This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/draw/intern/draw_instance_data.h

63 lines
2.2 KiB
C++
Raw Normal View History

/*
2019-01-23 11:29:18 +11:00
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
2019-01-23 11:29:18 +11:00
* Copyright 2016, Blender Foundation.
* Contributor(s): Blender Institute
*
2019-01-23 11:29:18 +11:00
* ***** END GPL LICENSE BLOCK *****
*
*/
/** \file draw_instance_data.h
* \ingroup draw
*/
#ifndef __DRAW_INSTANCE_DATA_H__
#define __DRAW_INSTANCE_DATA_H__
#include "BLI_compiler_attrs.h"
#include "BLI_sys_types.h"
#include "GPU_batch.h"
#define MAX_INSTANCE_DATA_SIZE 64 /* Can be adjusted for more */
typedef struct DRWInstanceData DRWInstanceData;
typedef struct DRWInstanceDataList DRWInstanceDataList;
struct DRWShadingGroup;
void *DRW_instance_data_next(DRWInstanceData *idata);
DRWInstanceData *DRW_instance_data_request(
DRWInstanceDataList *idatalist, uint attrib_size);
Gawain: Refactor: VAOs caching AND use new VAOs manager. A major bottleneck of current implementation is the call to create_bindings() for basically every drawcalls. This is due to the VAO being tagged dirty when assigning a new shader to the Batch, defeating the purpose of the Batch (reuse it for drawing). Since managing hundreds of batches in DrawManager and DrawCache seems not fun enough to me, I prefered rewritting the batches itself. --- Batch changes --- For this to happen I needed to change the Instancing to be part of the Batch rather than being another batch supplied at drawtime. The Gwn_VertBuffers are copied from the batch to be instanciated and a new Gwn_VertBuffer is supplied for instancing attribs. This mean a VAO can be generated and cached for this instancing case. A Batch can be rendered with instancing, without instancing attribs and without the need for a new VAO using the GWN_batch_draw_range_ex with the force_instance parameter set to true. --- Draw manager changes --- The downside with this approach is that we must track the validity of the instanced batch (the original one). For this the only way (I could think of) is to set a callback for when the batch is getting free. This means a bit of refactor in the DrawManager with the separation of batching and instancing Batches. --- VAO cache --- Each VAO is generated for a given ShaderInterface. This means we can keep it alive as long as the shader interface lives. If a ShaderInterface is discarded, it needs to destroy every VAO associated to it. Otherwise, a new ShaderInterface with the same adress could be generated and reuse the same VAO with incorrect bindings. The VAO cache itself is using a mix between a static array of VAO and a dynamic array if the is not enough space in the static. Using this hybrid approach is a bit more performant than the dynamic array alone. The array will not resize down but empty entries will be filled up again. It's unlikely we get a buffer overflow from this. Resizing could be done on next allocation if needed. --- Results --- Using Cached VAOs means that we are not querying each vertex attrib for each vbo for each drawcall, every redraw! In a CPU limited test scene (10000 cubes in Clay engine) I get a reduction of CPU drawing time from ~20ms to 13ms. The only area that is not caching VAOs is the instancing from particles (see comment DRW_shgroup_instance_batch).
2018-02-20 01:55:19 +01:00
void DRW_batching_buffer_request(
DRWInstanceDataList *idatalist, GPUVertFormat *format, GPUPrimType type, struct DRWShadingGroup *shgroup,
GPUBatch **r_batch, GPUVertBuf **r_vert);
Gawain: Refactor: VAOs caching AND use new VAOs manager. A major bottleneck of current implementation is the call to create_bindings() for basically every drawcalls. This is due to the VAO being tagged dirty when assigning a new shader to the Batch, defeating the purpose of the Batch (reuse it for drawing). Since managing hundreds of batches in DrawManager and DrawCache seems not fun enough to me, I prefered rewritting the batches itself. --- Batch changes --- For this to happen I needed to change the Instancing to be part of the Batch rather than being another batch supplied at drawtime. The Gwn_VertBuffers are copied from the batch to be instanciated and a new Gwn_VertBuffer is supplied for instancing attribs. This mean a VAO can be generated and cached for this instancing case. A Batch can be rendered with instancing, without instancing attribs and without the need for a new VAO using the GWN_batch_draw_range_ex with the force_instance parameter set to true. --- Draw manager changes --- The downside with this approach is that we must track the validity of the instanced batch (the original one). For this the only way (I could think of) is to set a callback for when the batch is getting free. This means a bit of refactor in the DrawManager with the separation of batching and instancing Batches. --- VAO cache --- Each VAO is generated for a given ShaderInterface. This means we can keep it alive as long as the shader interface lives. If a ShaderInterface is discarded, it needs to destroy every VAO associated to it. Otherwise, a new ShaderInterface with the same adress could be generated and reuse the same VAO with incorrect bindings. The VAO cache itself is using a mix between a static array of VAO and a dynamic array if the is not enough space in the static. Using this hybrid approach is a bit more performant than the dynamic array alone. The array will not resize down but empty entries will be filled up again. It's unlikely we get a buffer overflow from this. Resizing could be done on next allocation if needed. --- Results --- Using Cached VAOs means that we are not querying each vertex attrib for each vbo for each drawcall, every redraw! In a CPU limited test scene (10000 cubes in Clay engine) I get a reduction of CPU drawing time from ~20ms to 13ms. The only area that is not caching VAOs is the instancing from particles (see comment DRW_shgroup_instance_batch).
2018-02-20 01:55:19 +01:00
void DRW_instancing_buffer_request(
DRWInstanceDataList *idatalist, GPUVertFormat *format, GPUBatch *instance, struct DRWShadingGroup *shgroup,
GPUBatch **r_batch, GPUVertBuf **r_vert);
/* Upload all instance data to the GPU as soon as possible. */
void DRW_instance_buffer_finish(DRWInstanceDataList *idatalist);
void DRW_instance_data_list_reset(DRWInstanceDataList *idatalist);
void DRW_instance_data_list_free_unused(DRWInstanceDataList *idatalist);
void DRW_instance_data_list_resize(DRWInstanceDataList *idatalist);
#endif /* __DRAW_INSTANCE_DATA_H__ */