */
t1= cotan_weight(v1, v2, v3)/laplacian_edge_count(sys->edgehash, i2, i3);
t2= cotan_weight(v2, v3, v1)/laplacian_edge_count(sys->edgehash, i3, i1);
t3= cotan_weight(v3, v1, v2)/laplacian_edge_count(sys->edgehash, i1, i2);
nlMatrixAdd(i1, i1, (t2+t3)*varea[i1]);
nlMatrixAdd(i2, i2, (t1+t3)*varea[i2]);
nlMatrixAdd(i3, i3, (t1+t2)*varea[i3]);
nlMatrixAdd(i1, i2, -t3*varea[i1]);
nlMatrixAdd(i2, i1, -t3*varea[i2]);
nlMatrixAdd(i2, i3, -t1*varea[i2]);
nlMatrixAdd(i3, i2, -t1*varea[i3]);
nlMatrixAdd(i3, i1, -t2*varea[i3]);
nlMatrixAdd(i1, i3, -t2*varea[i1]);
if(sys->storeweights) {
sys->fweights[f][0]= t1*varea[i1];
sys->fweights[f][1]= t2*varea[i2];
sys->fweights[f][2]= t3*varea[i3];
}
}
LaplacianSystem *laplacian_system_construct_begin(int totvert, int totface, int lsq)
{
LaplacianSystem *sys;
sys= MEM_callocN(sizeof(LaplacianSystem), "LaplacianSystem");
sys->verts= MEM_callocN(sizeof(float*)*totvert, "LaplacianSystemVerts");
sys->vpinned= MEM_callocN(sizeof(char)*totvert, "LaplacianSystemVpinned");
sys->faces= MEM_callocN(sizeof(int)*3*totface, "LaplacianSystemFaces");
sys->totvert= 0;
sys->totface= 0;
sys->areaweights= 1;
sys->storeweights= 0;
/* create opennl context */
nlNewContext();
nlSolverParameteri(NL_NB_VARIABLES, totvert);
if(lsq)
nlSolverParameteri(NL_LEAST_SQUARES, NL_TRUE);
sys->context= nlGetCurrent();
return sys;
}
void laplacian_add_vertex(LaplacianSystem *sys, float *co, int pinned)
{
sys->verts[sys->totvert]= co;
sys->vpinned[sys->totvert]= pinned;
sys->totvert++;
}
void laplacian_add_triangle(LaplacianSystem *sys, int v1, int v2, int v3)
{
sys->faces[sys->totface][0]= v1;
sys->faces[sys->totface][1]= v2;
sys->faces[sys->totface][2]= v3;
sys->totface++;
}
void laplacian_system_construct_end(LaplacianSystem *sys)
{
int (*face)[3];
int a, totvert=sys->totvert, totface=sys->totface;
laplacian_begin_solve(sys, 0);
sys->varea= MEM_callocN(sizeof(float)*totvert, "LaplacianSystemVarea");
sys->edgehash= BLI_edgehash_new();
for(a=0, face=sys->faces; a<sys->totface; a++, face++) {
laplacian_increase_edge_count(sys->edgehash, (*face)[0], (*face)[1]);
laplacian_increase_edge_count(sys->edgehash, (*face)[1], (*face)[2]);
laplacian_increase_edge_count(sys->edgehash, (*face)[2], (*face)[0]);
}
if(sys->areaweights)
for(a=0, face=sys->faces; a<sys->totface; a++, face++)
laplacian_triangle_area(sys, (*face)[0], (*face)[1], (*face)[2]);
for(a=0; a<totvert; a++) {
if(sys->areaweights) {
if(sys->varea[a] != 0.0f)
sys->varea[a]= 0.5f/sys->varea[a];
}
else
sys->varea[a]= 1.0f;
/* for heat weighting */
if(sys->heat.H)
nlMatrixAdd(a, a, sys->heat.H[a]);
}
if(sys->storeweights)
sys->fweights= MEM_callocN(sizeof(float)*3*totface, "LaplacianFWeight");
for(a=0, face=sys->faces; a<totface; a++, face++)
laplacian_triangle_weights(sys, a, (*face)[0], (*face)[1], (*face)[2]);
MEM_freeN(sys->faces);
sys->faces= NULL;
if(sys->varea) {
MEM_freeN(sys->varea);
sys->varea= NULL;
}
BLI_edgehash_free(sys->edgehash, NULL);
sys->edgehash= NULL;
}
void laplacian_system_delete(LaplacianSystem *sys)
{
if(sys->verts) MEM_freeN(sys->verts);
if(sys->varea) MEM_freeN(sys->varea);
if(sys->vpinned) MEM_freeN(sys->vpinned);
if(sys->faces) MEM_freeN(sys->faces);
if(sys->fweights) MEM_freeN(sys->fweights);
nlDeleteContext(sys->context);
MEM_freeN(sys);
}
void laplacian_begin_solve(LaplacianSystem *sys, int index)
{
int a;
if (!sys->nlbegun) {
nlBegin(NL_SYSTEM);
if(index >= 0) {
for(a=0; a<sys->totvert; a++) {
if(sys->vpinned[a]) {
nlSetVariable(0, a, sys->verts[a][index]);
nlLockVariable(a);
}
}
}
nlBegin(NL_MATRIX);
sys->nlbegun = 1;
}
}
void laplacian_add_right_hand_side(LaplacianSystem *sys, int v, float value)
{
nlRightHandSideAdd(0, v, value);
}
int laplacian_system_solve(LaplacianSystem *sys)
{
nlEnd(NL_MATRIX);
nlEnd(NL_SYSTEM);
sys->nlbegun = 0;
//nlPrintMatrix();
return nlSolveAdvanced(NULL, NL_TRUE);
}
float laplacian_system_get_solution(int v)
{
return nlGetVariable(0, v);
}
/************************* Heat Bone Weighting ******************************/
/* From "Automatic Rigging and Animation of 3D Characters"
Ilya Baran and Jovan Popovic, SIGGRAPH 2007 */
#define C_WEIGHT 1.0f
#define WEIGHT_LIMIT_START 0.05f
#define WEIGHT_LIMIT_END 0.025f
#define DISTANCE_EPSILON 1e-4f
/* Raytracing for vertex to bone visibility */
static LaplacianSystem *HeatSys = NULL;
static void heat_ray_coords_func(RayFace *face, float **v1, float **v2, float **v3, float **v4)
{
MFace *mface= (MFace*)face;
float (*verts)[3]= HeatSys->heat.verts;
*v1= verts[mface->v1];
*v2= verts[mface->v2];
*v3= verts[mface->v3];
*v4= (mface->v4)? verts[mface->v4]: NULL;
}
static int heat_ray_check_func(Isect *is, int ob, RayFace *face)
{
float *v1, *v2, *v3, *v4, nor[3];
/* don't intersect if the ray faces along the face normal */
heat_ray_coords_func(face, &v1, &v2, &v3, &v4);
if(v4) CalcNormFloat4(v1, v2, v3, v4, nor);
else CalcNormFloat(v1, v2, v3, nor);
return (INPR(nor, is->vec) < 0);
}
static void heat_ray_tree_create(LaplacianSystem *sys)
{
Mesh *me = sys->heat.mesh;
RayTree *tree;
MFace *mface;
float min[3], max[3];
int a;
/* create a raytrace tree from the mesh */
INIT_MINMAX(min, max);
for(a=0; a<me->totvert; a++)
DO_MINMAX(sys->heat.verts[a], min, max);
tree= RE_ray_tree_create(64, me->totface, min, max,
heat_ray_coords_func, heat_ray_check_func, NULL, NULL);
sys->heat.vface= MEM_callocN(sizeof(MFace*)*me->totvert, "HeatVFaces");
HeatSys= sys;
for(a=0, mface=me->mface; a<me->totface; a++, mface++) {
RE_ray_tree_add_face(tree, 0, mface);
sys->heat.vface[mface->v1]= mface;
sys->heat.vface[mface->v2]= mface;
sys->heat.vface[mface->v3]= mface;
if(mface->v4) sys->heat.vface[mface->v4]= mface;
}
HeatSys= NULL;
RE_ray_tree_done(tree);
sys->heat.raytree= tree;
}
static int heat_ray_bone_visible(LaplacianSystem *sys, int vertex, int bone)
{
Isect isec;
MFace *mface;
float dir[3];
int visible;
mface= sys->heat.vface[vertex];
if(!mface)
return 1;
/* setup isec */
memset(&isec, 0, sizeof(isec));
isec.mode= RE_RAY_SHADOW;
isec.lay= -1;
isec.face_last= NULL;
isec.faceorig= mface;
VECCOPY(isec.start, sys->heat.verts[vertex]);
PclosestVL3Dfl(isec.end, isec.start,
sys->heat.root[bone], sys->heat.tip[bone]);
/* add an extra offset to the start position to avoid self intersection */
VECSUB(dir, isec.end, isec.start);
Normalize(dir);
VecMulf(dir, 1e-5);
VecAddf(isec.start, isec.start, dir);
HeatSys= sys;
visible= !RE_ray_tree_intersect(sys->heat.raytree, &isec);
HeatSys= NULL;
return visible;
}
static float heat_bone_distance(LaplacianSystem *sys, int vertex, int bone)
{
float closest[3], d[3], dist, cosine;
/* compute euclidian distance */
PclosestVL3Dfl(closest, sys->heat.verts[vertex],
sys->heat.root[bone], sys->heat.tip[bone]);
VecSubf(d, sys->heat.verts[vertex], closest);
dist= Normalize(d);
/* if the vertex normal does not point along the bone, increase distance */
cosine= INPR(d, sys->heat.vnors[vertex]);
return dist/(0.5f*(cosine + 1.001f));
}
static int heat_bone_closest(LaplacianSystem *sys, int vertex, int bone)
{
float dist;
dist= heat_bone_distance(sys, vertex, bone);
if(dist <= sys->heat.mindist[vertex]*(1.0f + DISTANCE_EPSILON))
if(heat_ray_bone_visible(sys, vertex, bone))
return 1;
return 0;
}
static void heat_set_H(LaplacianSystem *sys, int vertex)
{
float dist, mindist, h;
int j, numclosest = 0;
mindist= 1e10;
/* compute minimum distance */
for(j=0; j<sys->heat.numbones; j++) {
dist= heat_bone_distance(sys, vertex, j);
if(dist < mindist)
mindist= dist;
}
sys->heat.mindist[vertex]= mindist;
/* count number of bones with approximately this minimum distance */
for(j=0; j<sys->heat.numbones; j++)
if(heat_bone_closest(sys, vertex, j))
numclosest++;
sys->heat.p[vertex]= (numclosest > 0)? 1.0f/numclosest: 0.0f;
/* compute H entry */
if(numclosest > 0) {
if(mindist > 1e-5)
h= numclosest*C_WEIGHT/(mindist*mindist);
else
h= 1e10f;
}
else
h= 0.0f;
sys->heat.H[vertex]= h;
}
void heat_calc_vnormals(LaplacianSystem *sys)
{
float fnor[3];
int a, v1, v2, v3, (*face)[3];
sys->heat.vnors= MEM_callocN(sizeof(float)*3*sys->totvert, "HeatVNors");
for(a=0, face=sys->faces; a<sys->totface; a++, face++) {
v1= (*face)[0];
v2= (*face)[1];
v3= (*face)[2];
CalcNormFloat(sys->verts[v1], sys->verts[v2], sys->verts[v3], fnor);
VecAddf(sys->heat.vnors[v1], sys->heat.vnors[v1], fnor);
VecAddf(sys->heat.vnors[v2], sys->heat.vnors[v2], fnor);
VecAddf(sys->heat.vnors[v3], sys->heat.vnors[v3], fnor);
}
for(a=0; a<sys->totvert; a++)
Normalize(sys->heat.vnors[a]);
}
static void heat_laplacian_create(LaplacianSystem *sys)
{
Mesh *me = sys->heat.mesh;
MFace *mface;
int a;
/* heat specific definitions */
sys->heat.mindist= MEM_callocN(sizeof(float)*me->totvert, "HeatMinDist");
sys->heat.H= MEM_callocN(sizeof(float)*me->totvert, "HeatH");
sys->heat.p= MEM_callocN(sizeof(float)*me->totvert, "HeatP");
/* add verts and faces to laplacian */
for(a=0; a<me->totvert; a++)
laplacian_add_vertex(sys, sys->heat.verts[a], 0);
for(a=0, mface=me->mface; a<me->totface; a++, mface++) {
laplacian_add_triangle(sys, mface->v1, mface->v2, mface->v3);
if(mface->v4)
laplacian_add_triangle(sys, mface->v1, mface->v3, mface->v4);
}
/* for distance computation in set_H */
heat_calc_vnormals(sys);
for(a=0; a<me->totvert; a++)
heat_set_H(sys, a);
}
static float heat_limit_weight(float weight)
{
float t;
if(weight < WEIGHT_LIMIT_END) {
return 0.0f;
}
else if(weight < WEIGHT_LIMIT_START) {
t= (weight - WEIGHT_LIMIT_END)/(WEIGHT_LIMIT_START - WEIGHT_LIMIT_END);
return t*WEIGHT_LIMIT_START;
}
else
return weight;
}
void heat_bone_weighting(Object *ob, Mesh *me, float (*verts)[3], int numbones, bDeformGroup **dgrouplist, bDeformGroup **dgroupflip, float (*root)[3], float (*tip)[3], int *selected)
{
LaplacianSystem *sys;
MFace *mface;
float solution, weight;
int *vertsflipped = NULL;
int a, totface, j, bbone, firstsegment, lastsegment, thrownerror = 0;
/* count triangles */
for(totface=0, a=0, mface=me->mface; a<me->totface; a++, mface++) {
totface++;
if(mface->v4) totface++;
}
/* create laplacian */
sys = laplacian_system_construct_begin(me->totvert, totface, 1);
sys->heat.mesh= me;
sys->heat.verts= verts;
sys->heat.root= root;
sys->heat.tip= tip;
sys->heat.numbones= numbones;
heat_ray_tree_create(sys);
heat_laplacian_create(sys);
laplacian_system_construct_end(sys);
if(dgroupflip) {
vertsflipped = MEM_callocN(sizeof(int)*me->totvert, "vertsflipped");
for(a=0; a<me->totvert; a++)
vertsflipped[a] = mesh_get_x_mirror_vert(ob, a);
}
/* compute weights per bone */
for(j=0; j<numbones; j++) {
if(!selected[j])
continue;
firstsegment= (j == 0 || dgrouplist[j-1] != dgrouplist[j]);
lastsegment= (j == numbones-1 || dgrouplist[j] != dgrouplist[j+1]);
bbone= !(firstsegment && lastsegment);
/* clear weights */
if(bbone && firstsegment) {
for(a=0; a<me->totvert; a++) {
remove_vert_defgroup(ob, dgrouplist[j], a);
if(vertsflipped && dgroupflip[j] && vertsflipped[a] >= 0)
remove_vert_defgroup(ob, dgroupflip[j], vertsflipped[a]);
}
}
/* fill right hand side */
laplacian_begin_solve(sys, -1);
for(a=0; a<me->totvert; a++)
if(heat_bone_closest(sys, a, j))
laplacian_add_right_hand_side(sys, a,
sys->heat.H[a]*sys->heat.p[a]);
/* solve */
if(laplacian_system_solve(sys)) {
/* load solution into vertex groups */
for(a=0; a<me->totvert; a++) {
solution= laplacian_system_get_solution(a);
if(bbone) {
if(solution > 0.0f)
add_vert_to_defgroup(ob, dgrouplist[j], a, solution,
WEIGHT_ADD);
}
else {
weight= heat_limit_weight(solution);
if(weight > 0.0f)
add_vert_to_defgroup(ob, dgrouplist[j], a, weight,
WEIGHT_REPLACE);
else
remove_vert_defgroup(ob, dgrouplist[j], a);
}
/* do same for mirror */
if(vertsflipped && dgroupflip[j] && vertsflipped[a] >= 0) {
if(bbone) {
if(solution > 0.0f)
add_vert_to_defgroup(ob, dgroupflip[j], vertsflipped[a],
solution, WEIGHT_ADD);
}
else {
weight= heat_limit_weight(solution);
if(weight > 0.0f)
add_vert_to_defgroup(ob, dgroupflip[j], vertsflipped[a],
weight, WEIGHT_REPLACE);
else
remove_vert_defgroup(ob, dgroupflip[j], vertsflipped[a]);
}
}
}
}
else if(!thrownerror) {
error("Bone Heat Weighting:"
" failed to find solution for one or more bones");
thrownerror= 1;
break;
}
/* remove too small vertex weights */
if(bbone && lastsegment) {
for(a=0; a<me->totvert; a++) {
weight= get_vert_defgroup(ob, dgrouplist[j], a);
weight= heat_limit_weight(weight);
if(weight <= 0.0f)
remove_vert_defgroup(ob, dgrouplist[j], a);
if(vertsflipped && dgroupflip[j] && vertsflipped[a] >= 0) {
weight= get_vert_defgroup(ob, dgroupflip[j], vertsflipped[a]);
weight= heat_limit_weight(weight);
if(weight <= 0.0f)
remove_vert_defgroup(ob, dgroupflip[j], vertsflipped[a]);
}
}
}
}
/* free */
if(vertsflipped) MEM_freeN(vertsflipped);
RE_ray_tree_free(sys->heat.raytree);
MEM_freeN(sys->heat.vface);
MEM_freeN(sys->heat.mindist);
MEM_freeN(sys->heat.H);
MEM_freeN(sys->heat.p);
MEM_freeN(sys->heat.vnors);
laplacian_system_delete(sys);
}
#ifdef RIGID_DEFORM
/********************** As-Rigid-As-Possible Deformation ******************/
/* From "As-Rigid-As-Possible Surface Modeling",
Olga Sorkine and Marc Alexa, ESGP 2007. */
/* investigate:
- transpose R in orthogonal
- flipped normals and per face adding
- move cancelling to transform, make origco pointer
*/
static LaplacianSystem *RigidDeformSystem = NULL;
static void rigid_add_half_edge_to_R(LaplacianSystem *sys, EditVert *v1, EditVert *v2, float w)
{
float e[3], e_[3];
int i;
VecSubf(e, sys->rigid.origco[v1->tmp.l], sys->rigid.origco[v2->tmp.l]);
VecSubf(e_, v1->co, v2->co);
/* formula (5) */
for (i=0; i<3; i++) {
sys->rigid.R[v1->tmp.l][i][0] += w*e[0]*e_[i];
sys->rigid.R[v1->tmp.l][i][1] += w*e[1]*e_[i];
sys->rigid.R[v1->tmp.l][i][2] += w*e[2]*e_[i];
}
}
static void rigid_add_edge_to_R(LaplacianSystem *sys, EditVert *v1, EditVert *v2, float w)
{
rigid_add_half_edge_to_R(sys, v1, v2, w);
rigid_add_half_edge_to_R(sys, v2, v1, w);
}
static void rigid_orthogonalize_R(float R[][3])
{
HMatrix M, Q, S;
Mat4CpyMat3(M, R);
polar_decomp(M, Q, S);
Mat3CpyMat4(R, Q);
}
static void rigid_add_half_edge_to_rhs(LaplacianSystem *sys, EditVert *v1, EditVert *v2, float w)
{
/* formula (8) */
float Rsum[3][3], rhs[3];
if (sys->vpinned[v1->tmp.l])
return;
Mat3AddMat3(Rsum, sys->rigid.R[v1->tmp.l], sys->rigid.R[v2->tmp.l]);
Mat3Transp(Rsum);
VecSubf(rhs, sys->rigid.origco[v1->tmp.l], sys->rigid.origco[v2->tmp.l]);
Mat3MulVecfl(Rsum, rhs);
VecMulf(rhs, 0.5f);
VecMulf(rhs, w);
VecAddf(sys->rigid.rhs[v1->tmp.l], sys->rigid.rhs[v1->tmp.l], rhs);
}
static void rigid_add_edge_to_rhs(LaplacianSystem *sys, EditVert *v1, EditVert *v2, float w)
{
rigid_add_half_edge_to_rhs(sys, v1, v2, w);
rigid_add_half_edge_to_rhs(sys, v2, v1, w);
}
void rigid_deform_iteration()
{
LaplacianSystem *sys= RigidDeformSystem;
EditMesh *em;
EditVert *eve;
EditFace *efa;
int a, i;
if(!sys)
return;
nlMakeCurrent(sys->context);
em= sys->rigid.mesh;
/* compute R */
memset(sys->rigid.R, 0, sizeof(float)*3*3*sys->totvert);
memset(sys->rigid.rhs, 0, sizeof(float)*3*sys->totvert);
for(a=0, efa=em->faces.first; efa; efa=efa->next, a++) {
rigid_add_edge_to_R(sys, efa->v1, efa->v2, sys->fweights[a][2]);
rigid_add_edge_to_R(sys, efa->v2, efa->v3, sys->fweights[a][0]);
rigid_add_edge_to_R(sys, efa->v3, efa->v1, sys->fweights[a][1]);
if(efa->v4) {
a++;
rigid_add_edge_to_R(sys, efa->v1, efa->v3, sys->fweights[a][2]);
rigid_add_edge_to_R(sys, efa->v3, efa->v4, sys->fweights[a][0]);
rigid_add_edge_to_R(sys, efa->v4, efa->v1, sys->fweights[a][1]);
}
}
for(a=0, eve=em->verts.first; eve; eve=eve->next, a++) {
rigid_orthogonalize_R(sys->rigid.R[a]);
eve->tmp.l= a;
}
/* compute right hand sides for solving */
for(a=0, efa=em->faces.first; efa; efa=efa->next, a++) {
rigid_add_edge_to_rhs(sys, efa->v1, efa->v2, sys->fweights[a][2]);
rigid_add_edge_to_rhs(sys, efa->v2, efa->v3, sys->fweights[a][0]);
rigid_add_edge_to_rhs(sys, efa->v3, efa->v1, sys->fweights[a][1]);
if(efa->v4) {
a++;
rigid_add_edge_to_rhs(sys, efa->v1, efa->v3, sys->fweights[a][2]);
rigid_add_edge_to_rhs(sys, efa->v3, efa->v4, sys->fweights[a][0]);
rigid_add_edge_to_rhs(sys, efa->v4, efa->v1, sys->fweights[a][1]);
}
}
/* solve for positions, for X,Y and Z separately */
for(i=0; i<3; i++) {
laplacian_begin_solve(sys, i);
for(a=0; a<sys->totvert; a++)
if(!sys->vpinned[a])
laplacian_add_right_hand_side(sys, a, sys->rigid.rhs[a][i]);
if(laplacian_system_solve(sys)) {
for(a=0, eve=em->verts.first; eve; eve=eve->next, a++)
eve->co[i]= laplacian_system_get_solution(a);
}
else {
if(!sys->rigid.thrownerror) {
error("RigidDeform: failed to find solution.");
sys->rigid.thrownerror= 1;
}
break;
}
}
}
static void rigid_laplacian_create(LaplacianSystem *sys)
{
EditMesh *em = sys->rigid.mesh;
EditVert *eve;
EditFace *efa;
int a;
/* add verts and faces to laplacian */
for(a=0, eve=em->verts.first; eve; eve=eve->next, a++) {
laplacian_add_vertex(sys, eve->co, eve->pinned);
eve->tmp.l= a;
}
for(efa=em->faces.first; efa; efa=efa->next) {
laplacian_add_triangle(sys,
efa->v1->tmp.l, efa->v2->tmp.l, efa->v3->tmp.l);
if(efa->v4)
laplacian_add_triangle(sys,
efa->v1->tmp.l, efa->v3->tmp.l, efa->v4->tmp.l);
}
}
void rigid_deform_begin(EditMesh *em)
{
LaplacianSystem *sys;
EditVert *eve;
EditFace *efa;
int a, totvert, totface;
/* count vertices, triangles */
for(totvert=0, eve=em->verts.first; eve; eve=eve->next)
totvert++;
for(totface=0, efa=em->faces.first; efa; efa=efa->next) {
totface++;
if(efa->v4) totface++;
}
/* create laplacian */
sys = laplacian_system_construct_begin(totvert, totface, 0);
sys->rigid.mesh= em;
sys->rigid.R = MEM_callocN(sizeof(float)*3*3*totvert, "RigidDeformR");
sys->rigid.rhs = MEM_callocN(sizeof(float)*3*totvert, "RigidDeformRHS");
sys->rigid.origco = MEM_callocN(sizeof(float)*3*totvert, "RigidDeformCo");
for(a=0, eve=em->verts.first; eve; eve=eve->next, a++)
VecCopyf(sys->rigid.origco[a], eve->co);
sys->areaweights= 0;
sys->storeweights= 1;
rigid_laplacian_create(sys);
laplacian_system_construct_end(sys);
RigidDeformSystem = sys;
}
void rigid_deform_end(int cancel)
{
LaplacianSystem *sys = RigidDeformSystem;
if(sys) {
EditMesh *em = sys->rigid.mesh;
EditVert *eve;
int a;
if(cancel)
for(a=0, eve=em->verts.first; eve; eve=eve->next, a++)
if(!eve->pinned)
VecCopyf(eve->co, sys->rigid.origco[a]);
if(sys->rigid.R) MEM_freeN(sys->rigid.R);
if(sys->rigid.rhs) MEM_freeN(sys->rigid.rhs);
if(sys->rigid.origco) MEM_freeN(sys->rigid.origco);
/* free */
laplacian_system_delete(sys);
}
RigidDeformSystem = NULL;
}
#endif
/************************** Harmonic Coordinates ****************************/
/* From "Harmonic Coordinates for Character Articulation",
Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green and Tom Sanocki,
SIGGRAPH 2007. */
#define EPSILON 0.0001f
#define MESHDEFORM_TAG_UNTYPED 0
#define MESHDEFORM_TAG_BOUNDARY 1
#define MESHDEFORM_TAG_INTERIOR 2
#define MESHDEFORM_TAG_EXTERIOR 3
#define MESHDEFORM_LEN_THRESHOLD 1e-6
#define MESHDEFORM_MIN_INFLUENCE 0.0005
static int MESHDEFORM_OFFSET[7][3] =
{{0,0,0}, {1,0,0}, {-1,0,0}, {0,1,0}, {0,-1,0}, {0,0,1}, {0,0,-1}};
typedef struct MDefBoundIsect {
float co[3], uvw[4];
int nvert, v[4], facing;
float len;
} MDefBoundIsect;
typedef struct MDefBindInfluence {
struct MDefBindInfluence *next;
float weight;
int vertex;
} MDefBindInfluence;
typedef struct MeshDeformBind {
/* grid dimensions */
float min[3], max[3];
float width[3], halfwidth[3];
int size, size3;
/* meshes */
DerivedMesh *cagedm;
float (*cagecos)[3];
float (*vertexcos)[3];
int totvert, totcagevert;
/* grids */
MemArena *memarena;
MDefBoundIsect *(*boundisect)[6];
int *semibound;
int *tag;
float *phi, *totalphi;
/* mesh stuff */
int *inside;
float *weights;
MDefBindInfluence **dyngrid;
float cagemat[4][4];
/* direct solver */
int *varidx;
/* raytrace */
RayTree *raytree;
} MeshDeformBind;
/* ray intersection */
/* our own triangle intersection, so we can fully control the epsilons and
* prevent corner case from going wrong*/
static int meshdeform_tri_intersect(float orig[3], float end[3], float vert0[3],
float vert1[3], float vert2[3], float *isectco, float *uvw)
{
float edge1[3], edge2[3], tvec[3], pvec[3], qvec[3];
float det,inv_det, u, v, dir[3], isectdir[3];
VECSUB(dir, end, orig);
/* find vectors for two edges sharing vert0 */
VECSUB(edge1, vert1, vert0);
VECSUB(edge2, vert2, vert0);
/* begin calculating determinant - also used to calculate U parameter */
Crossf(pvec, dir, edge2);
/* if determinant is near zero, ray lies in plane of triangle */
det = INPR(edge1, pvec);
if (det == 0.0f)
return 0;
inv_det = 1.0f / det;
/* calculate distance from vert0 to ray origin */
VECSUB(tvec, orig, vert0);
/* calculate U parameter and test bounds */
u = INPR(tvec, pvec) * inv_det;
if (u < -EPSILON || u > 1.0f+EPSILON)
return 0;
/* prepare to test V parameter */
Crossf(qvec, tvec, edge1);
/* calculate V parameter and test bounds */
v = INPR(dir, qvec) * inv_det;
if (v < -EPSILON || u + v > 1.0f+EPSILON)
return 0;
isectco[0]= (1.0f - u - v)*vert0[0] + u*vert1[0] + v*vert2[0];
isectco[1]= (1.0f - u - v)*vert0[1] + u*vert1[1] + v*vert2[1];
isectco[2]= (1.0f - u - v)*vert0[2] + u*vert1[2] + v*vert2[2];
uvw[0]= 1.0 - u - v;
uvw[1]= u;
uvw[2]= v;
/* check if it is within the length of the line segment */
VECSUB(isectdir, isectco, orig);
if(INPR(dir, isectdir) < -EPSILON)
return 0;
if(INPR(dir, dir) + EPSILON < INPR(isectdir, isectdir))
return 0;
return 1;
}
/* blender's raytracer is not use now, even though it is much faster. it can
* give problems with rays falling through, so we use our own intersection
* function above with tweaked epsilons */
#if 0
static MeshDeformBind *MESHDEFORM_BIND = NULL;
static void meshdeform_ray_coords_func(RayFace *face, float **v1, float **v2, float **v3, float **v4)
{
MFace *mface= (MFace*)face;
float (*cagecos)[3]= MESHDEFORM_BIND->cagecos;
*v1= cagecos[mface->v1];
*v2= cagecos[mface->v2];
*v3= cagecos[mface->v3];
*v4= (mface->v4)? cagecos[mface->v4]: NULL;
}
static int meshdeform_ray_check_func(Isect *is, RayFace *face)
{
return 1;
}
static void meshdeform_ray_tree_create(MeshDeformBind *mdb)
{
MFace *mface;
float min[3], max[3];
int a, totface;
/* create a raytrace tree from the mesh */
INIT_MINMAX(min, max);
for(a=0; a<mdb->totcagevert; a++)
DO_MINMAX(mdb->cagecos[a], min, max)
MESHDEFORM_BIND= mdb;
mface= mdb->cagedm->getFaceArray(mdb->cagedm);
totface= mdb->cagedm->getNumFaces(mdb->cagedm);
mdb->raytree= RE_ray_tree_create(64, totface, min, max,
meshdeform_ray_coords_func, meshdeform_ray_check_func);
for(a=0; a<totface; a++, mface++)
RE_ray_tree_add_face(mdb->raytree, mface);
RE_ray_tree_done(mdb->raytree);
}
static void meshdeform_ray_tree_free(MeshDeformBind *mdb)
{
MESHDEFORM_BIND= NULL;
RE_ray_tree_free(mdb->raytree);
}
#endif
static int meshdeform_intersect(MeshDeformBind *mdb, Isect *isec)
{
MFace *mface;
float face[4][3], co[3], uvw[3], len, nor[3];
int f, hit, is= 0, totface;
isec->labda= 1e10;
mface= mdb->cagedm->getFaceArray(mdb->cagedm);
totface= mdb->cagedm->getNumFaces(mdb->cagedm);
for(f=0; f<totface; f++, mface++) {
VECCOPY(face[0], mdb->cagecos[mface->v1]);
VECCOPY(face[1], mdb->cagecos[mface->v2]);
VECCOPY(face[2], mdb->cagecos[mface->v3]);
if(mface->v4) {
VECCOPY(face[3], mdb->cagecos[mface->v4]);
hit= meshdeform_tri_intersect(isec->start, isec->end, face[0], face[1], face[2], co, uvw);
if(hit) {
CalcNormFloat(face[0], face[1], face[2], nor);
}
else {
hit= meshdeform_tri_intersect(isec->start, isec->end, face[0], face[2], face[3], co, uvw);
CalcNormFloat(face[0], face[2], face[3], nor);
}
}
else {
hit= meshdeform_tri_intersect(isec->start, isec->end, face[0], face[1], face[2], co, uvw);
CalcNormFloat(face[0], face[1], face[2], nor);
}
if(hit) {
len= VecLenf(isec->start, co)/VecLenf(isec->start, isec->end);
if(len < isec->labda) {
isec->labda= len;
isec->face= mface;
isec->isect= (INPR(isec->vec, nor) <= 0.0f);
is= 1;
}
}
}
return is;
}
static MDefBoundIsect *meshdeform_ray_tree_intersect(MeshDeformBind *mdb, float *co1, float *co2)
{
MDefBoundIsect *isect;
Isect isec;
float (*cagecos)[3];
MFace *mface;
float vert[4][3], len;
static float epsilon[3]= {0, 0, 0}; //1e-4, 1e-4, 1e-4};
/* setup isec */
memset(&isec, 0, sizeof(isec));
isec.mode= RE_RAY_MIRROR; /* we want the closest intersection */
isec.lay= -1;
isec.face_last= NULL;
isec.faceorig= NULL;
isec.labda= 1e10f;
VECADD(isec.start, co1, epsilon);
VECADD(isec.end, co2, epsilon);
VECSUB(isec.vec, isec.end, isec.start);
#if 0
/*if(RE_ray_tree_intersect(mdb->raytree, &isec)) {*/
#endif
if(meshdeform_intersect(mdb, &isec)) {
len= isec.labda;
mface= isec.face;
/* create MDefBoundIsect */
isect= BLI_memarena_alloc(mdb->memarena, sizeof(*isect));
/* compute intersection coordinate */
isect->co[0]= co1[0] + isec.vec[0]*len;
isect->co[1]= co1[1] + isec.vec[1]*len;
isect->co[2]= co1[2] + isec.vec[2]*len;
isect->len= VecLenf(co1, isect->co);
if(isect->len < MESHDEFORM_LEN_THRESHOLD)
isect->len= MESHDEFORM_LEN_THRESHOLD;
isect->v[0]= mface->v1;
isect->v[1]= mface->v2;
isect->v[2]= mface->v3;
isect->v[3]= mface->v4;
isect->nvert= (mface->v4)? 4: 3;
isect->facing= isec.isect;
/* compute mean value coordinates for interpolation */
cagecos= mdb->cagecos;
VECCOPY(vert[0], cagecos[mface->v1]);
VECCOPY(vert[1], cagecos[mface->v2]);
VECCOPY(vert[2], cagecos[mface->v3]);
if(mface->v4) VECCOPY(vert[3], cagecos[mface->v4]);
MeanValueWeights(vert, isect->nvert, isect->co, isect->uvw);
return isect;
}
return NULL;
}
static int meshdeform_inside_cage(MeshDeformBind *mdb, float *co)
{
MDefBoundIsect *isect;
float outside[3], start[3], dir[3];
int i, counter;
for(i=1; i<=6; i++) {
counter = 0;
outside[0] = co[0] + (mdb->max[0] - mdb->min[0] + 1.0f)*MESHDEFORM_OFFSET[i][0];
outside[1] = co[1] + (mdb->max[1] - mdb->min[1] + 1.0f)*MESHDEFORM_OFFSET[i][1];
outside[2] = co[2] + (mdb->max[2] - mdb->min[2] + 1.0f)*MESHDEFORM_OFFSET[i][2];
VECCOPY(start, co);
VECSUB(dir, outside, start);
Normalize(dir);
isect = meshdeform_ray_tree_intersect(mdb, start, outside);
if(isect && !isect->facing)
return 1;
}
return 0;
}
/* solving */
static int meshdeform_index(MeshDeformBind *mdb, int x, int y, int z, int n)
{
int size= mdb->size;
x += MESHDEFORM_OFFSET[n][0];
y += MESHDEFORM_OFFSET[n][1];
z += MESHDEFORM_OFFSET[n][2];
if(x < 0 || x >= mdb->size)
return -1;
if(y < 0 || y >= mdb->size)
return -1;
if(z < 0 || z >= mdb->size)
return -1;
return x + y*size + z*size*size;
}
static void meshdeform_cell_center(MeshDeformBind *mdb, int x, int y, int z, int n, float *center)
{
x += MESHDEFORM_OFFSET[n][0];
y += MESHDEFORM_OFFSET[n][1];
z += MESHDEFORM_OFFSET[n][2];
center[0]= mdb->min[0] + x*mdb->width[0] + mdb->halfwidth[0];
center[1]= mdb->min[1] + y*mdb->width[1] + mdb->halfwidth[1];
center[2]= mdb->min[2] + z*mdb->width[2] + mdb->halfwidth[2];
}
static void meshdeform_add_intersections(MeshDeformBind *mdb, int x, int y, int z)
{
MDefBoundIsect *isect;
float center[3], ncenter[3];
int i, a;
a= meshdeform_index(mdb, x, y, z, 0);
meshdeform_cell_center(mdb, x, y, z, 0, center);
/* check each outgoing edge for intersection */
for(i=1; i<=6; i++) {
if(meshdeform_index(mdb, x, y, z, i) == -1)
continue;
meshdeform_cell_center(mdb, x, y, z, i, ncenter);
isect= meshdeform_ray_tree_intersect(mdb, center, ncenter);
if(isect) {
mdb->boundisect[a][i-1]= isect;
mdb->tag[a]= MESHDEFORM_TAG_BOUNDARY;
}
}
}
static void meshdeform_bind_floodfill(MeshDeformBind *mdb)
{
int *stack, *tag= mdb->tag;
int a, b, i, xyz[3], stacksize, size= mdb->size;
stack= MEM_callocN(sizeof(int)*mdb->size3, "MeshDeformBindStack");
/* we know lower left corner is EXTERIOR because of padding */
tag[0]= MESHDEFORM_TAG_EXTERIOR;
stack[0]= 0;
stacksize= 1;
/* floodfill exterior tag */
while(stacksize > 0) {
a= stack[--stacksize];
xyz[2]= a/(size*size);
xyz[1]= (a - xyz[2]*size*size)/size;
xyz[0]= a - xyz[1]*size - xyz[2]*size*size;
for(i=1; i<=6; i++) {
b= meshdeform_index(mdb, xyz[0], xyz[1], xyz[2], i);
if(b != -1) {
if(tag[b] == MESHDEFORM_TAG_UNTYPED ||
(tag[b] == MESHDEFORM_TAG_BOUNDARY && !mdb->boundisect[a][i-1])) {
tag[b]= MESHDEFORM_TAG_EXTERIOR;
stack[stacksize++]= b;
}
}
}
}
/* other cells are interior */
for(a=0; a<size*size*size; a++)
if(tag[a]==MESHDEFORM_TAG_UNTYPED)
tag[a]= MESHDEFORM_TAG_INTERIOR;
#if 0
{
int tb, ti, te, ts;
tb= ti= te= ts= 0;
for(a=0; a<size*size*size; a++)
if(tag[a]==MESHDEFORM_TAG_BOUNDARY)
tb++;
else if(tag[a]==MESHDEFORM_TAG_INTERIOR)
ti++;
else if(tag[a]==MESHDEFORM_TAG_EXTERIOR) {
te++;
if(mdb->semibound[a])
ts++;
}
printf("interior %d exterior %d boundary %d semi-boundary %d\n", ti, te, tb, ts);
}
#endif
MEM_freeN(stack);
}
static float meshdeform_boundary_phi(MeshDeformBind *mdb, MDefBoundIsect *isect, int cagevert)
{
int a;
for(a=0; a<isect->nvert; a++)
if(isect->v[a] == cagevert)
return isect->uvw[a];
return 0.0f;
}
static float meshdeform_interp_w(MeshDeformBind *mdb, float *gridvec, float *vec, int cagevert)
{
float dvec[3], ivec[3], wx, wy, wz, result=0.0f;
float weight, totweight= 0.0f;
int i, a, x, y, z;
for(i=0; i<3; i++) {
ivec[i]= (int)gridvec[i];
dvec[i]= gridvec[i] - ivec[i];
}
for(i=0; i<8; i++) {
if(i & 1) { x= ivec[0]+1; wx= dvec[0]; }
else { x= ivec[0]; wx= 1.0f-dvec[0]; }
if(i & 2) { y= ivec[1]+1; wy= dvec[1]; }
else { y= ivec[1]; wy= 1.0f-dvec[1]; }
if(i & 4) { z= ivec[2]+1; wz= dvec[2]; }
else { z= ivec[2]; wz= 1.0f-dvec[2]; }
CLAMP(x, 0, mdb->size-1);
CLAMP(y, 0, mdb->size-1);
CLAMP(z, 0, mdb->size-1);
a= meshdeform_index(mdb, x, y, z, 0);
weight= wx*wy*wz;
result += weight*mdb->phi[a];
totweight += weight;
}
if(totweight > 0.0f)
result /= totweight;
return result;
}
static void meshdeform_check_semibound(MeshDeformBind *mdb, int x, int y, int z)
{
int i, a;
a= meshdeform_index(mdb, x, y, z, 0);
if(mdb->tag[a] != MESHDEFORM_TAG_EXTERIOR)
return;
for(i=1; i<=6; i++)
if(mdb->boundisect[a][i-1])
mdb->semibound[a]= 1;
}
static float meshdeform_boundary_total_weight(MeshDeformBind *mdb, int x, int y, int z)
{
float weight, totweight= 0.0f;
int i, a;
a= meshdeform_index(mdb, x, y, z, 0);
/* count weight for neighbour cells */
for(i=1; i<=6; i++) {
if(meshdeform_index(mdb, x, y, z, i) == -1)
continue;
if(mdb->boundisect[a][i-1])
weight= 1.0f/mdb->boundisect[a][i-1]->len;
else if(!mdb->semibound[a])
weight= 1.0f/mdb->width[0];
else
weight= 0.0f;
totweight += weight;
}
return totweight;
}
static void meshdeform_matrix_add_cell(MeshDeformBind *mdb, int x, int y, int z)
{
MDefBoundIsect *isect;
float weight, totweight;
int i, a, acenter;
acenter= meshdeform_index(mdb, x, y, z, 0);
if(mdb->tag[acenter] == MESHDEFORM_TAG_EXTERIOR)
return;
nlMatrixAdd(mdb->varidx[acenter], mdb->varidx[acenter], 1.0f);
totweight= meshdeform_boundary_total_weight(mdb, x, y, z);
for(i=1; i<=6; i++) {
a= meshdeform_index(mdb, x, y, z, i);
if(a == -1 || mdb->tag[a] == MESHDEFORM_TAG_EXTERIOR)
continue;
isect= mdb->boundisect[acenter][i-1];
if (!isect) {
weight= (1.0f/mdb->width[0])/totweight;
nlMatrixAdd(mdb->varidx[acenter], mdb->varidx[a], -weight);
}
}
}
static void meshdeform_matrix_add_rhs(MeshDeformBind *mdb, int x, int y, int z, int cagevert)
{
MDefBoundIsect *isect;
float rhs, weight, totweight;
int i, a, acenter;
acenter= meshdeform_index(mdb, x, y, z, 0);
if(mdb->tag[acenter] == MESHDEFORM_TAG_EXTERIOR)
return;
totweight= meshdeform_boundary_total_weight(mdb, x, y, z);
for(i=1; i<=6; i++) {
a= meshdeform_index(mdb, x, y, z, i);
if(a == -1)
continue;
isect= mdb->boundisect[acenter][i-1];
if (isect) {
weight= (1.0f/isect->len)/totweight;
rhs= weight*meshdeform_boundary_phi(mdb, isect, cagevert);
nlRightHandSideAdd(0, mdb->varidx[acenter], rhs);
}
}
}
static void meshdeform_matrix_add_semibound_phi(MeshDeformBind *mdb, int x, int y, int z, int cagevert)
{
MDefBoundIsect *isect;
float rhs, weight, totweight;
int i, a;
a= meshdeform_index(mdb, x, y, z, 0);
if(!mdb->semibound[a])
return;
mdb->phi[a]= 0.0f;
totweight= meshdeform_boundary_total_weight(mdb, x, y, z);
for(i=1; i<=6; i++) {
isect= mdb->boundisect[a][i-1];
if (isect) {
weight= (1.0f/isect->len)/totweight;
rhs= weight*meshdeform_boundary_phi(mdb, isect, cagevert);
mdb->phi[a] += rhs;
}
}
}
static void meshdeform_matrix_add_exterior_phi(MeshDeformBind *mdb, int x, int y, int z, int cagevert)
{
float phi, totweight;
int i, a, acenter;
acenter= meshdeform_index(mdb, x, y, z, 0);
if(mdb->tag[acenter] != MESHDEFORM_TAG_EXTERIOR || mdb->semibound[acenter])
return;
phi= 0.0f;
totweight= 0.0f;
for(i=1; i<=6; i++) {
a= meshdeform_index(mdb, x, y, z, i);
if(a != -1 && mdb->semibound[a]) {
phi += mdb->phi[a];
totweight += 1.0f;
}
}
if(totweight != 0.0f)
mdb->phi[acenter]= phi/totweight;
}
static void meshdeform_matrix_solve(MeshDeformBind *mdb)
{
NLContext *context;
float vec[3], gridvec[3];
int a, b, x, y, z, totvar;
char message[1024];
/* setup variable indices */
mdb->varidx= MEM_callocN(sizeof(int)*mdb->size3, "MeshDeformDSvaridx");
for(a=0, totvar=0; a<mdb->size3; a++)
mdb->varidx[a]= (mdb->tag[a] == MESHDEFORM_TAG_EXTERIOR)? -1: totvar++;
if(totvar == 0) {
MEM_freeN(mdb->varidx);
return;
}
progress_bar(0, "Starting mesh deform solve");
/* setup opennl solver */
nlNewContext();
context= nlGetCurrent();
nlSolverParameteri(NL_NB_VARIABLES, totvar);
nlSolverParameteri(NL_NB_ROWS, totvar);
nlSolverParameteri(NL_NB_RIGHT_HAND_SIDES, 1);
nlBegin(NL_SYSTEM);
nlBegin(NL_MATRIX);
/* build matrix */
for(z=0; z<mdb->size; z++)
for(y=0; y<mdb->size; y++)
for(x=0; x<mdb->size; x++)
meshdeform_matrix_add_cell(mdb, x, y, z);
/* solve for each cage vert */
for(a=0; a<mdb->totcagevert; a++) {
if(a != 0) {
nlBegin(NL_SYSTEM);
nlBegin(NL_MATRIX);
}
/* fill in right hand side and solve */
for(z=0; z<mdb->size; z++)
for(y=0; y<mdb->size; y++)
for(x=0; x<mdb->size; x++)
meshdeform_matrix_add_rhs(mdb, x, y, z, a);
nlEnd(NL_MATRIX);
nlEnd(NL_SYSTEM);
#if 0
nlPrintMatrix();
#endif
if(nlSolveAdvanced(NULL, NL_TRUE)) {
for(z=0; z<mdb->size; z++)
for(y=0; y<mdb->size; y++)
for(x=0; x<mdb->size; x++)
meshdeform_matrix_add_semibound_phi(mdb, x, y, z, a);
for(z=0; z<mdb->size; z++)
for(y=0; y<mdb->size; y++)
for(x=0; x<mdb->size; x++)
meshdeform_matrix_add_exterior_phi(mdb, x, y, z, a);
for(b=0; b<mdb->size3; b++) {
if(mdb->tag[b] != MESHDEFORM_TAG_EXTERIOR)
mdb->phi[b]= nlGetVariable(0, mdb->varidx[b]);
mdb->totalphi[b] += mdb->phi[b];
}
if(mdb->weights) {
/* static bind : compute weights for each vertex */
for(b=0; b<mdb->totvert; b++) {
if(mdb->inside[b]) {
VECCOPY(vec, mdb->vertexcos[b]);
Mat4MulVecfl(mdb->cagemat, vec);
gridvec[0]= (vec[0] - mdb->min[0] - mdb->halfwidth[0])/mdb->width[0];
gridvec[1]= (vec[1] - mdb->min[1] - mdb->halfwidth[1])/mdb->width[1];
gridvec[2]= (vec[2] - mdb->min[2] - mdb->halfwidth[2])/mdb->width[2];
mdb->weights[b*mdb->totcagevert + a]= meshdeform_interp_w(mdb, gridvec, vec, a);
}
}
}
else {
MDefBindInfluence *inf;
/* dynamic bind */
for(b=0; b<mdb->size3; b++) {
if(mdb->phi[b] >= MESHDEFORM_MIN_INFLUENCE) {
inf= BLI_memarena_alloc(mdb->memarena, sizeof(*inf));
inf->vertex= a;
inf->weight= mdb->phi[b];
inf->next= mdb->dyngrid[b];
mdb->dyngrid[b]= inf;
}
}
}
}
else {
error("Mesh Deform: failed to find solution.");
break;
}
sprintf(message, "Mesh deform solve %d / %d |||", a+1, mdb->totcagevert);
progress_bar((float)(a+1)/(float)(mdb->totcagevert), message);
}
#if 0
/* sanity check */
for(b=0; b<mdb->size3; b++)
if(mdb->tag[b] != MESHDEFORM_TAG_EXTERIOR)
if(fabs(mdb->totalphi[b] - 1.0f) > 1e-4)
printf("totalphi deficiency [%s|%d] %d: %.10f\n",
(mdb->tag[b] == MESHDEFORM_TAG_INTERIOR)? "interior": "boundary", mdb->semibound[b], mdb->varidx[b], mdb->totalphi[b]);
#endif
/* free */
MEM_freeN(mdb->varidx);
nlDeleteContext(context);
}
void harmonic_coordinates_bind(Scene *scene, MeshDeformModifierData *mmd, float (*vertexcos)[3], int totvert, float cagemat[][4])
{
MeshDeformBind mdb;
MDefBindInfluence *inf;
MDefInfluence *mdinf;
MDefCell *cell;
MVert *mvert;
float center[3], vec[3], maxwidth, totweight;
int a, b, x, y, z, totinside, offset;
waitcursor(1);
start_progress_bar();
memset(&mdb, 0, sizeof(MeshDeformBind));
/* get mesh and cage mesh */
mdb.vertexcos= vertexcos;
mdb.totvert= totvert;
mdb.cagedm= mesh_create_derived_no_deform(scene, mmd->object, NULL, CD_MASK_BAREMESH);
mdb.totcagevert= mdb.cagedm->getNumVerts(mdb.cagedm);
mdb.cagecos= MEM_callocN(sizeof(*mdb.cagecos)*mdb.totcagevert, "MeshDeformBindCos");
Mat4CpyMat4(mdb.cagemat, cagemat);
mvert= mdb.cagedm->getVertArray(mdb.cagedm);
for(a=0; a<mdb.totcagevert; a++)
VECCOPY(mdb.cagecos[a], mvert[a].co)
/* compute bounding box of the cage mesh */
INIT_MINMAX(mdb.min, mdb.max);
for(a=0; a<mdb.totcagevert; a++)
DO_MINMAX(mdb.cagecos[a], mdb.min, mdb.max);
/* allocate memory */
mdb.size= (2<<(mmd->gridsize-1)) + 2;
mdb.size3= mdb.size*mdb.size*mdb.size;
mdb.tag= MEM_callocN(sizeof(int)*mdb.size3, "MeshDeformBindTag");
mdb.phi= MEM_callocN(sizeof(float)*mdb.size3, "MeshDeformBindPhi");
mdb.totalphi= MEM_callocN(sizeof(float)*mdb.size3, "MeshDeformBindTotalPhi");
mdb.boundisect= MEM_callocN(sizeof(*mdb.boundisect)*mdb.size3, "MDefBoundIsect");
mdb.semibound= MEM_callocN(sizeof(int)*mdb.size3, "MDefSemiBound");
mdb.inside= MEM_callocN(sizeof(int)*mdb.totvert, "MDefInside");
if(mmd->flag & MOD_MDEF_DYNAMIC_BIND)
mdb.dyngrid= MEM_callocN(sizeof(MDefBindInfluence*)*mdb.size3, "MDefDynGrid");
else
mdb.weights= MEM_callocN(sizeof(float)*mdb.totvert*mdb.totcagevert, "MDefWeights");
mdb.memarena= BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE);
BLI_memarena_use_calloc(mdb.memarena);
/* make bounding box equal size in all directions, add padding, and compute
* width of the cells */
maxwidth = -1.0f;
for(a=0; a<3; a++)
if(mdb.max[a]-mdb.min[a] > maxwidth)
maxwidth= mdb.max[a]-mdb.min[a];
for(a=0; a<3; a++) {
center[a]= (mdb.min[a]+mdb.max[a])*0.5f;
mdb.min[a]= center[a] - maxwidth*0.5f;
mdb.max[a]= center[a] + maxwidth*0.5f;
mdb.width[a]= (mdb.max[a]-mdb.min[a])/(mdb.size-4);
mdb.min[a] -= 2.1f*mdb.width[a];
mdb.max[a] += 2.1f*mdb.width[a];
mdb.width[a]= (mdb.max[a]-mdb.min[a])/mdb.size;
mdb.halfwidth[a]= mdb.width[a]*0.5f;
}
progress_bar(0, "Setting up mesh deform system");
#if 0
/* create ray tree */
meshdeform_ray_tree_create(&mdb);
#endif
totinside= 0;
for(a=0; a<mdb.totvert; a++) {
VECCOPY(vec, mdb.vertexcos[a]);
Mat4MulVecfl(mdb.cagemat, vec);
mdb.inside[a]= meshdeform_inside_cage(&mdb, vec);
if(mdb.inside[a])
totinside++;
}
/* free temporary MDefBoundIsects */
BLI_memarena_free(mdb.memarena);
mdb.memarena= BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE);
/* start with all cells untyped */
for(a=0; a<mdb.size3; a++)
mdb.tag[a]= MESHDEFORM_TAG_UNTYPED;
/* detect intersections and tag boundary cells */
for(z=0; z<mdb.size; z++)
for(y=0; y<mdb.size; y++)
for(x=0; x<mdb.size; x++)
meshdeform_add_intersections(&mdb, x, y, z);
#if 0
/* free ray tree */
meshdeform_ray_tree_free(&mdb);
#endif
/* compute exterior and interior tags */
meshdeform_bind_floodfill(&mdb);
for(z=0; z<mdb.size; z++)
for(y=0; y<mdb.size; y++)
for(x=0; x<mdb.size; x++)
meshdeform_check_semibound(&mdb, x, y, z);
/* solve */
meshdeform_matrix_solve(&mdb);
/* assign results */
mmd->bindcos= (float*)mdb.cagecos;
mmd->totvert= mdb.totvert;
mmd->totcagevert= mdb.totcagevert;
Mat4CpyMat4(mmd->bindmat, mmd->object->obmat);
if(mmd->flag & MOD_MDEF_DYNAMIC_BIND) {
mmd->totinfluence= 0;
for(a=0; a<mdb.size3; a++)
for(inf=mdb.dyngrid[a]; inf; inf=inf->next)
mmd->totinfluence++;
/* convert MDefBindInfluences to smaller MDefInfluences */
mmd->dyngrid= MEM_callocN(sizeof(MDefCell)*mdb.size3, "MDefDynGrid");
mmd->dyninfluences= MEM_callocN(sizeof(MDefInfluence)*mmd->totinfluence, "MDefInfluence");
offset= 0;
for(a=0; a<mdb.size3; a++) {
cell= &mmd->dyngrid[a];
cell->offset= offset;
totweight= 0.0f;
mdinf= mmd->dyninfluences + cell->offset;
for(inf=mdb.dyngrid[a]; inf; inf=inf->next, mdinf++) {
mdinf->weight= inf->weight;
mdinf->vertex= inf->vertex;
totweight += mdinf->weight;
cell->totinfluence++;
}
if(totweight > 0.0f) {
mdinf= mmd->dyninfluences + cell->offset;
for(b=0; b<cell->totinfluence; b++, mdinf++)
mdinf->weight /= totweight;
}
offset += cell->totinfluence;
}
mmd->dynverts= mdb.inside;
mmd->dyngridsize= mdb.size;
VECCOPY(mmd->dyncellmin, mdb.min);
mmd->dyncellwidth= mdb.width[0];
MEM_freeN(mdb.dyngrid);
}
else {
mmd->bindweights= mdb.weights;
MEM_freeN(mdb.inside);
}
/* transform bindcos to world space */
for(a=0; a<mdb.totcagevert; a++)
Mat4MulVecfl(mmd->object->obmat, mmd->bindcos+a*3);
/* free */
mdb.cagedm->release(mdb.cagedm);
MEM_freeN(mdb.tag);
MEM_freeN(mdb.phi);
MEM_freeN(mdb.totalphi);
MEM_freeN(mdb.boundisect);
MEM_freeN(mdb.semibound);
BLI_memarena_free(mdb.memarena);
end_progress_bar();
waitcursor(0);
}