This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/ocean.c

1408 lines
38 KiB
C
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributors: Matt Ebb, Hamed Zaghaghi
* Based on original code by Drew Whitehouse / Houdini Ocean Toolkit
* OpenMP hints by Christian Schnellhammer
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_scene_types.h"
#include "BKE_image.h"
#include "BKE_ocean.h"
#include "BKE_utildefines.h"
#include "BKE_global.h" // XXX TESTING
#include "BLI_math_base.h"
#include "BLI_math_inline.h"
#include "BLI_rand.h"
#include "BLI_string.h"
#include "BLI_threads.h"
#include "BLI_utildefines.h"
#include "IMB_imbuf.h"
#include "IMB_imbuf_types.h"
#include "RE_render_ext.h"
#ifdef WITH_OCEANSIM
// Ocean code
#include "fftw3.h"
#define GRAVITY 9.81f
typedef struct Ocean {
/* ********* input parameters to the sim ********* */
float _V;
float _l;
float _w;
float _A;
float _damp_reflections;
float _wind_alignment;
float _depth;
float _wx;
float _wz;
float _L;
/* dimensions of computational grid */
int _M;
int _N;
/* spatial size of computational grid */
float _Lx;
float _Lz;
float normalize_factor; // init w
float time;
short _do_disp_y;
short _do_normals;
short _do_chop;
short _do_jacobian;
/* mutex for threaded texture access */
ThreadRWMutex oceanmutex;
/* ********* sim data arrays ********* */
/* two dimensional arrays of complex */
fftw_complex *_fft_in; // init w sim w
fftw_complex *_fft_in_x; // init w sim w
fftw_complex *_fft_in_z; // init w sim w
fftw_complex *_fft_in_jxx; // init w sim w
fftw_complex *_fft_in_jzz; // init w sim w
fftw_complex *_fft_in_jxz; // init w sim w
fftw_complex *_fft_in_nx; // init w sim w
fftw_complex *_fft_in_nz; // init w sim w
fftw_complex *_htilda; // init w sim w (only once)
/* fftw "plans" */
fftw_plan _disp_y_plan; // init w sim r
fftw_plan _disp_x_plan; // init w sim r
fftw_plan _disp_z_plan; // init w sim r
fftw_plan _N_x_plan; // init w sim r
fftw_plan _N_z_plan; // init w sim r
fftw_plan _Jxx_plan; // init w sim r
fftw_plan _Jxz_plan; // init w sim r
fftw_plan _Jzz_plan; // init w sim r
/* two dimensional arrays of float */
double * _disp_y; // init w sim w via plan?
double * _N_x; // init w sim w via plan?
/*float * _N_y; all member of this array has same values, so convert this array to a float to reduce memory usage (MEM01)*/
double _N_y; // sim w ********* can be rearranged?
double * _N_z; // init w sim w via plan?
double * _disp_x; // init w sim w via plan?
double * _disp_z; // init w sim w via plan?
/* two dimensional arrays of float */
/* Jacobian and minimum eigenvalue */
double * _Jxx; // init w sim w
double * _Jzz; // init w sim w
double * _Jxz; // init w sim w
/* one dimensional float array */
float * _kx; // init w sim r
float * _kz; // init w sim r
/* two dimensional complex array */
fftw_complex * _h0; // init w sim r
fftw_complex * _h0_minus; // init w sim r
/* two dimensional float array */
float * _k; // init w sim r
} Ocean;
static float nextfr(float min, float max)
{
return BLI_frand()*(min-max)+max;
}
static float gaussRand (void)
{
float x; // Note: to avoid numerical problems with very small
float y; // numbers, we make these variables singe-precision
float length2; // floats, but later we call the double-precision log()
// and sqrt() functions instead of logf() and sqrtf().
do
{
x = (float) (nextfr (-1, 1));
y = (float)(nextfr (-1, 1));
length2 = x * x + y * y;
}
while (length2 >= 1 || length2 == 0);
return x * sqrt (-2 * log (length2) / length2);
}
/**
* Som usefull functions
* */
MINLINE float lerp(float a,float b,float f)
{
return a + (b-a)*f;
}
MINLINE float catrom(float p0,float p1,float p2,float p3,float f)
{
return 0.5 *((2 * p1) +
(-p0 + p2) * f +
(2*p0 - 5*p1 + 4*p2 - p3) * f*f +
(-p0 + 3*p1- 3*p2 + p3) * f*f*f);
}
MINLINE float omega(float k, float depth)
{
return sqrt(GRAVITY*k * tanh(k*depth));
}
// modified Phillips spectrum
static float Ph(struct Ocean* o, float kx,float kz )
{
float tmp;
float k2 = kx*kx + kz*kz;
if (k2 == 0.0)
{
return 0.0; // no DC component
}
// damp out the waves going in the direction opposite the wind
tmp = (o->_wx * kx + o->_wz * kz)/sqrt(k2);
if (tmp < 0)
{
tmp *= o->_damp_reflections;
}
return o->_A * exp( -1.0f / (k2*(o->_L*o->_L))) * exp(-k2 * (o->_l*o->_l)) * pow(fabs(tmp),o->_wind_alignment) / (k2*k2);
}
static void compute_eigenstuff(struct OceanResult *ocr, float jxx,float jzz,float jxz)
{
float a,b,qplus,qminus;
a = jxx + jzz;
b = sqrt((jxx - jzz)*(jxx - jzz) + 4 * jxz * jxz);
ocr->Jminus = 0.5*(a-b);
ocr->Jplus = 0.5*(a+b);
qplus = (ocr->Jplus - jxx)/jxz;
qminus = (ocr->Jminus - jxx)/jxz;
a = sqrt(1 + qplus*qplus);
b = sqrt(1 + qminus*qminus);
ocr->Eplus[0] = 1.0/ a;
ocr->Eplus[1] = 0.0;
ocr->Eplus[2] = qplus/a;
ocr->Eminus[0] = 1.0/b;
ocr->Eminus[1] = 0.0;
ocr->Eminus[2] = qminus/b;
}
/*
* instead of Complex.h
* in fftw.h "fftw_complex" typedefed as double[2]
* below you can see functions are needed to work with such complex numbers.
* */
static void init_complex(fftw_complex cmpl, float real, float image)
{
cmpl[0] = real;
cmpl[1] = image;
}
#if 0 // unused
static void add_complex_f(fftw_complex res, fftw_complex cmpl, float f)
{
res[0] = cmpl[0] + f;
res[1] = cmpl[1];
}
#endif
static void add_comlex_c(fftw_complex res, fftw_complex cmpl1, fftw_complex cmpl2)
{
res[0] = cmpl1[0] + cmpl2[0];
res[1] = cmpl1[1] + cmpl2[1];
}
static void mul_complex_f(fftw_complex res, fftw_complex cmpl, float f)
{
res[0] = cmpl[0]*f;
res[1] = cmpl[1]*f;
}
static void mul_complex_c(fftw_complex res, fftw_complex cmpl1, fftw_complex cmpl2)
{
fftwf_complex temp;
temp[0] = cmpl1[0]*cmpl2[0]-cmpl1[1]*cmpl2[1];
temp[1] = cmpl1[0]*cmpl2[1]+cmpl1[1]*cmpl2[0];
res[0] = temp[0];
res[1] = temp[1];
}
static float real_c(fftw_complex cmpl)
{
return cmpl[0];
}
static float image_c(fftw_complex cmpl)
{
return cmpl[1];
}
static void conj_complex(fftw_complex res, fftw_complex cmpl1)
{
res[0] = cmpl1[0];
res[1] = -cmpl1[1];
}
static void exp_complex(fftw_complex res, fftw_complex cmpl)
{
float r = expf(cmpl[0]);
res[0] = cos(cmpl[1])*r;
res[1] = sin(cmpl[1])*r;
}
float BKE_ocean_jminus_to_foam(float jminus, float coverage) {
float foam = jminus * -0.005 + coverage;
CLAMP(foam, 0.0, 1.0);
return foam*foam;
}
void BKE_ocean_eval_uv(struct Ocean *oc, struct OceanResult *ocr, float u,float v)
{
int i0,i1,j0,j1;
float frac_x,frac_z;
float uu,vv;
// first wrap the texture so 0 <= (u,v) < 1
u = fmod(u,1.0f);
v = fmod(v,1.0f);
if (u < 0) u += 1.0f;
if (v < 0) v += 1.0f;
BLI_rw_mutex_lock(&oc->oceanmutex, THREAD_LOCK_READ);
uu = u * oc->_M;
vv = v * oc->_N;
i0 = (int)floor(uu);
j0 = (int)floor(vv);
i1 = (i0 + 1);
j1 = (j0 + 1);
frac_x = uu - i0;
frac_z = vv - j0;
i0 = i0 % oc->_M;
j0 = j0 % oc->_N;
i1 = i1 % oc->_M;
j1 = j1 % oc->_N;
#define BILERP(m) (lerp(lerp(m[i0*oc->_N+j0],m[i1*oc->_N+j0],frac_x),lerp(m[i0*oc->_N+j1],m[i1*oc->_N+j1],frac_x),frac_z))
{
if (oc->_do_disp_y) {
ocr->disp[1] = BILERP(oc->_disp_y);
}
if (oc->_do_normals) {
ocr->normal[0] = BILERP(oc->_N_x);
ocr->normal[1] = oc->_N_y/*BILERP(oc->_N_y) (MEM01)*/;
ocr->normal[2] = BILERP(oc->_N_z);
}
if (oc->_do_chop) {
ocr->disp[0] = BILERP(oc->_disp_x);
ocr->disp[2] = BILERP(oc->_disp_z);
} else {
ocr->disp[0] = 0.0;
ocr->disp[2] = 0.0;
}
if (oc->_do_jacobian) {
compute_eigenstuff(ocr, BILERP(oc->_Jxx),BILERP(oc->_Jzz),BILERP(oc->_Jxz));
}
}
#undef BILERP
BLI_rw_mutex_unlock(&oc->oceanmutex);
}
// use catmullrom interpolation rather than linear
void BKE_ocean_eval_uv_catrom(struct Ocean *oc, struct OceanResult *ocr, float u,float v)
{
int i0,i1,i2,i3,j0,j1,j2,j3;
float frac_x,frac_z;
float uu,vv;
// first wrap the texture so 0 <= (u,v) < 1
u = fmod(u,1.0f);
v = fmod(v,1.0f);
if (u < 0) u += 1.0f;
if (v < 0) v += 1.0f;
BLI_rw_mutex_lock(&oc->oceanmutex, THREAD_LOCK_READ);
uu = u * oc->_M;
vv = v * oc->_N;
i1 = (int)floor(uu);
j1 = (int)floor(vv);
i2 = (i1 + 1);
j2 = (j1 + 1);
frac_x = uu - i1;
frac_z = vv - j1;
i1 = i1 % oc->_M;
j1 = j1 % oc->_N;
i2 = i2 % oc->_M;
j2 = j2 % oc->_N;
i0 = (i1-1);
i3 = (i2+1);
i0 = i0 < 0 ? i0 + oc->_M : i0;
i3 = i3 >= oc->_M ? i3 - oc->_M : i3;
j0 = (j1-1);
j3 = (j2+1);
j0 = j0 < 0 ? j0 + oc->_N : j0;
j3 = j3 >= oc->_N ? j3 - oc->_N : j3;
#define INTERP(m) catrom(catrom(m[i0*oc->_N+j0],m[i1*oc->_N+j0],m[i2*oc->_N+j0],m[i3*oc->_N+j0],frac_x),\
catrom(m[i0*oc->_N+j1],m[i1*oc->_N+j1],m[i2*oc->_N+j1],m[i3*oc->_N+j1],frac_x),\
catrom(m[i0*oc->_N+j2],m[i1*oc->_N+j2],m[i2*oc->_N+j2],m[i3*oc->_N+j2],frac_x),\
catrom(m[i0*oc->_N+j3],m[i1*oc->_N+j3],m[i2*oc->_N+j3],m[i3*oc->_N+j3],frac_x),\
frac_z)
{
if (oc->_do_disp_y)
{
ocr->disp[1] = INTERP(oc->_disp_y) ;
}
if (oc->_do_normals)
{
ocr->normal[0] = INTERP(oc->_N_x);
ocr->normal[1] = oc->_N_y/*INTERP(oc->_N_y) (MEM01)*/;
ocr->normal[2] = INTERP(oc->_N_z);
}
if (oc->_do_chop)
{
ocr->disp[0] = INTERP(oc->_disp_x);
ocr->disp[2] = INTERP(oc->_disp_z);
}
else
{
ocr->disp[0] = 0.0;
ocr->disp[2] = 0.0;
}
if (oc->_do_jacobian)
{
compute_eigenstuff(ocr, INTERP(oc->_Jxx),INTERP(oc->_Jzz),INTERP(oc->_Jxz));
}
}
#undef INTERP
BLI_rw_mutex_unlock(&oc->oceanmutex);
}
void BKE_ocean_eval_xz(struct Ocean *oc, struct OceanResult *ocr, float x,float z)
{
BKE_ocean_eval_uv(oc, ocr, x/oc->_Lx,z/oc->_Lz);
}
void BKE_ocean_eval_xz_catrom(struct Ocean *oc, struct OceanResult *ocr, float x,float z)
{
BKE_ocean_eval_uv_catrom(oc, ocr, x/oc->_Lx,z/oc->_Lz);
}
// note that this doesn't wrap properly for i,j < 0, but its
// not really meant for that being just a way to get the raw data out
// to save in some image format.
void BKE_ocean_eval_ij(struct Ocean *oc, struct OceanResult *ocr, int i,int j)
{
BLI_rw_mutex_lock(&oc->oceanmutex, THREAD_LOCK_READ);
i = abs(i) % oc->_M;
j = abs(j) % oc->_N;
ocr->disp[1] = oc->_do_disp_y ? oc->_disp_y[i*oc->_N+j] : 0.0f;
if (oc->_do_chop)
{
ocr->disp[0] = oc->_disp_x[i*oc->_N+j];
ocr->disp[2] = oc->_disp_z[i*oc->_N+j];
}
else
{
ocr->disp[0] = 0.0f;
ocr->disp[2] = 0.0f;
}
if (oc->_do_normals)
{
ocr->normal[0] = oc->_N_x[i*oc->_N+j];
ocr->normal[1] = oc->_N_y/*oc->_N_y[i*oc->_N+j] (MEM01)*/;
ocr->normal[2] = oc->_N_z[i*oc->_N+j];
}
if (oc->_do_jacobian)
{
compute_eigenstuff(ocr, oc->_Jxx[i*oc->_N+j],oc->_Jzz[i*oc->_N+j],oc->_Jxz[i*oc->_N+j]);
}
BLI_rw_mutex_unlock(&oc->oceanmutex);
}
void BKE_simulate_ocean(struct Ocean *o, float t, float scale, float chop_amount)
{
int i, j;
scale *= o->normalize_factor;
BLI_rw_mutex_lock(&o->oceanmutex, THREAD_LOCK_WRITE);
// compute a new htilda
#pragma omp parallel for private(i, j)
for (i = 0 ; i < o->_M ; ++i)
{
// note the <= _N/2 here, see the fftw doco about
// the mechanics of the complex->real fft storage
for ( j = 0 ; j <= o->_N / 2 ; ++j)
{
fftw_complex exp_param1;
fftw_complex exp_param2;
fftw_complex conj_param;
init_complex(exp_param1, 0.0, omega(o->_k[i*(1+o->_N/2)+j],o->_depth)*t);
init_complex(exp_param2, 0.0, -omega(o->_k[i*(1+o->_N/2)+j],o->_depth)*t);
exp_complex(exp_param1, exp_param1);
exp_complex(exp_param2, exp_param2);
conj_complex(conj_param, o->_h0_minus[i*o->_N+j]);
mul_complex_c(exp_param1, o->_h0[i*o->_N+j], exp_param1);
mul_complex_c(exp_param2, conj_param, exp_param2);
add_comlex_c(o->_htilda[i*(1+o->_N/2)+j], exp_param1, exp_param2);
mul_complex_f(o->_fft_in[i*(1+o->_N/2)+j], o->_htilda[i*(1+o->_N/2)+j], scale);
}
}
#pragma omp parallel sections private(i, j)
{
#pragma omp section
{
if (o->_do_disp_y)
{
// y displacement
fftw_execute(o->_disp_y_plan);
}
} // section 1
#pragma omp section
{
if (o->_do_chop)
{
// x displacement
for ( i = 0 ; i < o->_M ; ++i)
{
for ( j = 0 ; j <= o->_N / 2 ; ++j)
{
fftw_complex mul_param;
fftw_complex minus_i;
init_complex(minus_i, 0.0, -1.0);
init_complex(mul_param, -scale, 0);
mul_complex_f(mul_param, mul_param, chop_amount);
mul_complex_c(mul_param, mul_param, minus_i);
mul_complex_c(mul_param, mul_param, o->_htilda[i*(1+o->_N/2)+j]);
mul_complex_f(mul_param, mul_param, (o->_k[i*(1+o->_N/2)+j] == 0.0 ? 0.0 : o->_kx[i] / o->_k[i*(1+o->_N/2)+j]));
init_complex(o->_fft_in_x[i*(1+o->_N/2)+j], real_c(mul_param), image_c(mul_param));
}
}
fftw_execute(o->_disp_x_plan);
}
} //section 2
#pragma omp section
{
if (o->_do_chop)
{
// z displacement
for ( i = 0 ; i < o->_M ; ++i)
{
for ( j = 0 ; j <= o->_N / 2 ; ++j)
{
fftw_complex mul_param;
fftw_complex minus_i;
init_complex(minus_i, 0.0, -1.0);
init_complex(mul_param, -scale, 0);
mul_complex_f(mul_param, mul_param, chop_amount);
mul_complex_c(mul_param, mul_param, minus_i);
mul_complex_c(mul_param, mul_param, o->_htilda[i*(1+o->_N/2)+j]);
mul_complex_f(mul_param, mul_param, (o->_k[i*(1+o->_N/2)+j] == 0.0 ? 0.0 : o->_kz[j] / o->_k[i*(1+o->_N/2)+j]));
init_complex(o->_fft_in_z[i*(1+o->_N/2)+j], real_c(mul_param), image_c(mul_param));
}
}
fftw_execute(o->_disp_z_plan);
}
} // section 3
#pragma omp section
{
if (o->_do_jacobian)
{
// Jxx
for ( i = 0 ; i < o->_M ; ++i)
{
for ( j = 0 ; j <= o->_N / 2 ; ++j)
{
fftw_complex mul_param;
//init_complex(mul_param, -scale, 0);
init_complex(mul_param, -1, 0);
mul_complex_f(mul_param, mul_param, chop_amount);
mul_complex_c(mul_param, mul_param, o->_htilda[i*(1+o->_N/2)+j]);
mul_complex_f(mul_param, mul_param, (o->_k[i*(1+o->_N/2)+j] == 0.0 ? 0.0 : o->_kx[i]*o->_kx[i] / o->_k[i*(1+o->_N/2)+j]));
init_complex(o->_fft_in_jxx[i*(1+o->_N/2)+j], real_c(mul_param), image_c(mul_param));
}
}
fftw_execute(o->_Jxx_plan);
for ( i = 0 ; i < o->_M ; ++i)
{
for ( j = 0 ; j < o->_N ; ++j)
{
o->_Jxx[i*o->_N+j] += 1.0;
}
}
}
} // section 4
#pragma omp section
{
if (o->_do_jacobian)
{
// Jzz
for ( i = 0 ; i < o->_M ; ++i)
{
for ( j = 0 ; j <= o->_N / 2 ; ++j)
{
fftw_complex mul_param;
//init_complex(mul_param, -scale, 0);
init_complex(mul_param, -1, 0);
mul_complex_f(mul_param, mul_param, chop_amount);
mul_complex_c(mul_param, mul_param, o->_htilda[i*(1+o->_N/2)+j]);
mul_complex_f(mul_param, mul_param, (o->_k[i*(1+o->_N/2)+j] == 0.0 ? 0.0 : o->_kz[j]*o->_kz[j] / o->_k[i*(1+o->_N/2)+j]));
init_complex(o->_fft_in_jzz[i*(1+o->_N/2)+j], real_c(mul_param), image_c(mul_param));
}
}
fftw_execute(o->_Jzz_plan);
for ( i = 0 ; i < o->_M ; ++i)
{
for ( j = 0 ; j < o->_N ; ++j)
{
o->_Jzz[i*o->_N+j] += 1.0;
}
}
}
} // section 5
#pragma omp section
{
if (o->_do_jacobian)
{
// Jxz
for ( i = 0 ; i < o->_M ; ++i)
{
for ( j = 0 ; j <= o->_N / 2 ; ++j)
{
fftw_complex mul_param;
//init_complex(mul_param, -scale, 0);
init_complex(mul_param, -1, 0);
mul_complex_f(mul_param, mul_param, chop_amount);
mul_complex_c(mul_param, mul_param, o->_htilda[i*(1+o->_N/2)+j]);
mul_complex_f(mul_param, mul_param, (o->_k[i*(1+o->_N/2)+j] == 0.0 ? 0.0 : o->_kx[i]*o->_kz[j] / o->_k[i*(1+o->_N/2)+j]));
init_complex(o->_fft_in_jxz[i*(1+o->_N/2)+j], real_c(mul_param), image_c(mul_param));
}
}
fftw_execute(o->_Jxz_plan);
}
} // section 6
#pragma omp section
{
// fft normals
if (o->_do_normals)
{
for ( i = 0 ; i < o->_M ; ++i)
{
for ( j = 0 ; j <= o->_N / 2 ; ++j)
{
fftw_complex mul_param;
init_complex(mul_param, 0.0, -1.0);
mul_complex_c(mul_param, mul_param, o->_htilda[i*(1+o->_N/2)+j]);
mul_complex_f(mul_param, mul_param, o->_kx[i]);
init_complex(o->_fft_in_nx[i*(1+o->_N/2)+j], real_c(mul_param), image_c(mul_param));
}
}
fftw_execute(o->_N_x_plan);
}
} // section 7
#pragma omp section
{
if (o->_do_normals)
{
for ( i = 0 ; i < o->_M ; ++i)
{
for ( j = 0 ; j <= o->_N / 2 ; ++j)
{
fftw_complex mul_param;
init_complex(mul_param, 0.0, -1.0);
mul_complex_c(mul_param, mul_param, o->_htilda[i*(1+o->_N/2)+j]);
mul_complex_f(mul_param, mul_param, o->_kz[i]);
init_complex(o->_fft_in_nz[i*(1+o->_N/2)+j], real_c(mul_param), image_c(mul_param));
}
}
fftw_execute(o->_N_z_plan);
/*for ( i = 0 ; i < o->_M ; ++i)
{
for ( j = 0 ; j < o->_N ; ++j)
{
o->_N_y[i*o->_N+j] = 1.0f/scale;
}
}
(MEM01)*/
o->_N_y = 1.0f/scale;
}
} // section 8
} // omp sections
BLI_rw_mutex_unlock(&o->oceanmutex);
}
static void set_height_normalize_factor(struct Ocean *oc)
{
float res = 1.0;
float max_h = 0.0;
int i,j;
if (!oc->_do_disp_y) return;
oc->normalize_factor = 1.0;
BKE_simulate_ocean(oc, 0.0, 1.0, 0);
BLI_rw_mutex_lock(&oc->oceanmutex, THREAD_LOCK_READ);
for (i = 0; i < oc->_M; ++i)
{
for (j = 0; j < oc->_N; ++j)
{
if( max_h < fabsf(oc->_disp_y[i*oc->_N+j]))
{
max_h = fabsf(oc->_disp_y[i*oc->_N+j]);
}
}
}
BLI_rw_mutex_unlock(&oc->oceanmutex);
if (max_h == 0.0) max_h = 0.00001f; // just in case ...
res = 1.0f / (max_h);
oc->normalize_factor = res;
}
struct Ocean *BKE_add_ocean(void)
{
Ocean *oc = MEM_callocN(sizeof(Ocean), "ocean sim data");
BLI_rw_mutex_init(&oc->oceanmutex);
return oc;
}
void BKE_init_ocean(struct Ocean* o, int M,int N, float Lx, float Lz, float V, float l, float A, float w, float damp,
float alignment, float depth, float time, short do_height_field, short do_chop, short do_normals, short do_jacobian, int seed)
{
int i,j,ii;
BLI_rw_mutex_lock(&o->oceanmutex, THREAD_LOCK_WRITE);
o->_M = M;
o->_N = N;
o->_V = V;
o->_l = l;
o->_A = A;
o->_w = w;
o->_damp_reflections = 1.0 - damp;
o->_wind_alignment = alignment;
o->_depth = depth;
o->_Lx = Lx;
o->_Lz = Lz;
o->_wx = cos(w);
o->_wz = -sin(w); // wave direction
o->_L = V*V / GRAVITY; // largest wave for a given velocity V
o->time = time;
o->_do_disp_y = do_height_field;
o->_do_normals = do_normals;
o->_do_chop = do_chop;
o->_do_jacobian = do_jacobian;
o->_k = (float*) MEM_mallocN(M * (1+N/2) * sizeof(float), "ocean_k");
o->_h0 = (fftw_complex*) MEM_mallocN(M * N * sizeof(fftw_complex), "ocean_h0");
o->_h0_minus = (fftw_complex*) MEM_mallocN(M * N * sizeof(fftw_complex), "ocean_h0_minus");
o->_kx = (float*) MEM_mallocN(o->_M * sizeof(float), "ocean_kx");
o->_kz = (float*) MEM_mallocN(o->_N * sizeof(float), "ocean_kz");
// make this robust in the face of erroneous usage
if (o->_Lx == 0.0)
o->_Lx = 0.001;
if (o->_Lz == 0.0)
o->_Lz = 0.001;
// the +ve components and DC
for (i = 0 ; i <= o->_M/2 ; ++i)
o->_kx[i] = 2.0f * M_PI * i / o->_Lx;
// the -ve components
for (i = o->_M-1,ii=0 ; i > o->_M/2 ; --i,++ii)
o->_kx[i] = -2.0f * M_PI * ii / o->_Lx;
// the +ve components and DC
for (i = 0 ; i <= o->_N/2 ; ++i)
o->_kz[i] = 2.0f * M_PI * i / o->_Lz;
// the -ve components
for (i = o->_N-1,ii=0 ; i > o->_N/2 ; --i,++ii)
o->_kz[i] = -2.0f * M_PI * ii / o->_Lz;
// pre-calculate the k matrix
for (i = 0 ; i < o->_M ; ++i)
for (j = 0 ; j <= o->_N / 2 ; ++j)
o->_k[i*(1+o->_N/2)+j] = sqrt(o->_kx[i]*o->_kx[i] + o->_kz[j]*o->_kz[j] );
/*srand(seed);*/
BLI_srand(seed);
for (i = 0 ; i < o->_M ; ++i)
{
for (j = 0 ; j < o->_N ; ++j)
{
float r1 = gaussRand();
float r2 = gaussRand();
fftw_complex r1r2;
init_complex(r1r2, r1, r2);
mul_complex_f(o->_h0[i*o->_N+j], r1r2, (float)(sqrt(Ph(o, o->_kx[i], o->_kz[j]) / 2.0f)));
mul_complex_f(o->_h0_minus[i*o->_N+j], r1r2, (float)(sqrt(Ph(o, -o->_kx[i],-o->_kz[j]) / 2.0f)));
}
}
o->_fft_in = (fftw_complex*) MEM_mallocN(o->_M * (1+o->_N/2) * sizeof(fftw_complex), "ocean_fft_in");
o->_htilda = (fftw_complex*) MEM_mallocN(o->_M * (1+o->_N/2) * sizeof(fftw_complex), "ocean_htilda");
if (o->_do_disp_y){
o->_disp_y = (double*) MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_disp_y");
o->_disp_y_plan = fftw_plan_dft_c2r_2d(o->_M,o->_N, o->_fft_in, o->_disp_y, FFTW_ESTIMATE);
}
if (o->_do_normals){
o->_fft_in_nx = (fftw_complex*) MEM_mallocN(o->_M * (1+o->_N/2) * sizeof(fftw_complex), "ocean_fft_in_nx");
o->_fft_in_nz = (fftw_complex*) MEM_mallocN(o->_M * (1+o->_N/2) * sizeof(fftw_complex), "ocean_fft_in_nz");
o->_N_x = (double*) MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_N_x");
/*o->_N_y = (float*) fftwf_malloc(o->_M * o->_N * sizeof(float)); (MEM01)*/
o->_N_z = (double*) MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_N_z");
o->_N_x_plan = fftw_plan_dft_c2r_2d(o->_M,o->_N, o->_fft_in_nx, o->_N_x, FFTW_ESTIMATE);
o->_N_z_plan = fftw_plan_dft_c2r_2d(o->_M,o->_N, o->_fft_in_nz, o->_N_z, FFTW_ESTIMATE);
}
if (o->_do_chop){
o->_fft_in_x = (fftw_complex*) MEM_mallocN(o->_M * (1+o->_N/2) * sizeof(fftw_complex), "ocean_fft_in_x");
o->_fft_in_z = (fftw_complex*) MEM_mallocN(o->_M * (1+o->_N/2) * sizeof(fftw_complex), "ocean_fft_in_z");
o->_disp_x = (double*) MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_disp_x");
o->_disp_z = (double*) MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_disp_z");
o->_disp_x_plan = fftw_plan_dft_c2r_2d(o->_M,o->_N, o->_fft_in_x, o->_disp_x, FFTW_ESTIMATE);
o->_disp_z_plan = fftw_plan_dft_c2r_2d(o->_M,o->_N, o->_fft_in_z, o->_disp_z, FFTW_ESTIMATE);
}
if (o->_do_jacobian){
o->_fft_in_jxx = (fftw_complex*) MEM_mallocN(o->_M * (1+o->_N/2) * sizeof(fftw_complex), "ocean_fft_in_jxx");
o->_fft_in_jzz = (fftw_complex*) MEM_mallocN(o->_M * (1+o->_N/2) * sizeof(fftw_complex), "ocean_fft_in_jzz");
o->_fft_in_jxz = (fftw_complex*) MEM_mallocN(o->_M * (1+o->_N/2) * sizeof(fftw_complex), "ocean_fft_in_jxz");
o->_Jxx = (double*) MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_Jxx");
o->_Jzz = (double*) MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_Jzz");
o->_Jxz = (double*) MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_Jxz");
o->_Jxx_plan = fftw_plan_dft_c2r_2d(o->_M,o->_N, o->_fft_in_jxx, o->_Jxx, FFTW_ESTIMATE);
o->_Jzz_plan = fftw_plan_dft_c2r_2d(o->_M,o->_N, o->_fft_in_jzz, o->_Jzz, FFTW_ESTIMATE);
o->_Jxz_plan = fftw_plan_dft_c2r_2d(o->_M,o->_N, o->_fft_in_jxz, o->_Jxz, FFTW_ESTIMATE);
}
BLI_rw_mutex_unlock(&o->oceanmutex);
set_height_normalize_factor(o);
}
void BKE_free_ocean_data(struct Ocean *oc)
{
if(!oc) return;
BLI_rw_mutex_lock(&oc->oceanmutex, THREAD_LOCK_WRITE);
if (oc->_do_disp_y)
{
fftw_destroy_plan(oc->_disp_y_plan);
MEM_freeN(oc->_disp_y);
}
if (oc->_do_normals)
{
MEM_freeN(oc->_fft_in_nx);
MEM_freeN(oc->_fft_in_nz);
fftw_destroy_plan(oc->_N_x_plan);
fftw_destroy_plan(oc->_N_z_plan);
MEM_freeN(oc->_N_x);
/*fftwf_free(oc->_N_y); (MEM01)*/
MEM_freeN(oc->_N_z);
}
if (oc->_do_chop)
{
MEM_freeN(oc->_fft_in_x);
MEM_freeN(oc->_fft_in_z);
fftw_destroy_plan(oc->_disp_x_plan);
fftw_destroy_plan(oc->_disp_z_plan);
MEM_freeN(oc->_disp_x);
MEM_freeN(oc->_disp_z);
}
if (oc->_do_jacobian)
{
MEM_freeN(oc->_fft_in_jxx);
MEM_freeN(oc->_fft_in_jzz);
MEM_freeN(oc->_fft_in_jxz);
fftw_destroy_plan(oc->_Jxx_plan);
fftw_destroy_plan(oc->_Jzz_plan);
fftw_destroy_plan(oc->_Jxz_plan);
MEM_freeN(oc->_Jxx);
MEM_freeN(oc->_Jzz);
MEM_freeN(oc->_Jxz);
}
if (oc->_fft_in)
MEM_freeN(oc->_fft_in);
/* check that ocean data has been initialised */
if (oc->_htilda) {
MEM_freeN(oc->_htilda);
MEM_freeN(oc->_k);
MEM_freeN(oc->_h0);
MEM_freeN(oc->_h0_minus);
MEM_freeN(oc->_kx);
MEM_freeN(oc->_kz);
}
BLI_rw_mutex_unlock(&oc->oceanmutex);
}
void BKE_free_ocean(struct Ocean *oc)
{
if(!oc) return;
BKE_free_ocean_data(oc);
BLI_rw_mutex_end(&oc->oceanmutex);
MEM_freeN(oc);
}
#undef GRAVITY
/* ********* Baking/Caching ********* */
#define CACHE_TYPE_DISPLACE 1
#define CACHE_TYPE_FOAM 2
#define CACHE_TYPE_NORMAL 3
static void cache_filename(char *string, char *path, int frame, int type)
{
char *cachepath=NULL;
switch(type) {
case CACHE_TYPE_FOAM:
cachepath = BLI_strdupcat(path, "foam_");
break;
case CACHE_TYPE_NORMAL:
cachepath = BLI_strdupcat(path, "normal_");
break;
case CACHE_TYPE_DISPLACE:
default:
cachepath = BLI_strdupcat(path, "disp_");
break;
}
BKE_makepicstring(string, cachepath, frame, R_OPENEXR, 1, TRUE);
MEM_freeN(cachepath);
}
void BKE_free_ocean_cache(struct OceanCache *och)
{
int i, f=0;
if (!och) return;
if (och->ibufs_disp) {
for (i=och->start, f=0; i<=och->end; i++, f++)
{
if (och->ibufs_disp[f]) {
IMB_freeImBuf(och->ibufs_disp[f]);
}
}
MEM_freeN(och->ibufs_disp);
}
if (och->ibufs_foam) {
for (i=och->start, f=0; i<=och->end; i++, f++)
{
if (och->ibufs_foam[f]) {
IMB_freeImBuf(och->ibufs_foam[f]);
}
}
MEM_freeN(och->ibufs_foam);
}
if (och->ibufs_norm) {
for (i=och->start, f=0; i<=och->end; i++, f++)
{
if (och->ibufs_norm[f]) {
IMB_freeImBuf(och->ibufs_norm[f]);
}
}
MEM_freeN(och->ibufs_norm);
}
if (och->time)
MEM_freeN(och->time);
MEM_freeN(och);
}
void BKE_ocean_cache_eval_uv(struct OceanCache *och, struct OceanResult *ocr, int f, float u, float v)
{
int res_x = och->resolution_x;
int res_y = och->resolution_y;
float result[4];
u = fmod(u, 1.0);
v = fmod(v, 1.0);
if (u < 0) u += 1.0f;
if (v < 0) v += 1.0f;
if (och->ibufs_disp[f]) {
ibuf_sample(och->ibufs_disp[f], u, v, (1.0/(float)res_x), (1.0/(float)res_y), result);
ocr->disp[0] = result[0];
ocr->disp[1] = result[1];
ocr->disp[2] = result[2];
}
if (och->ibufs_foam[f]) {
ibuf_sample(och->ibufs_foam[f], u, v, (1.0/(float)res_x), (1.0/(float)res_y), result);
ocr->foam = result[0];
}
if (och->ibufs_norm[f]) {
ibuf_sample(och->ibufs_norm[f], u, v, (1.0/(float)res_x), (1.0/(float)res_y), result);
ocr->normal[0] = result[0];
ocr->normal[1] = result[1];
ocr->normal[2] = result[2];
}
}
void BKE_ocean_cache_eval_ij(struct OceanCache *och, struct OceanResult *ocr, int f, int i, int j)
{
int res_x = och->resolution_x;
int res_y = och->resolution_y;
i = abs(i) % res_x;
j = abs(j) % res_y;
if (och->ibufs_disp[f]) {
ocr->disp[0] = och->ibufs_disp[f]->rect_float[4*(res_x*j + i) + 0];
ocr->disp[1] = och->ibufs_disp[f]->rect_float[4*(res_x*j + i) + 1];
ocr->disp[2] = och->ibufs_disp[f]->rect_float[4*(res_x*j + i) + 2];
}
if (och->ibufs_foam[f]) {
ocr->foam = och->ibufs_foam[f]->rect_float[4*(res_x*j + i) + 0];
}
if (och->ibufs_norm[f]) {
ocr->normal[0] = och->ibufs_norm[f]->rect_float[4*(res_x*j + i) + 0];
ocr->normal[1] = och->ibufs_norm[f]->rect_float[4*(res_x*j + i) + 1];
ocr->normal[2] = och->ibufs_norm[f]->rect_float[4*(res_x*j + i) + 2];
}
}
struct OceanCache *BKE_init_ocean_cache(char *bakepath, int start, int end, float wave_scale,
float chop_amount, float foam_coverage, float foam_fade, int resolution)
{
OceanCache *och = MEM_callocN(sizeof(OceanCache), "ocean cache data");
och->bakepath = bakepath;
och->start = start;
och->end = end;
och->duration = (end - start) + 1;
och->wave_scale = wave_scale;
och->chop_amount = chop_amount;
och->foam_coverage = foam_coverage;
och->foam_fade = foam_fade;
och->resolution_x = resolution*resolution;
och->resolution_y = resolution*resolution;
och->ibufs_disp = MEM_callocN(sizeof(ImBuf *)*och->duration, "displacement imbuf pointer array");
och->ibufs_foam = MEM_callocN(sizeof(ImBuf *)*och->duration, "foam imbuf pointer array");
och->ibufs_norm = MEM_callocN(sizeof(ImBuf *)*och->duration, "normal imbuf pointer array");
och->time = NULL;
return och;
}
void BKE_simulate_ocean_cache(struct OceanCache *och, int frame)
{
char string[FILE_MAX];
int f = frame;
/* ibufs array is zero based, but filenames are based on frame numbers */
/* still need to clamp frame numbers to valid range of images on disk though */
CLAMP(frame, och->start, och->end);
f = frame - och->start; // shift to 0 based
/* if image is already loaded in mem, return */
if (och->ibufs_disp[f] != NULL ) return;
cache_filename(string, och->bakepath, frame, CACHE_TYPE_DISPLACE);
och->ibufs_disp[f] = IMB_loadiffname(string, 0);
//if (och->ibufs_disp[f] == NULL) printf("error loading %s \n", string);
//else printf("loaded cache %s \n", string);
cache_filename(string, och->bakepath, frame, CACHE_TYPE_FOAM);
och->ibufs_foam[f] = IMB_loadiffname(string, 0);
//if (och->ibufs_foam[f] == NULL) printf("error loading %s \n", string);
//else printf("loaded cache %s \n", string);
cache_filename(string, och->bakepath, frame, CACHE_TYPE_NORMAL);
och->ibufs_norm[f] = IMB_loadiffname(string, 0);
//if (och->ibufs_norm[f] == NULL) printf("error loading %s \n", string);
//else printf("loaded cache %s \n", string);
}
void BKE_bake_ocean(struct Ocean *o, struct OceanCache *och, void (*update_cb)(void *, float progress, int *cancel), void *update_cb_data)
{
int f, i=0, x, y, cancel=0;
float progress;
OceanResult ocr;
ImBuf *ibuf_foam, *ibuf_disp, *ibuf_normal;
float *prev_foam;
int res_x = och->resolution_x;
int res_y = och->resolution_y;
char string[FILE_MAX];
if (!o) return;
prev_foam = MEM_callocN(res_x*res_y*sizeof(float), "previous frame foam bake data");
BLI_srand(0);
for (f=och->start, i=0; f<=och->end; f++, i++) {
/* create a new imbuf to store image for this frame */
ibuf_foam = IMB_allocImBuf(res_x, res_y, 32, IB_rectfloat);
ibuf_disp = IMB_allocImBuf(res_x, res_y, 32, IB_rectfloat);
ibuf_normal = IMB_allocImBuf(res_x, res_y, 32, IB_rectfloat);
ibuf_disp->profile = ibuf_foam->profile = ibuf_normal->profile = IB_PROFILE_LINEAR_RGB;
BKE_simulate_ocean(o, och->time[i], och->wave_scale, och->chop_amount);
/* add new foam */
for (y=0; y < res_y; y++) {
for (x=0; x < res_x; x++) {
float r, pr=0.0, foam_result;
float neg_disp, neg_eplus;
BKE_ocean_eval_ij(o, &ocr, x, y);
normalize_v3(ocr.normal);
/* foam */
ocr.foam = BKE_ocean_jminus_to_foam(ocr.Jminus, och->foam_coverage);
/* accumulate previous value for this cell */
if (i>0)
pr = prev_foam[res_x*y + x];
r = BLI_frand(); // randomly reduce foam
//pr = pr * och->foam_fade; // overall fade
// remember ocean coord sys is Y up!
// break up the foam where height (Y) is low (wave valley),
// and X and Z displacement is greatest
/*
vec[0] = ocr.disp[0];
vec[1] = ocr.disp[2];
hor_stretch = len_v2(vec);
CLAMP(hor_stretch, 0.0, 1.0);
*/
neg_disp = ocr.disp[1]<0.0?1.0+ocr.disp[1]:1.0;
neg_disp = neg_disp<0.0?0.0:neg_disp;
neg_eplus = ocr.Eplus[2]<0.0?1.0+ocr.Eplus[2]:1.0;
neg_eplus = neg_eplus<0.0?0.0:neg_eplus;
//if (ocr.disp[1] < 0.0 || r > och->foam_fade)
// pr *= och->foam_fade;
//pr = pr * (1.0 - hor_stretch) * ocr.disp[1];
//pr = pr * neg_disp * neg_eplus;
if (pr < 1.0) pr *=pr;
pr *= och->foam_fade * (0.75+neg_eplus*0.25);
foam_result = pr + ocr.foam;
prev_foam[res_x*y + x] = foam_result;
/* add to the image */
ibuf_disp->rect_float[4*(res_x*y + x) + 0] = ocr.disp[0];
ibuf_disp->rect_float[4*(res_x*y + x) + 1] = ocr.disp[1];
ibuf_disp->rect_float[4*(res_x*y + x) + 2] = ocr.disp[2];
ibuf_disp->rect_float[4*(res_x*y + x) + 3] = 1.0;
if (o->_do_jacobian) {
ibuf_foam->rect_float[4*(res_x*y + x) + 0] = foam_result;
ibuf_foam->rect_float[4*(res_x*y + x) + 1] = foam_result;
ibuf_foam->rect_float[4*(res_x*y + x) + 2] = foam_result;
ibuf_foam->rect_float[4*(res_x*y + x) + 3] = 1.0;
}
if (o->_do_normals) {
ibuf_normal->rect_float[4*(res_x*y + x) + 0] = ocr.normal[0];
ibuf_normal->rect_float[4*(res_x*y + x) + 1] = ocr.normal[1];
ibuf_normal->rect_float[4*(res_x*y + x) + 2] = ocr.normal[2];
ibuf_normal->rect_float[4*(res_x*y + x) + 3] = 1.0;
}
}
}
/* write the images */
cache_filename(string, och->bakepath, f, CACHE_TYPE_DISPLACE);
if(0 == BKE_write_ibuf(ibuf_disp, string, R_OPENEXR, R_OPENEXR_HALF, 2)) // 2 == ZIP exr codec
printf("Cannot save Displacement File Output to %s\n", string);
if (o->_do_jacobian) {
cache_filename(string, och->bakepath, f, CACHE_TYPE_FOAM);
if(0 == BKE_write_ibuf(ibuf_foam, string, R_OPENEXR, R_OPENEXR_HALF, 2)) // 2 == ZIP exr codec
printf("Cannot save Foam File Output to %s\n", string);
}
if (o->_do_normals) {
cache_filename(string, och->bakepath, f, CACHE_TYPE_NORMAL);
if(0 == BKE_write_ibuf(ibuf_normal, string, R_OPENEXR, R_OPENEXR_HALF, 2)) // 2 == ZIP exr codec
printf("Cannot save Normal File Output to %s\n", string);
}
IMB_freeImBuf(ibuf_disp);
IMB_freeImBuf(ibuf_foam);
IMB_freeImBuf(ibuf_normal);
progress = (f - och->start) / (float)och->duration;
update_cb(update_cb_data, progress, &cancel);
if (cancel) {
MEM_freeN(prev_foam);
return;
}
}
MEM_freeN(prev_foam);
och->baked = 1;
}
#else // WITH_OCEANSIM
/* stub */
typedef struct Ocean {
} Ocean;
float BKE_ocean_jminus_to_foam(float UNUSED(jminus), float UNUSED(coverage)) {
return 0.0f;
}
void BKE_ocean_eval_uv(struct Ocean *UNUSED(oc), struct OceanResult *UNUSED(ocr), float UNUSED(u),float UNUSED(v))
{
}
// use catmullrom interpolation rather than linear
void BKE_ocean_eval_uv_catrom(struct Ocean *UNUSED(oc), struct OceanResult *UNUSED(ocr), float UNUSED(u),float UNUSED(v))
{
}
void BKE_ocean_eval_xz(struct Ocean *UNUSED(oc), struct OceanResult *UNUSED(ocr), float UNUSED(x),float UNUSED(z))
{
}
void BKE_ocean_eval_xz_catrom(struct Ocean *UNUSED(oc), struct OceanResult *UNUSED(ocr), float UNUSED(x),float UNUSED(z))
{
}
void BKE_ocean_eval_ij(struct Ocean *UNUSED(oc), struct OceanResult *UNUSED(ocr), int UNUSED(i),int UNUSED(j))
{
}
void BKE_simulate_ocean(struct Ocean *UNUSED(o), float UNUSED(t), float UNUSED(scale), float UNUSED(chop_amount))
{
}
struct Ocean *BKE_add_ocean(void)
{
Ocean *oc = MEM_callocN(sizeof(Ocean), "ocean sim data");
return oc;
}
void BKE_init_ocean(struct Ocean* UNUSED(o), int UNUSED(M),int UNUSED(N), float UNUSED(Lx), float UNUSED(Lz), float UNUSED(V), float UNUSED(l), float UNUSED(A), float UNUSED(w), float UNUSED(damp),
float UNUSED(alignment), float UNUSED(depth), float UNUSED(time), short UNUSED(do_height_field), short UNUSED(do_chop), short UNUSED(do_normals), short UNUSED(do_jacobian), int UNUSED(seed))
{
}
void BKE_free_ocean_data(struct Ocean *UNUSED(oc))
{
}
void BKE_free_ocean(struct Ocean *oc)
{
if(!oc) return;
MEM_freeN(oc);
}
/* ********* Baking/Caching ********* */
void BKE_free_ocean_cache(struct OceanCache *och)
{
if (!och) return;
MEM_freeN(och);
}
void BKE_ocean_cache_eval_uv(struct OceanCache *UNUSED(och), struct OceanResult *UNUSED(ocr), int UNUSED(f), float UNUSED(u), float UNUSED(v))
{
}
void BKE_ocean_cache_eval_ij(struct OceanCache *UNUSED(och), struct OceanResult *UNUSED(ocr), int UNUSED(f), int UNUSED(i), int UNUSED(j))
{
}
struct OceanCache *BKE_init_ocean_cache(char *UNUSED(bakepath), int UNUSED(start), int UNUSED(end), float UNUSED(wave_scale),
float UNUSED(chop_amount), float UNUSED(foam_coverage), float UNUSED(foam_fade), int UNUSED(resolution))
{
OceanCache *och = MEM_callocN(sizeof(OceanCache), "ocean cache data");
return och;
}
void BKE_simulate_ocean_cache(struct OceanCache *UNUSED(och), int UNUSED(frame))
{
}
void BKE_bake_ocean(struct Ocean *UNUSED(o), struct OceanCache *UNUSED(och), void (*update_cb)(void *, float progress, int *cancel), void *UNUSED(update_cb_data))
{
/* unused */
(void)update_cb;
}
#endif // WITH_OCEANSIM