This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/object_dupli.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1632 lines
48 KiB
C++
Raw Normal View History

Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup bke
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
*/
#include <climits>
#include <cstddef>
#include <cstdlib>
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
#include "MEM_guardedalloc.h"
#include "BLI_listbase.h"
#include "BLI_string_utf8.h"
#include "BLI_array.hh"
#include "BLI_float3.hh"
#include "BLI_float4x4.hh"
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
#include "BLI_math.h"
#include "BLI_rand.h"
#include "BLI_span.hh"
#include "BLI_vector.hh"
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
#include "DNA_anim_types.h"
#include "DNA_collection_types.h"
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_pointcloud_types.h"
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
#include "DNA_scene_types.h"
#include "DNA_vfont_types.h"
Collections and groups unification OVERVIEW * In 2.7 terminology, all layers and groups are now collection datablocks. * These collections are nestable, linkable, instanceable, overrideable, .. which opens up new ways to set up scenes and link + override data. * Viewport/render visibility and selectability are now a part of the collection and shared across all view layers and linkable. * View layers define which subset of the scene collection hierarchy is excluded for each. For many workflows one view layer can be used, these are more of an advanced feature now. OUTLINER * The outliner now has a "View Layer" display mode instead of "Collections", which can display the collections and/or objects in the view layer. * In this display mode, collections can be excluded with the right click menu. These will then be greyed out and their objects will be excluded. * To view collections not linked to any scene, the "Blender File" display mode can be used, with the new filtering option to just see Colleciton datablocks. * The outliner right click menus for collections and objects were reorganized. * Drag and drop still needs to be improved. Like before, dragging the icon or text gives different results, we'll unify this later. LINKING AND OVERRIDES * Collections can now be linked into the scene without creating an instance, with the link/append operator or from the collections view in the outliner. * Collections can get static overrides with the right click menu in the outliner, but this is rather unreliable and not clearly communicated at the moment. * We still need to improve the make override operator to turn collection instances into collections with overrides directly in the scene. PERFORMANCE * We tried to make performance not worse than before and improve it in some cases. The main thing that's still a bit slower is multiple scenes, we have to change the layer syncing to only updated affected scenes. * Collections keep a list of their parent collections for faster incremental updates in syncing and caching. * View layer bases are now in a object -> base hash to avoid quadratic time lookups internally and in API functions like visible_get(). VERSIONING * Compatibility with 2.7 files should be improved due to the new visibility controls. Of course users may not want to set up their scenes differently now to avoid having separate layers and groups. * Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero files. There's a few things which are know to be not quite compatible, like nested layer collections inside groups. * The versioning code for 2.8 files is quite complicated, and isolated behind #ifdef so it can be removed at the end of the release cycle. KNOWN ISSUES * The G-key group operators in the 3D viewport were left mostly as is, they need to be modified still to fit better. * Same for the groups panel in the object properties. This needs to be updated still, or perhaps replaced by something better. * Collections must all have a unique name. Less restrictive namespacing is to be done later, we'll have to see how important this is as all objects within the collections must also have a unique name anyway. * Full scene copy and delete scene are exactly doing the right thing yet. Differential Revision: https://developer.blender.org/D3383 https://code.blender.org/2018/05/collections-and-groups/
2018-04-30 15:57:22 +02:00
#include "BKE_collection.h"
#include "BKE_duplilist.h"
#include "BKE_editmesh.h"
#include "BKE_editmesh_cache.h"
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
#include "BKE_font.h"
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
#include "BKE_geometry_set.h"
#include "BKE_geometry_set.hh"
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
#include "BKE_global.h"
#include "BKE_idprop.h"
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
#include "BKE_lattice.h"
#include "BKE_main.h"
#include "BKE_mesh.h"
#include "BKE_mesh_iterators.h"
#include "BKE_mesh_runtime.h"
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
#include "BKE_object.h"
#include "BKE_particle.h"
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
#include "BKE_scene.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_query.h"
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
#include "BLI_hash.h"
#include "BLI_strict_flags.h"
using blender::Array;
using blender::float3;
using blender::float4x4;
using blender::Span;
using blender::Vector;
/* -------------------------------------------------------------------- */
/** \name Internal Duplicate Context
* \{ */
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
struct DupliContext {
Depsgraph *depsgraph;
/** XXX child objects are selected from this group if set, could be nicer. */
Collection *collection;
/** Only to check if the object is in edit-mode. */
Object *obedit;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
Scene *scene;
ViewLayer *view_layer;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
Object *object;
float space_mat[4][4];
/**
* A stack that contains all the "parent" objects of a particular instance when recursive
* instancing is used. This is used to prevent objects from instancing themselves accidentally.
* Use a vector instead of a stack because we want to use the #contains method.
*/
Vector<Object *> *instance_stack;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
int persistent_id[MAX_DUPLI_RECUR];
int level;
const struct DupliGenerator *gen;
/** Result containers. */
ListBase *duplilist; /* Legacy doubly-linked list. */
};
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
struct DupliGenerator {
short type; /* Dupli Type, see members of #OB_DUPLI. */
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
void (*make_duplis)(const DupliContext *ctx);
};
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
static const DupliGenerator *get_dupli_generator(const DupliContext *ctx);
/**
* Create initial context for root object.
*/
2019-09-14 08:10:50 +10:00
static void init_context(DupliContext *r_ctx,
Depsgraph *depsgraph,
Scene *scene,
Object *ob,
const float space_mat[4][4],
Vector<Object *> &instance_stack)
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
{
r_ctx->depsgraph = depsgraph;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
r_ctx->scene = scene;
r_ctx->view_layer = DEG_get_evaluated_view_layer(depsgraph);
r_ctx->collection = nullptr;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
r_ctx->object = ob;
r_ctx->obedit = OBEDIT_FROM_OBACT(ob);
r_ctx->instance_stack = &instance_stack;
if (space_mat) {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
copy_m4_m4(r_ctx->space_mat, space_mat);
}
else {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
unit_m4(r_ctx->space_mat);
}
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
r_ctx->level = 0;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
r_ctx->gen = get_dupli_generator(r_ctx);
r_ctx->duplilist = nullptr;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
/**
* Create sub-context for recursive duplis.
*/
static void copy_dupli_context(
2019-09-14 08:10:50 +10:00
DupliContext *r_ctx, const DupliContext *ctx, Object *ob, const float mat[4][4], int index)
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
{
*r_ctx = *ctx;
2018-06-17 17:05:51 +02:00
/* XXX annoying, previously was done by passing an ID* argument,
* this at least is more explicit. */
if (ctx->gen->type == OB_DUPLICOLLECTION) {
r_ctx->collection = ctx->object->instance_collection;
}
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
r_ctx->object = ob;
r_ctx->instance_stack = ctx->instance_stack;
if (mat) {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
mul_m4_m4m4(r_ctx->space_mat, (float(*)[4])ctx->space_mat, mat);
}
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
r_ctx->persistent_id[r_ctx->level] = index;
++r_ctx->level;
r_ctx->gen = get_dupli_generator(r_ctx);
}
/**
* Generate a dupli instance.
*
* \param mat: is transform of the object relative to current context (including #Object.obmat).
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
*/
static DupliObject *make_dupli(const DupliContext *ctx,
Object *ob,
const float mat[4][4],
int index)
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
{
DupliObject *dob;
int i;
/* Add a #DupliObject instance to the result container. */
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
if (ctx->duplilist) {
dob = (DupliObject *)MEM_callocN(sizeof(DupliObject), "dupli object");
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
BLI_addtail(ctx->duplilist, dob);
}
else {
return nullptr;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
dob->ob = ob;
mul_m4_m4m4(dob->mat, (float(*)[4])ctx->space_mat, mat);
dob->type = ctx->gen->type;
/* Set persistent id, which is an array with a persistent index for each level
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
* (particle number, vertex number, ..). by comparing this we can find the same
* dupli-object between frames, which is needed for motion blur.
* The last level is ordered first in the array. */
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
dob->persistent_id[0] = index;
for (i = 1; i < ctx->level + 1; i++) {
dob->persistent_id[i] = ctx->persistent_id[ctx->level - i];
}
/* Fill rest of values with #INT_MAX which index will never have as value. */
for (; i < MAX_DUPLI_RECUR; i++) {
dob->persistent_id[i] = INT_MAX;
}
/* Meta-balls never draw in duplis, they are instead merged into one by the basis
* meta-ball outside of the group. this does mean that if that meta-ball is not in the
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
* scene, they will not show up at all, limitation that should be solved once. */
if (ob->type == OB_MBALL) {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
dob->no_draw = true;
}
/* Random number.
* The logic here is designed to match Cycles. */
dob->random_id = BLI_hash_string(dob->ob->id.name + 2);
if (dob->persistent_id[0] != INT_MAX) {
for (i = 0; i < MAX_DUPLI_RECUR; i++) {
dob->random_id = BLI_hash_int_2d(dob->random_id, (unsigned int)dob->persistent_id[i]);
2017-04-24 21:58:28 +10:00
}
}
else {
dob->random_id = BLI_hash_int_2d(dob->random_id, 0);
}
if (ctx->object != ob) {
dob->random_id ^= BLI_hash_int(BLI_hash_string(ctx->object->id.name + 2));
}
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
return dob;
}
/**
* Recursive dupli-objects.
*
* \param space_mat: is the local dupli-space (excluding dupli #Object.obmat).
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
*/
static void make_recursive_duplis(const DupliContext *ctx,
Object *ob,
2019-09-14 08:10:50 +10:00
const float space_mat[4][4],
int index)
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
{
if (ctx->instance_stack->contains(ob)) {
/* Avoid recursive instances. */
printf("Warning: '%s' object is trying to instance itself.\n", ob->id.name + 2);
return;
}
/* Simple preventing of too deep nested collections with #MAX_DUPLI_RECUR. */
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
if (ctx->level < MAX_DUPLI_RECUR) {
DupliContext rctx;
copy_dupli_context(&rctx, ctx, ob, space_mat, index);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
if (rctx.gen) {
ctx->instance_stack->append(ob);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
rctx.gen->make_duplis(&rctx);
ctx->instance_stack->remove_last();
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Internal Child Duplicates (Used by Other Functions)
* \{ */
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
using MakeChildDuplisFunc = void (*)(const DupliContext *ctx, void *userdata, Object *child);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
static bool is_child(const Object *ob, const Object *parent)
{
const Object *ob_parent = ob->parent;
while (ob_parent) {
if (ob_parent == parent) {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
return true;
}
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
ob_parent = ob_parent->parent;
}
return false;
}
/**
* Create duplis from every child in scene or collection.
*/
static void make_child_duplis(const DupliContext *ctx,
void *userdata,
MakeChildDuplisFunc make_child_duplis_cb)
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
{
Object *parent = ctx->object;
Collections and groups unification OVERVIEW * In 2.7 terminology, all layers and groups are now collection datablocks. * These collections are nestable, linkable, instanceable, overrideable, .. which opens up new ways to set up scenes and link + override data. * Viewport/render visibility and selectability are now a part of the collection and shared across all view layers and linkable. * View layers define which subset of the scene collection hierarchy is excluded for each. For many workflows one view layer can be used, these are more of an advanced feature now. OUTLINER * The outliner now has a "View Layer" display mode instead of "Collections", which can display the collections and/or objects in the view layer. * In this display mode, collections can be excluded with the right click menu. These will then be greyed out and their objects will be excluded. * To view collections not linked to any scene, the "Blender File" display mode can be used, with the new filtering option to just see Colleciton datablocks. * The outliner right click menus for collections and objects were reorganized. * Drag and drop still needs to be improved. Like before, dragging the icon or text gives different results, we'll unify this later. LINKING AND OVERRIDES * Collections can now be linked into the scene without creating an instance, with the link/append operator or from the collections view in the outliner. * Collections can get static overrides with the right click menu in the outliner, but this is rather unreliable and not clearly communicated at the moment. * We still need to improve the make override operator to turn collection instances into collections with overrides directly in the scene. PERFORMANCE * We tried to make performance not worse than before and improve it in some cases. The main thing that's still a bit slower is multiple scenes, we have to change the layer syncing to only updated affected scenes. * Collections keep a list of their parent collections for faster incremental updates in syncing and caching. * View layer bases are now in a object -> base hash to avoid quadratic time lookups internally and in API functions like visible_get(). VERSIONING * Compatibility with 2.7 files should be improved due to the new visibility controls. Of course users may not want to set up their scenes differently now to avoid having separate layers and groups. * Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero files. There's a few things which are know to be not quite compatible, like nested layer collections inside groups. * The versioning code for 2.8 files is quite complicated, and isolated behind #ifdef so it can be removed at the end of the release cycle. KNOWN ISSUES * The G-key group operators in the 3D viewport were left mostly as is, they need to be modified still to fit better. * Same for the groups panel in the object properties. This needs to be updated still, or perhaps replaced by something better. * Collections must all have a unique name. Less restrictive namespacing is to be done later, we'll have to see how important this is as all objects within the collections must also have a unique name anyway. * Full scene copy and delete scene are exactly doing the right thing yet. Differential Revision: https://developer.blender.org/D3383 https://code.blender.org/2018/05/collections-and-groups/
2018-04-30 15:57:22 +02:00
if (ctx->collection) {
eEvaluationMode mode = DEG_get_mode(ctx->depsgraph);
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (ctx->collection, ob, mode) {
if ((ob != ctx->obedit) && is_child(ob, parent)) {
DupliContext pctx;
copy_dupli_context(&pctx, ctx, ctx->object, nullptr, _base_id);
/* Meta-balls have a different dupli handling. */
if (ob->type != OB_MBALL) {
ob->flag |= OB_DONE; /* Doesn't render. */
}
make_child_duplis_cb(&pctx, userdata, ob);
}
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
else {
int baseid;
ViewLayer *view_layer = ctx->view_layer;
LISTBASE_FOREACH_INDEX (Base *, base, &view_layer->object_bases, baseid) {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
Object *ob = base->object;
if ((ob != ctx->obedit) && is_child(ob, parent)) {
DupliContext pctx;
copy_dupli_context(&pctx, ctx, ctx->object, nullptr, baseid);
/* Meta-balls have a different dupli-handling. */
if (ob->type != OB_MBALL) {
ob->flag |= OB_DONE; /* Doesn't render. */
}
make_child_duplis_cb(&pctx, userdata, ob);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Internal Data Access Utilities
* \{ */
static Mesh *mesh_data_from_duplicator_object(Object *ob,
BMEditMesh **r_em,
const float (**r_vert_coords)[3],
const float (**r_vert_normals)[3])
{
/* Gather mesh info. */
BMEditMesh *em = BKE_editmesh_from_object(ob);
Mesh *me_eval;
*r_em = nullptr;
*r_vert_coords = nullptr;
if (r_vert_normals != nullptr) {
*r_vert_normals = nullptr;
}
/* We do not need any render-specific handling anymore, depsgraph takes care of that. */
/* NOTE: Do direct access to the evaluated mesh: this function is used
* during meta balls evaluation. But even without those all the objects
* which are needed for correct instancing are already evaluated. */
if (em != nullptr) {
/* Note that this will only show deformation if #eModifierMode_OnCage is enabled.
* We could change this but it matches 2.7x behavior. */
me_eval = em->mesh_eval_cage;
if ((me_eval == nullptr) || (me_eval->runtime.wrapper_type == ME_WRAPPER_TYPE_BMESH)) {
EditMeshData *emd = me_eval ? me_eval->runtime.edit_data : nullptr;
/* Only assign edit-mesh in the case we can't use `me_eval`. */
*r_em = em;
me_eval = nullptr;
if ((emd != nullptr) && (emd->vertexCos != nullptr)) {
*r_vert_coords = emd->vertexCos;
if (r_vert_normals != nullptr) {
BKE_editmesh_cache_ensure_vert_normals(em, emd);
*r_vert_normals = emd->vertexNos;
}
}
}
}
else {
me_eval = BKE_object_get_evaluated_mesh(ob);
}
return me_eval;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Collection Implementation (#OB_DUPLICOLLECTION)
* \{ */
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
Collections and groups unification OVERVIEW * In 2.7 terminology, all layers and groups are now collection datablocks. * These collections are nestable, linkable, instanceable, overrideable, .. which opens up new ways to set up scenes and link + override data. * Viewport/render visibility and selectability are now a part of the collection and shared across all view layers and linkable. * View layers define which subset of the scene collection hierarchy is excluded for each. For many workflows one view layer can be used, these are more of an advanced feature now. OUTLINER * The outliner now has a "View Layer" display mode instead of "Collections", which can display the collections and/or objects in the view layer. * In this display mode, collections can be excluded with the right click menu. These will then be greyed out and their objects will be excluded. * To view collections not linked to any scene, the "Blender File" display mode can be used, with the new filtering option to just see Colleciton datablocks. * The outliner right click menus for collections and objects were reorganized. * Drag and drop still needs to be improved. Like before, dragging the icon or text gives different results, we'll unify this later. LINKING AND OVERRIDES * Collections can now be linked into the scene without creating an instance, with the link/append operator or from the collections view in the outliner. * Collections can get static overrides with the right click menu in the outliner, but this is rather unreliable and not clearly communicated at the moment. * We still need to improve the make override operator to turn collection instances into collections with overrides directly in the scene. PERFORMANCE * We tried to make performance not worse than before and improve it in some cases. The main thing that's still a bit slower is multiple scenes, we have to change the layer syncing to only updated affected scenes. * Collections keep a list of their parent collections for faster incremental updates in syncing and caching. * View layer bases are now in a object -> base hash to avoid quadratic time lookups internally and in API functions like visible_get(). VERSIONING * Compatibility with 2.7 files should be improved due to the new visibility controls. Of course users may not want to set up their scenes differently now to avoid having separate layers and groups. * Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero files. There's a few things which are know to be not quite compatible, like nested layer collections inside groups. * The versioning code for 2.8 files is quite complicated, and isolated behind #ifdef so it can be removed at the end of the release cycle. KNOWN ISSUES * The G-key group operators in the 3D viewport were left mostly as is, they need to be modified still to fit better. * Same for the groups panel in the object properties. This needs to be updated still, or perhaps replaced by something better. * Collections must all have a unique name. Less restrictive namespacing is to be done later, we'll have to see how important this is as all objects within the collections must also have a unique name anyway. * Full scene copy and delete scene are exactly doing the right thing yet. Differential Revision: https://developer.blender.org/D3383 https://code.blender.org/2018/05/collections-and-groups/
2018-04-30 15:57:22 +02:00
static void make_duplis_collection(const DupliContext *ctx)
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
{
Object *ob = ctx->object;
Collections and groups unification OVERVIEW * In 2.7 terminology, all layers and groups are now collection datablocks. * These collections are nestable, linkable, instanceable, overrideable, .. which opens up new ways to set up scenes and link + override data. * Viewport/render visibility and selectability are now a part of the collection and shared across all view layers and linkable. * View layers define which subset of the scene collection hierarchy is excluded for each. For many workflows one view layer can be used, these are more of an advanced feature now. OUTLINER * The outliner now has a "View Layer" display mode instead of "Collections", which can display the collections and/or objects in the view layer. * In this display mode, collections can be excluded with the right click menu. These will then be greyed out and their objects will be excluded. * To view collections not linked to any scene, the "Blender File" display mode can be used, with the new filtering option to just see Colleciton datablocks. * The outliner right click menus for collections and objects were reorganized. * Drag and drop still needs to be improved. Like before, dragging the icon or text gives different results, we'll unify this later. LINKING AND OVERRIDES * Collections can now be linked into the scene without creating an instance, with the link/append operator or from the collections view in the outliner. * Collections can get static overrides with the right click menu in the outliner, but this is rather unreliable and not clearly communicated at the moment. * We still need to improve the make override operator to turn collection instances into collections with overrides directly in the scene. PERFORMANCE * We tried to make performance not worse than before and improve it in some cases. The main thing that's still a bit slower is multiple scenes, we have to change the layer syncing to only updated affected scenes. * Collections keep a list of their parent collections for faster incremental updates in syncing and caching. * View layer bases are now in a object -> base hash to avoid quadratic time lookups internally and in API functions like visible_get(). VERSIONING * Compatibility with 2.7 files should be improved due to the new visibility controls. Of course users may not want to set up their scenes differently now to avoid having separate layers and groups. * Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero files. There's a few things which are know to be not quite compatible, like nested layer collections inside groups. * The versioning code for 2.8 files is quite complicated, and isolated behind #ifdef so it can be removed at the end of the release cycle. KNOWN ISSUES * The G-key group operators in the 3D viewport were left mostly as is, they need to be modified still to fit better. * Same for the groups panel in the object properties. This needs to be updated still, or perhaps replaced by something better. * Collections must all have a unique name. Less restrictive namespacing is to be done later, we'll have to see how important this is as all objects within the collections must also have a unique name anyway. * Full scene copy and delete scene are exactly doing the right thing yet. Differential Revision: https://developer.blender.org/D3383 https://code.blender.org/2018/05/collections-and-groups/
2018-04-30 15:57:22 +02:00
Collection *collection;
float collection_mat[4][4];
if (ob->instance_collection == nullptr) {
return;
}
collection = ob->instance_collection;
/* Combine collection offset and `obmat`. */
Collections and groups unification OVERVIEW * In 2.7 terminology, all layers and groups are now collection datablocks. * These collections are nestable, linkable, instanceable, overrideable, .. which opens up new ways to set up scenes and link + override data. * Viewport/render visibility and selectability are now a part of the collection and shared across all view layers and linkable. * View layers define which subset of the scene collection hierarchy is excluded for each. For many workflows one view layer can be used, these are more of an advanced feature now. OUTLINER * The outliner now has a "View Layer" display mode instead of "Collections", which can display the collections and/or objects in the view layer. * In this display mode, collections can be excluded with the right click menu. These will then be greyed out and their objects will be excluded. * To view collections not linked to any scene, the "Blender File" display mode can be used, with the new filtering option to just see Colleciton datablocks. * The outliner right click menus for collections and objects were reorganized. * Drag and drop still needs to be improved. Like before, dragging the icon or text gives different results, we'll unify this later. LINKING AND OVERRIDES * Collections can now be linked into the scene without creating an instance, with the link/append operator or from the collections view in the outliner. * Collections can get static overrides with the right click menu in the outliner, but this is rather unreliable and not clearly communicated at the moment. * We still need to improve the make override operator to turn collection instances into collections with overrides directly in the scene. PERFORMANCE * We tried to make performance not worse than before and improve it in some cases. The main thing that's still a bit slower is multiple scenes, we have to change the layer syncing to only updated affected scenes. * Collections keep a list of their parent collections for faster incremental updates in syncing and caching. * View layer bases are now in a object -> base hash to avoid quadratic time lookups internally and in API functions like visible_get(). VERSIONING * Compatibility with 2.7 files should be improved due to the new visibility controls. Of course users may not want to set up their scenes differently now to avoid having separate layers and groups. * Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero files. There's a few things which are know to be not quite compatible, like nested layer collections inside groups. * The versioning code for 2.8 files is quite complicated, and isolated behind #ifdef so it can be removed at the end of the release cycle. KNOWN ISSUES * The G-key group operators in the 3D viewport were left mostly as is, they need to be modified still to fit better. * Same for the groups panel in the object properties. This needs to be updated still, or perhaps replaced by something better. * Collections must all have a unique name. Less restrictive namespacing is to be done later, we'll have to see how important this is as all objects within the collections must also have a unique name anyway. * Full scene copy and delete scene are exactly doing the right thing yet. Differential Revision: https://developer.blender.org/D3383 https://code.blender.org/2018/05/collections-and-groups/
2018-04-30 15:57:22 +02:00
unit_m4(collection_mat);
sub_v3_v3(collection_mat[3], collection->instance_offset);
Collections and groups unification OVERVIEW * In 2.7 terminology, all layers and groups are now collection datablocks. * These collections are nestable, linkable, instanceable, overrideable, .. which opens up new ways to set up scenes and link + override data. * Viewport/render visibility and selectability are now a part of the collection and shared across all view layers and linkable. * View layers define which subset of the scene collection hierarchy is excluded for each. For many workflows one view layer can be used, these are more of an advanced feature now. OUTLINER * The outliner now has a "View Layer" display mode instead of "Collections", which can display the collections and/or objects in the view layer. * In this display mode, collections can be excluded with the right click menu. These will then be greyed out and their objects will be excluded. * To view collections not linked to any scene, the "Blender File" display mode can be used, with the new filtering option to just see Colleciton datablocks. * The outliner right click menus for collections and objects were reorganized. * Drag and drop still needs to be improved. Like before, dragging the icon or text gives different results, we'll unify this later. LINKING AND OVERRIDES * Collections can now be linked into the scene without creating an instance, with the link/append operator or from the collections view in the outliner. * Collections can get static overrides with the right click menu in the outliner, but this is rather unreliable and not clearly communicated at the moment. * We still need to improve the make override operator to turn collection instances into collections with overrides directly in the scene. PERFORMANCE * We tried to make performance not worse than before and improve it in some cases. The main thing that's still a bit slower is multiple scenes, we have to change the layer syncing to only updated affected scenes. * Collections keep a list of their parent collections for faster incremental updates in syncing and caching. * View layer bases are now in a object -> base hash to avoid quadratic time lookups internally and in API functions like visible_get(). VERSIONING * Compatibility with 2.7 files should be improved due to the new visibility controls. Of course users may not want to set up their scenes differently now to avoid having separate layers and groups. * Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero files. There's a few things which are know to be not quite compatible, like nested layer collections inside groups. * The versioning code for 2.8 files is quite complicated, and isolated behind #ifdef so it can be removed at the end of the release cycle. KNOWN ISSUES * The G-key group operators in the 3D viewport were left mostly as is, they need to be modified still to fit better. * Same for the groups panel in the object properties. This needs to be updated still, or perhaps replaced by something better. * Collections must all have a unique name. Less restrictive namespacing is to be done later, we'll have to see how important this is as all objects within the collections must also have a unique name anyway. * Full scene copy and delete scene are exactly doing the right thing yet. Differential Revision: https://developer.blender.org/D3383 https://code.blender.org/2018/05/collections-and-groups/
2018-04-30 15:57:22 +02:00
mul_m4_m4m4(collection_mat, ob->obmat, collection_mat);
/* Don't access 'ob->obmat' from now on. */
eEvaluationMode mode = DEG_get_mode(ctx->depsgraph);
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (collection, cob, mode) {
if (cob != ob) {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
float mat[4][4];
/* Collection dupli-offset, should apply after everything else. */
mul_m4_m4m4(mat, collection_mat, cob->obmat);
make_dupli(ctx, cob, mat, _base_id);
/* Recursion. */
make_recursive_duplis(ctx, cob, collection_mat, _base_id);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
}
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
Collections and groups unification OVERVIEW * In 2.7 terminology, all layers and groups are now collection datablocks. * These collections are nestable, linkable, instanceable, overrideable, .. which opens up new ways to set up scenes and link + override data. * Viewport/render visibility and selectability are now a part of the collection and shared across all view layers and linkable. * View layers define which subset of the scene collection hierarchy is excluded for each. For many workflows one view layer can be used, these are more of an advanced feature now. OUTLINER * The outliner now has a "View Layer" display mode instead of "Collections", which can display the collections and/or objects in the view layer. * In this display mode, collections can be excluded with the right click menu. These will then be greyed out and their objects will be excluded. * To view collections not linked to any scene, the "Blender File" display mode can be used, with the new filtering option to just see Colleciton datablocks. * The outliner right click menus for collections and objects were reorganized. * Drag and drop still needs to be improved. Like before, dragging the icon or text gives different results, we'll unify this later. LINKING AND OVERRIDES * Collections can now be linked into the scene without creating an instance, with the link/append operator or from the collections view in the outliner. * Collections can get static overrides with the right click menu in the outliner, but this is rather unreliable and not clearly communicated at the moment. * We still need to improve the make override operator to turn collection instances into collections with overrides directly in the scene. PERFORMANCE * We tried to make performance not worse than before and improve it in some cases. The main thing that's still a bit slower is multiple scenes, we have to change the layer syncing to only updated affected scenes. * Collections keep a list of their parent collections for faster incremental updates in syncing and caching. * View layer bases are now in a object -> base hash to avoid quadratic time lookups internally and in API functions like visible_get(). VERSIONING * Compatibility with 2.7 files should be improved due to the new visibility controls. Of course users may not want to set up their scenes differently now to avoid having separate layers and groups. * Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero files. There's a few things which are know to be not quite compatible, like nested layer collections inside groups. * The versioning code for 2.8 files is quite complicated, and isolated behind #ifdef so it can be removed at the end of the release cycle. KNOWN ISSUES * The G-key group operators in the 3D viewport were left mostly as is, they need to be modified still to fit better. * Same for the groups panel in the object properties. This needs to be updated still, or perhaps replaced by something better. * Collections must all have a unique name. Less restrictive namespacing is to be done later, we'll have to see how important this is as all objects within the collections must also have a unique name anyway. * Full scene copy and delete scene are exactly doing the right thing yet. Differential Revision: https://developer.blender.org/D3383 https://code.blender.org/2018/05/collections-and-groups/
2018-04-30 15:57:22 +02:00
static const DupliGenerator gen_dupli_collection = {
OB_DUPLICOLLECTION, /* type */
make_duplis_collection /* make_duplis */
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Vertices Implementation (#OB_DUPLIVERTS for Geometry)
* \{ */
/** Values shared between different mesh types. */
struct VertexDupliData_Params {
/**
* It's important we use this context instead of the `ctx` passed into #make_child_duplis
* since these won't match in the case of recursion.
*/
const DupliContext *ctx;
bool use_rotation;
};
struct VertexDupliData_Mesh {
VertexDupliData_Params params;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
int totvert;
const MVert *mvert;
const float (*orco)[3];
};
struct VertexDupliData_EditMesh {
VertexDupliData_Params params;
BMEditMesh *em;
/* Can be nullptr. */
const float (*vert_coords)[3];
const float (*vert_normals)[3];
/**
* \note The edit-mesh may assign #DupliObject.orco in cases when a regular mesh wouldn't.
* For edit-meshes we only check for deformation, for regular meshes we check if #CD_ORCO exists.
*
* At the moment this isn't a meaningful difference since requesting #CD_ORCO causes the
* edit-mesh to be converted into a mesh.
*/
bool has_orco;
};
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
/**
* \param no: The direction,
* currently this is copied from a `short[3]` normal without division.
* Can be null when \a use_rotation is false.
*/
static void get_duplivert_transform(const float co[3],
const float no[3],
const bool use_rotation,
const short axis,
const short upflag,
float r_mat[4][4])
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
{
float quat[4];
const float size[3] = {1.0f, 1.0f, 1.0f};
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
if (use_rotation) {
/* Construct rotation matrix from normals. */
float no_flip[3];
negate_v3_v3(no_flip, no);
vec_to_quat(quat, no_flip, axis, upflag);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
else {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
unit_qt(quat);
}
loc_quat_size_to_mat4(r_mat, co, quat, size);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
static DupliObject *vertex_dupli(const DupliContext *ctx,
Object *inst_ob,
const float child_imat[4][4],
int index,
const float co[3],
const float no[3],
const bool use_rotation)
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
{
/* `obmat` is transform to vertex. */
float obmat[4][4];
get_duplivert_transform(co, no, use_rotation, inst_ob->trackflag, inst_ob->upflag, obmat);
float space_mat[4][4];
/* Make offset relative to inst_ob using relative child transform. */
mul_mat3_m4_v3(child_imat, obmat[3]);
/* Apply `obmat` _after_ the local vertex transform. */
mul_m4_m4m4(obmat, inst_ob->obmat, obmat);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
/* Space matrix is constructed by removing `obmat` transform,
* this yields the world-space transform for recursive duplis. */
mul_m4_m4m4(space_mat, obmat, inst_ob->imat);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
DupliObject *dob = make_dupli(ctx, inst_ob, obmat, index);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
/* Recursion. */
make_recursive_duplis(ctx, inst_ob, space_mat, index);
return dob;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
static void make_child_duplis_verts_from_mesh(const DupliContext *ctx,
void *userdata,
Object *inst_ob)
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
{
VertexDupliData_Mesh *vdd = (VertexDupliData_Mesh *)userdata;
const bool use_rotation = vdd->params.use_rotation;
const MVert *mvert = vdd->mvert;
const int totvert = vdd->totvert;
invert_m4_m4(inst_ob->imat, inst_ob->obmat);
/* Relative transform from parent to child space. */
float child_imat[4][4];
mul_m4_m4m4(child_imat, inst_ob->imat, ctx->object->obmat);
const MVert *mv = mvert;
for (int i = 0; i < totvert; i++, mv++) {
const float *co = mv->co;
float no[3];
normal_short_to_float_v3(no, mv->no);
DupliObject *dob = vertex_dupli(vdd->params.ctx, inst_ob, child_imat, i, co, no, use_rotation);
if (vdd->orco) {
copy_v3_v3(dob->orco, vdd->orco[i]);
}
}
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
static void make_child_duplis_verts_from_editmesh(const DupliContext *ctx,
void *userdata,
Object *inst_ob)
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
{
VertexDupliData_EditMesh *vdd = (VertexDupliData_EditMesh *)userdata;
BMEditMesh *em = vdd->em;
const bool use_rotation = vdd->params.use_rotation;
invert_m4_m4(inst_ob->imat, inst_ob->obmat);
/* Relative transform from parent to child space. */
float child_imat[4][4];
mul_m4_m4m4(child_imat, inst_ob->imat, ctx->object->obmat);
BMVert *v;
BMIter iter;
int i;
const float(*vert_coords)[3] = vdd->vert_coords;
const float(*vert_normals)[3] = vdd->vert_normals;
BM_ITER_MESH_INDEX (v, &iter, em->bm, BM_VERTS_OF_MESH, i) {
const float *co, *no;
if (vert_coords != nullptr) {
co = vert_coords[i];
no = vert_normals ? vert_normals[i] : nullptr;
}
else {
co = v->co;
no = v->no;
}
DupliObject *dob = vertex_dupli(vdd->params.ctx, inst_ob, child_imat, i, co, no, use_rotation);
if (vdd->has_orco) {
copy_v3_v3(dob->orco, v->co);
}
}
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
static void make_duplis_verts(const DupliContext *ctx)
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
{
Object *parent = ctx->object;
const bool use_rotation = parent->transflag & OB_DUPLIROT;
/* Gather mesh info. */
BMEditMesh *em = nullptr;
const float(*vert_coords)[3] = nullptr;
const float(*vert_normals)[3] = nullptr;
Mesh *me_eval = mesh_data_from_duplicator_object(
parent, &em, &vert_coords, use_rotation ? &vert_normals : nullptr);
if (em == nullptr && me_eval == nullptr) {
return;
}
VertexDupliData_Params vdd_params{ctx, use_rotation};
if (em != nullptr) {
VertexDupliData_EditMesh vdd{};
vdd.params = vdd_params;
vdd.em = em;
vdd.vert_coords = vert_coords;
vdd.vert_normals = vert_normals;
vdd.has_orco = (vert_coords != nullptr);
make_child_duplis(ctx, &vdd, make_child_duplis_verts_from_editmesh);
}
else {
VertexDupliData_Mesh vdd{};
vdd.params = vdd_params;
vdd.totvert = me_eval->totvert;
vdd.mvert = me_eval->mvert;
vdd.orco = (const float(*)[3])CustomData_get_layer(&me_eval->vdata, CD_ORCO);
make_child_duplis(ctx, &vdd, make_child_duplis_verts_from_mesh);
}
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
static const DupliGenerator gen_dupli_verts = {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
OB_DUPLIVERTS, /* type */
make_duplis_verts /* make_duplis */
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Vertices Implementation (#OB_DUPLIVERTS for 3D Text)
* \{ */
static Object *find_family_object(
Main *bmain, const char *family, size_t family_len, unsigned int ch, GHash *family_gh)
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
{
void *ch_key = POINTER_FROM_UINT(ch);
Object **ob_pt;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
if ((ob_pt = (Object **)BLI_ghash_lookup_p(family_gh, ch_key))) {
return *ob_pt;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
char ch_utf8[7];
size_t ch_utf8_len;
ch_utf8_len = BLI_str_utf8_from_unicode(ch, ch_utf8);
ch_utf8[ch_utf8_len] = '\0';
ch_utf8_len += 1; /* Compare with null terminator. */
LISTBASE_FOREACH (Object *, ob, &bmain->objects) {
if (STREQLEN(ob->id.name + 2 + family_len, ch_utf8, ch_utf8_len)) {
if (STREQLEN(ob->id.name + 2, family, family_len)) {
/* Inserted value can be nullptr, just to save searches in future. */
BLI_ghash_insert(family_gh, ch_key, ob);
return ob;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
}
}
return nullptr;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
static void make_duplis_font(const DupliContext *ctx)
{
Object *par = ctx->object;
GHash *family_gh;
Object *ob;
Curve *cu;
struct CharTrans *ct, *chartransdata = nullptr;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
float vec[3], obmat[4][4], pmat[4][4], fsize, xof, yof;
int text_len, a;
size_t family_len;
const char32_t *text = nullptr;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
bool text_free = false;
/* Font dupli-verts not supported inside collections. */
if (ctx->collection) {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
return;
}
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
copy_m4_m4(pmat, par->obmat);
/* In `par` the family name is stored, use this to find the other objects. */
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
BKE_vfont_to_curve_ex(
par, (Curve *)par->data, FO_DUPLI, nullptr, &text, &text_len, &text_free, &chartransdata);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
if (text == nullptr || chartransdata == nullptr) {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
return;
}
cu = (Curve *)par->data;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
fsize = cu->fsize;
xof = cu->xof;
yof = cu->yof;
ct = chartransdata;
/* Cache result. */
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
family_len = strlen(cu->family);
family_gh = BLI_ghash_int_new_ex(__func__, 256);
/* Safety check even if it might fail badly when called for original object. */
const bool is_eval_curve = DEG_is_evaluated_id(&cu->id);
/* Advance matching BLI_str_utf8_as_utf32. */
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
for (a = 0; a < text_len; a++, ct++) {
/* XXX That G.main is *really* ugly, but not sure what to do here.
* Definitively don't think it would be safe to put back `Main *bmain` pointer
* in #DupliContext as done in 2.7x? */
ob = find_family_object(G.main, cu->family, family_len, (unsigned int)text[a], family_gh);
if (is_eval_curve) {
/* Workaround for the above hack. */
ob = DEG_get_evaluated_object(ctx->depsgraph, ob);
}
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
if (ob) {
vec[0] = fsize * (ct->xof - xof);
vec[1] = fsize * (ct->yof - yof);
vec[2] = 0.0;
mul_m4_v3(pmat, vec);
copy_m4_m4(obmat, par->obmat);
if (UNLIKELY(ct->rot != 0.0f)) {
float rmat[4][4];
zero_v3(obmat[3]);
axis_angle_to_mat4_single(rmat, 'Z', -ct->rot);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
mul_m4_m4m4(obmat, obmat, rmat);
}
copy_v3_v3(obmat[3], vec);
make_dupli(ctx, ob, obmat, a);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
}
if (text_free) {
MEM_freeN((void *)text);
}
BLI_ghash_free(family_gh, nullptr, nullptr);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
MEM_freeN(chartransdata);
}
static const DupliGenerator gen_dupli_verts_font = {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
OB_DUPLIVERTS, /* type */
make_duplis_font /* make_duplis */
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Vertices Implementation (#OB_DUPLIVERTS for #PointCloud)
* \{ */
static void make_child_duplis_pointcloud(const DupliContext *ctx,
void *UNUSED(userdata),
Object *child)
{
const Object *parent = ctx->object;
const PointCloud *pointcloud = (PointCloud *)parent->data;
const float(*co)[3] = pointcloud->co;
const float *radius = pointcloud->radius;
const float(*rotation)[4] = nullptr; /* TODO: add optional rotation attribute. */
const float(*orco)[3] = nullptr; /* TODO: add optional texture coordinate attribute. */
/* Relative transform from parent to child space. */
float child_imat[4][4];
mul_m4_m4m4(child_imat, child->imat, parent->obmat);
for (int i = 0; i < pointcloud->totpoint; i++) {
/* Transform matrix from point position, radius and rotation. */
float quat[4] = {1.0f, 0.0f, 0.0f, 0.0f};
float size[3] = {1.0f, 1.0f, 1.0f};
if (radius) {
copy_v3_fl(size, radius[i]);
}
if (rotation) {
copy_v4_v4(quat, rotation[i]);
}
float space_mat[4][4];
loc_quat_size_to_mat4(space_mat, co[i], quat, size);
/* Make offset relative to child object using relative child transform,
* and apply object matrix after local vertex transform. */
mul_mat3_m4_v3(child_imat, space_mat[3]);
/* Create dupli object. */
float obmat[4][4];
mul_m4_m4m4(obmat, child->obmat, space_mat);
DupliObject *dob = make_dupli(ctx, child, obmat, i);
if (orco) {
copy_v3_v3(dob->orco, orco[i]);
}
/* Recursion. */
make_recursive_duplis(ctx, child, space_mat, i);
}
}
static void make_duplis_pointcloud(const DupliContext *ctx)
{
make_child_duplis(ctx, nullptr, make_child_duplis_pointcloud);
}
static const DupliGenerator gen_dupli_verts_pointcloud = {
OB_DUPLIVERTS, /* type */
make_duplis_pointcloud /* make_duplis */
};
/** \} */
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
/* -------------------------------------------------------------------- */
/** \name Instances Geometry Component Implementation
* \{ */
static void make_duplis_instances_component(const DupliContext *ctx)
{
const InstancesComponent *component =
ctx->object->runtime.geometry_set_eval->get_component_for_read<InstancesComponent>();
if (component == nullptr) {
return;
}
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
Span<float4x4> instance_offset_matrices = component->instance_transforms();
Span<int> instance_reference_handles = component->instance_reference_handles();
Span<int> almost_unique_ids = component->almost_unique_ids();
Span<InstanceReference> references = component->references();
for (int64_t i : instance_offset_matrices.index_range()) {
const InstanceReference &reference = references[instance_reference_handles[i]];
const int id = almost_unique_ids[i];
switch (reference.type()) {
case InstanceReference::Type::Object: {
Object &object = reference.object();
float matrix[4][4];
mul_m4_m4m4(matrix, ctx->object->obmat, instance_offset_matrices[i].values);
make_dupli(ctx, &object, matrix, id);
float space_matrix[4][4];
mul_m4_m4m4(space_matrix, instance_offset_matrices[i].values, object.imat);
mul_m4_m4_pre(space_matrix, ctx->object->obmat);
make_recursive_duplis(ctx, &object, space_matrix, id);
break;
}
case InstanceReference::Type::Collection: {
Collection &collection = reference.collection();
float collection_matrix[4][4];
unit_m4(collection_matrix);
sub_v3_v3(collection_matrix[3], collection.instance_offset);
mul_m4_m4_pre(collection_matrix, instance_offset_matrices[i].values);
mul_m4_m4_pre(collection_matrix, ctx->object->obmat);
eEvaluationMode mode = DEG_get_mode(ctx->depsgraph);
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (&collection, object, mode) {
if (object == ctx->object) {
continue;
}
float instance_matrix[4][4];
mul_m4_m4m4(instance_matrix, collection_matrix, object->obmat);
make_dupli(ctx, object, instance_matrix, id);
make_recursive_duplis(ctx, object, collection_matrix, id);
}
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END;
break;
}
case InstanceReference::Type::None: {
break;
}
}
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
}
}
static const DupliGenerator gen_dupli_instances_component = {
0,
make_duplis_instances_component,
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Faces Implementation (#OB_DUPLIFACES)
* \{ */
/** Values shared between different mesh types. */
struct FaceDupliData_Params {
/**
* It's important we use this context instead of the `ctx` passed into #make_child_duplis
* since these won't match in the case of recursion.
*/
const DupliContext *ctx;
bool use_scale;
};
struct FaceDupliData_Mesh {
FaceDupliData_Params params;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
int totface;
const MPoly *mpoly;
const MLoop *mloop;
const MVert *mvert;
const float (*orco)[3];
const MLoopUV *mloopuv;
};
struct FaceDupliData_EditMesh {
FaceDupliData_Params params;
BMEditMesh *em;
bool has_orco, has_uvs;
int cd_loop_uv_offset;
/* Can be nullptr. */
const float (*vert_coords)[3];
};
static void get_dupliface_transform_from_coords(Span<float3> coords,
const bool use_scale,
const float scale_fac,
float r_mat[4][4])
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
{
/* Location. */
float3 location(0);
for (const float3 &coord : coords) {
location += coord;
}
location *= 1.0f / (float)coords.size();
/* Rotation. */
float quat[4];
float3 f_no;
cross_poly_v3(f_no, (const float(*)[3])coords.data(), (uint)coords.size());
f_no.normalize();
tri_to_quat_ex(quat, coords[0], coords[1], coords[2], f_no);
/* Scale. */
float scale;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
if (use_scale) {
const float area = area_poly_v3((const float(*)[3])coords.data(), (uint)coords.size());
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
scale = sqrtf(area) * scale_fac;
}
else {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
scale = 1.0f;
}
loc_quat_size_to_mat4(r_mat, location, quat, float3(scale));
}
static DupliObject *face_dupli(const DupliContext *ctx,
Object *inst_ob,
const float child_imat[4][4],
const int index,
const bool use_scale,
const float scale_fac,
Span<float3> coords)
{
float obmat[4][4];
float space_mat[4][4];
/* `obmat` is transform to face. */
get_dupliface_transform_from_coords(coords, use_scale, scale_fac, obmat);
/* Make offset relative to inst_ob using relative child transform. */
mul_mat3_m4_v3(child_imat, obmat[3]);
/* XXX ugly hack to ensure same behavior as in master.
* This should not be needed, #Object.parentinv is not consistent outside of parenting. */
{
float imat[3][3];
copy_m3_m4(imat, inst_ob->parentinv);
mul_m4_m3m4(obmat, imat, obmat);
}
/* Apply `obmat` _after_ the local face transform. */
mul_m4_m4m4(obmat, inst_ob->obmat, obmat);
/* Space matrix is constructed by removing `obmat` transform,
* this yields the world-space transform for recursive duplis. */
mul_m4_m4m4(space_mat, obmat, inst_ob->imat);
DupliObject *dob = make_dupli(ctx, inst_ob, obmat, index);
/* Recursion. */
make_recursive_duplis(ctx, inst_ob, space_mat, index);
return dob;
}
static DupliObject *face_dupli_from_mesh(const DupliContext *ctx,
Object *inst_ob,
const float child_imat[4][4],
const int index,
const bool use_scale,
const float scale_fac,
/* Mesh variables. */
const MPoly *mpoly,
const MLoop *mloopstart,
const MVert *mvert)
{
const int coords_len = mpoly->totloop;
Array<float3, 64> coords(coords_len);
const MLoop *ml = mloopstart;
for (int i = 0; i < coords_len; i++, ml++) {
coords[i] = float3(mvert[ml->v].co);
}
return face_dupli(ctx, inst_ob, child_imat, index, use_scale, scale_fac, coords);
}
static DupliObject *face_dupli_from_editmesh(const DupliContext *ctx,
Object *inst_ob,
const float child_imat[4][4],
const int index,
const bool use_scale,
const float scale_fac,
/* Mesh variables. */
BMFace *f,
const float (*vert_coords)[3])
{
const int coords_len = f->len;
Array<float3, 64> coords(coords_len);
BMLoop *l_first, *l_iter;
int i = 0;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
if (vert_coords != nullptr) {
do {
copy_v3_v3(coords[i++], vert_coords[BM_elem_index_get(l_iter->v)]);
} while ((l_iter = l_iter->next) != l_first);
}
else {
do {
copy_v3_v3(coords[i++], l_iter->v->co);
} while ((l_iter = l_iter->next) != l_first);
}
return face_dupli(ctx, inst_ob, child_imat, index, use_scale, scale_fac, coords);
}
static void make_child_duplis_faces_from_mesh(const DupliContext *ctx,
void *userdata,
Object *inst_ob)
{
FaceDupliData_Mesh *fdd = (FaceDupliData_Mesh *)userdata;
const MPoly *mpoly = fdd->mpoly, *mp;
const MLoop *mloop = fdd->mloop;
const MVert *mvert = fdd->mvert;
const float(*orco)[3] = fdd->orco;
const MLoopUV *mloopuv = fdd->mloopuv;
const int totface = fdd->totface;
const bool use_scale = fdd->params.use_scale;
int a;
float child_imat[4][4];
invert_m4_m4(inst_ob->imat, inst_ob->obmat);
/* Relative transform from parent to child space. */
mul_m4_m4m4(child_imat, inst_ob->imat, ctx->object->obmat);
const float scale_fac = ctx->object->instance_faces_scale;
for (a = 0, mp = mpoly; a < totface; a++, mp++) {
const MLoop *loopstart = mloop + mp->loopstart;
DupliObject *dob = face_dupli_from_mesh(
fdd->params.ctx, inst_ob, child_imat, a, use_scale, scale_fac, mp, loopstart, mvert);
const float w = 1.0f / (float)mp->totloop;
if (orco) {
for (int j = 0; j < mp->totloop; j++) {
madd_v3_v3fl(dob->orco, orco[loopstart[j].v], w);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
}
if (mloopuv) {
for (int j = 0; j < mp->totloop; j++) {
madd_v2_v2fl(dob->uv, mloopuv[mp->loopstart + j].uv, w);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
}
}
}
static void make_child_duplis_faces_from_editmesh(const DupliContext *ctx,
void *userdata,
Object *inst_ob)
{
FaceDupliData_EditMesh *fdd = (FaceDupliData_EditMesh *)userdata;
BMEditMesh *em = fdd->em;
float child_imat[4][4];
int a;
BMFace *f;
BMIter iter;
const bool use_scale = fdd->params.use_scale;
const float(*vert_coords)[3] = fdd->vert_coords;
BLI_assert((vert_coords == nullptr) || (em->bm->elem_index_dirty & BM_VERT) == 0);
invert_m4_m4(inst_ob->imat, inst_ob->obmat);
/* Relative transform from parent to child space. */
mul_m4_m4m4(child_imat, inst_ob->imat, ctx->object->obmat);
const float scale_fac = ctx->object->instance_faces_scale;
BM_ITER_MESH_INDEX (f, &iter, em->bm, BM_FACES_OF_MESH, a) {
DupliObject *dob = face_dupli_from_editmesh(
fdd->params.ctx, inst_ob, child_imat, a, use_scale, scale_fac, f, vert_coords);
if (fdd->has_orco) {
const float w = 1.0f / (float)f->len;
BMLoop *l_first, *l_iter;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
madd_v3_v3fl(dob->orco, l_iter->v->co, w);
} while ((l_iter = l_iter->next) != l_first);
}
if (fdd->has_uvs) {
BM_face_uv_calc_center_median(f, fdd->cd_loop_uv_offset, dob->uv);
}
}
}
static void make_duplis_faces(const DupliContext *ctx)
{
Object *parent = ctx->object;
/* Gather mesh info. */
BMEditMesh *em = nullptr;
const float(*vert_coords)[3] = nullptr;
Mesh *me_eval = mesh_data_from_duplicator_object(parent, &em, &vert_coords, nullptr);
if (em == nullptr && me_eval == nullptr) {
return;
}
FaceDupliData_Params fdd_params = {ctx, (parent->transflag & OB_DUPLIFACES_SCALE) != 0};
if (em != nullptr) {
const int uv_idx = CustomData_get_render_layer(&em->bm->ldata, CD_MLOOPUV);
FaceDupliData_EditMesh fdd{};
fdd.params = fdd_params;
fdd.em = em;
fdd.vert_coords = vert_coords;
fdd.has_orco = (vert_coords != nullptr);
fdd.has_uvs = (uv_idx != -1);
fdd.cd_loop_uv_offset = (uv_idx != -1) ?
CustomData_get_n_offset(&em->bm->ldata, CD_MLOOPUV, uv_idx) :
-1;
make_child_duplis(ctx, &fdd, make_child_duplis_faces_from_editmesh);
}
else {
const int uv_idx = CustomData_get_render_layer(&me_eval->ldata, CD_MLOOPUV);
FaceDupliData_Mesh fdd{};
fdd.params = fdd_params;
fdd.totface = me_eval->totpoly;
fdd.mpoly = me_eval->mpoly;
fdd.mloop = me_eval->mloop;
fdd.mvert = me_eval->mvert;
fdd.mloopuv = (uv_idx != -1) ? (const MLoopUV *)CustomData_get_layer_n(
&me_eval->ldata, CD_MLOOPUV, uv_idx) :
nullptr;
fdd.orco = (const float(*)[3])CustomData_get_layer(&me_eval->vdata, CD_ORCO);
make_child_duplis(ctx, &fdd, make_child_duplis_faces_from_mesh);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
}
static const DupliGenerator gen_dupli_faces = {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
OB_DUPLIFACES, /* type */
make_duplis_faces /* make_duplis */
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Particles Implementation (#OB_DUPLIPARTS)
* \{ */
static void make_duplis_particle_system(const DupliContext *ctx, ParticleSystem *psys)
{
Scene *scene = ctx->scene;
Object *par = ctx->object;
eEvaluationMode mode = DEG_get_mode(ctx->depsgraph);
bool for_render = mode == DAG_EVAL_RENDER;
Object *ob = nullptr, **oblist = nullptr;
DupliObject *dob;
ParticleSettings *part;
ParticleData *pa;
ChildParticle *cpa = nullptr;
ParticleKey state;
ParticleCacheKey *cache;
float ctime, scale = 1.0f;
float tmat[4][4], mat[4][4], pamat[4][4], size = 0.0;
int a, b, hair = 0;
int totpart, totchild;
int no_draw_flag = PARS_UNEXIST;
if (psys == nullptr) {
return;
}
part = psys->part;
if (part == nullptr) {
return;
}
if (!psys_check_enabled(par, psys, for_render)) {
return;
}
if (!for_render) {
no_draw_flag |= PARS_NO_DISP;
}
/* NOTE: in old animation system, used parent object's time-offset. */
ctime = DEG_get_ctime(ctx->depsgraph);
totpart = psys->totpart;
totchild = psys->totchild;
if ((for_render || part->draw_as == PART_DRAW_REND) &&
ELEM(part->ren_as, PART_DRAW_OB, PART_DRAW_GR)) {
ParticleSimulationData sim = {nullptr};
sim.depsgraph = ctx->depsgraph;
sim.scene = scene;
sim.ob = par;
sim.psys = psys;
sim.psmd = psys_get_modifier(par, psys);
/* Make sure emitter `imat` is in global coordinates instead of render view coordinates. */
invert_m4_m4(par->imat, par->obmat);
/* First check for loops (particle system object used as dupli-object). */
if (part->ren_as == PART_DRAW_OB) {
if (ELEM(part->instance_object, nullptr, par)) {
return;
}
}
else { /* #PART_DRAW_GR. */
if (part->instance_collection == nullptr) {
return;
}
const ListBase dup_collection_objects = BKE_collection_object_cache_get(
part->instance_collection);
if (BLI_listbase_is_empty(&dup_collection_objects)) {
Collections and groups unification OVERVIEW * In 2.7 terminology, all layers and groups are now collection datablocks. * These collections are nestable, linkable, instanceable, overrideable, .. which opens up new ways to set up scenes and link + override data. * Viewport/render visibility and selectability are now a part of the collection and shared across all view layers and linkable. * View layers define which subset of the scene collection hierarchy is excluded for each. For many workflows one view layer can be used, these are more of an advanced feature now. OUTLINER * The outliner now has a "View Layer" display mode instead of "Collections", which can display the collections and/or objects in the view layer. * In this display mode, collections can be excluded with the right click menu. These will then be greyed out and their objects will be excluded. * To view collections not linked to any scene, the "Blender File" display mode can be used, with the new filtering option to just see Colleciton datablocks. * The outliner right click menus for collections and objects were reorganized. * Drag and drop still needs to be improved. Like before, dragging the icon or text gives different results, we'll unify this later. LINKING AND OVERRIDES * Collections can now be linked into the scene without creating an instance, with the link/append operator or from the collections view in the outliner. * Collections can get static overrides with the right click menu in the outliner, but this is rather unreliable and not clearly communicated at the moment. * We still need to improve the make override operator to turn collection instances into collections with overrides directly in the scene. PERFORMANCE * We tried to make performance not worse than before and improve it in some cases. The main thing that's still a bit slower is multiple scenes, we have to change the layer syncing to only updated affected scenes. * Collections keep a list of their parent collections for faster incremental updates in syncing and caching. * View layer bases are now in a object -> base hash to avoid quadratic time lookups internally and in API functions like visible_get(). VERSIONING * Compatibility with 2.7 files should be improved due to the new visibility controls. Of course users may not want to set up their scenes differently now to avoid having separate layers and groups. * Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero files. There's a few things which are know to be not quite compatible, like nested layer collections inside groups. * The versioning code for 2.8 files is quite complicated, and isolated behind #ifdef so it can be removed at the end of the release cycle. KNOWN ISSUES * The G-key group operators in the 3D viewport were left mostly as is, they need to be modified still to fit better. * Same for the groups panel in the object properties. This needs to be updated still, or perhaps replaced by something better. * Collections must all have a unique name. Less restrictive namespacing is to be done later, we'll have to see how important this is as all objects within the collections must also have a unique name anyway. * Full scene copy and delete scene are exactly doing the right thing yet. Differential Revision: https://developer.blender.org/D3383 https://code.blender.org/2018/05/collections-and-groups/
2018-04-30 15:57:22 +02:00
return;
}
Collections and groups unification OVERVIEW * In 2.7 terminology, all layers and groups are now collection datablocks. * These collections are nestable, linkable, instanceable, overrideable, .. which opens up new ways to set up scenes and link + override data. * Viewport/render visibility and selectability are now a part of the collection and shared across all view layers and linkable. * View layers define which subset of the scene collection hierarchy is excluded for each. For many workflows one view layer can be used, these are more of an advanced feature now. OUTLINER * The outliner now has a "View Layer" display mode instead of "Collections", which can display the collections and/or objects in the view layer. * In this display mode, collections can be excluded with the right click menu. These will then be greyed out and their objects will be excluded. * To view collections not linked to any scene, the "Blender File" display mode can be used, with the new filtering option to just see Colleciton datablocks. * The outliner right click menus for collections and objects were reorganized. * Drag and drop still needs to be improved. Like before, dragging the icon or text gives different results, we'll unify this later. LINKING AND OVERRIDES * Collections can now be linked into the scene without creating an instance, with the link/append operator or from the collections view in the outliner. * Collections can get static overrides with the right click menu in the outliner, but this is rather unreliable and not clearly communicated at the moment. * We still need to improve the make override operator to turn collection instances into collections with overrides directly in the scene. PERFORMANCE * We tried to make performance not worse than before and improve it in some cases. The main thing that's still a bit slower is multiple scenes, we have to change the layer syncing to only updated affected scenes. * Collections keep a list of their parent collections for faster incremental updates in syncing and caching. * View layer bases are now in a object -> base hash to avoid quadratic time lookups internally and in API functions like visible_get(). VERSIONING * Compatibility with 2.7 files should be improved due to the new visibility controls. Of course users may not want to set up their scenes differently now to avoid having separate layers and groups. * Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero files. There's a few things which are know to be not quite compatible, like nested layer collections inside groups. * The versioning code for 2.8 files is quite complicated, and isolated behind #ifdef so it can be removed at the end of the release cycle. KNOWN ISSUES * The G-key group operators in the 3D viewport were left mostly as is, they need to be modified still to fit better. * Same for the groups panel in the object properties. This needs to be updated still, or perhaps replaced by something better. * Collections must all have a unique name. Less restrictive namespacing is to be done later, we'll have to see how important this is as all objects within the collections must also have a unique name anyway. * Full scene copy and delete scene are exactly doing the right thing yet. Differential Revision: https://developer.blender.org/D3383 https://code.blender.org/2018/05/collections-and-groups/
2018-04-30 15:57:22 +02:00
if (BLI_findptr(&dup_collection_objects, par, offsetof(Base, object))) {
return;
}
}
/* If we have a hair particle system, use the path cache. */
if (part->type == PART_HAIR) {
if (psys->flag & PSYS_HAIR_DONE) {
hair = (totchild == 0 || psys->childcache) && psys->pathcache;
}
if (!hair) {
return;
}
/* We use cache, update `totchild` according to cached data. */
totchild = psys->totchildcache;
totpart = psys->totcached;
}
RNG *rng = BLI_rng_new_srandom(31415926u + (unsigned int)psys->seed);
psys->lattice_deform_data = psys_create_lattice_deform_data(&sim);
/* Gather list of objects or single object. */
int totcollection = 0;
const bool use_whole_collection = part->draw & PART_DRAW_WHOLE_GR;
const bool use_collection_count = part->draw & PART_DRAW_COUNT_GR && !use_whole_collection;
if (part->ren_as == PART_DRAW_GR) {
if (use_collection_count) {
psys_find_group_weights(part);
LISTBASE_FOREACH (ParticleDupliWeight *, dw, &part->instance_weights) {
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (
part->instance_collection, object, mode) {
if (dw->ob == object) {
totcollection += dw->count;
break;
}
}
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END;
}
}
else {
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (
part->instance_collection, object, mode) {
(void)object;
Collections and groups unification OVERVIEW * In 2.7 terminology, all layers and groups are now collection datablocks. * These collections are nestable, linkable, instanceable, overrideable, .. which opens up new ways to set up scenes and link + override data. * Viewport/render visibility and selectability are now a part of the collection and shared across all view layers and linkable. * View layers define which subset of the scene collection hierarchy is excluded for each. For many workflows one view layer can be used, these are more of an advanced feature now. OUTLINER * The outliner now has a "View Layer" display mode instead of "Collections", which can display the collections and/or objects in the view layer. * In this display mode, collections can be excluded with the right click menu. These will then be greyed out and their objects will be excluded. * To view collections not linked to any scene, the "Blender File" display mode can be used, with the new filtering option to just see Colleciton datablocks. * The outliner right click menus for collections and objects were reorganized. * Drag and drop still needs to be improved. Like before, dragging the icon or text gives different results, we'll unify this later. LINKING AND OVERRIDES * Collections can now be linked into the scene without creating an instance, with the link/append operator or from the collections view in the outliner. * Collections can get static overrides with the right click menu in the outliner, but this is rather unreliable and not clearly communicated at the moment. * We still need to improve the make override operator to turn collection instances into collections with overrides directly in the scene. PERFORMANCE * We tried to make performance not worse than before and improve it in some cases. The main thing that's still a bit slower is multiple scenes, we have to change the layer syncing to only updated affected scenes. * Collections keep a list of their parent collections for faster incremental updates in syncing and caching. * View layer bases are now in a object -> base hash to avoid quadratic time lookups internally and in API functions like visible_get(). VERSIONING * Compatibility with 2.7 files should be improved due to the new visibility controls. Of course users may not want to set up their scenes differently now to avoid having separate layers and groups. * Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero files. There's a few things which are know to be not quite compatible, like nested layer collections inside groups. * The versioning code for 2.8 files is quite complicated, and isolated behind #ifdef so it can be removed at the end of the release cycle. KNOWN ISSUES * The G-key group operators in the 3D viewport were left mostly as is, they need to be modified still to fit better. * Same for the groups panel in the object properties. This needs to be updated still, or perhaps replaced by something better. * Collections must all have a unique name. Less restrictive namespacing is to be done later, we'll have to see how important this is as all objects within the collections must also have a unique name anyway. * Full scene copy and delete scene are exactly doing the right thing yet. Differential Revision: https://developer.blender.org/D3383 https://code.blender.org/2018/05/collections-and-groups/
2018-04-30 15:57:22 +02:00
totcollection++;
}
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END;
}
oblist = (Object **)MEM_callocN((size_t)totcollection * sizeof(Object *),
"dupcollection object list");
if (use_collection_count) {
a = 0;
LISTBASE_FOREACH (ParticleDupliWeight *, dw, &part->instance_weights) {
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (
part->instance_collection, object, mode) {
if (dw->ob == object) {
for (b = 0; b < dw->count; b++, a++) {
oblist[a] = dw->ob;
}
break;
}
}
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END;
}
}
else {
a = 0;
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (
part->instance_collection, object, mode) {
oblist[a] = object;
a++;
}
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END;
}
}
else {
ob = part->instance_object;
}
if (totchild == 0 || part->draw & PART_DRAW_PARENT) {
a = 0;
}
else {
a = totpart;
}
for (pa = psys->particles; a < totpart + totchild; a++, pa++) {
if (a < totpart) {
/* Handle parent particle. */
if (pa->flag & no_draw_flag) {
continue;
}
#if 0 /* UNUSED */
pa_num = pa->num;
#endif
size = pa->size;
}
else {
/* Handle child particle. */
cpa = &psys->child[a - totpart];
#if 0 /* UNUSED */
pa_num = a;
#endif
size = psys_get_child_size(psys, cpa, ctime, nullptr);
}
/* Some hair paths might be non-existent so they can't be used for duplication. */
if (hair && psys->pathcache &&
((a < totpart && psys->pathcache[a]->segments < 0) ||
(a >= totpart && psys->childcache[a - totpart]->segments < 0))) {
continue;
}
if (part->ren_as == PART_DRAW_GR) {
/* Prevent divide by zero below T28336. */
if (totcollection == 0) {
continue;
}
/* For collections, pick the object based on settings. */
if (part->draw & PART_DRAW_RAND_GR && !use_whole_collection) {
b = BLI_rng_get_int(rng) % totcollection;
}
else {
Collections and groups unification OVERVIEW * In 2.7 terminology, all layers and groups are now collection datablocks. * These collections are nestable, linkable, instanceable, overrideable, .. which opens up new ways to set up scenes and link + override data. * Viewport/render visibility and selectability are now a part of the collection and shared across all view layers and linkable. * View layers define which subset of the scene collection hierarchy is excluded for each. For many workflows one view layer can be used, these are more of an advanced feature now. OUTLINER * The outliner now has a "View Layer" display mode instead of "Collections", which can display the collections and/or objects in the view layer. * In this display mode, collections can be excluded with the right click menu. These will then be greyed out and their objects will be excluded. * To view collections not linked to any scene, the "Blender File" display mode can be used, with the new filtering option to just see Colleciton datablocks. * The outliner right click menus for collections and objects were reorganized. * Drag and drop still needs to be improved. Like before, dragging the icon or text gives different results, we'll unify this later. LINKING AND OVERRIDES * Collections can now be linked into the scene without creating an instance, with the link/append operator or from the collections view in the outliner. * Collections can get static overrides with the right click menu in the outliner, but this is rather unreliable and not clearly communicated at the moment. * We still need to improve the make override operator to turn collection instances into collections with overrides directly in the scene. PERFORMANCE * We tried to make performance not worse than before and improve it in some cases. The main thing that's still a bit slower is multiple scenes, we have to change the layer syncing to only updated affected scenes. * Collections keep a list of their parent collections for faster incremental updates in syncing and caching. * View layer bases are now in a object -> base hash to avoid quadratic time lookups internally and in API functions like visible_get(). VERSIONING * Compatibility with 2.7 files should be improved due to the new visibility controls. Of course users may not want to set up their scenes differently now to avoid having separate layers and groups. * Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero files. There's a few things which are know to be not quite compatible, like nested layer collections inside groups. * The versioning code for 2.8 files is quite complicated, and isolated behind #ifdef so it can be removed at the end of the release cycle. KNOWN ISSUES * The G-key group operators in the 3D viewport were left mostly as is, they need to be modified still to fit better. * Same for the groups panel in the object properties. This needs to be updated still, or perhaps replaced by something better. * Collections must all have a unique name. Less restrictive namespacing is to be done later, we'll have to see how important this is as all objects within the collections must also have a unique name anyway. * Full scene copy and delete scene are exactly doing the right thing yet. Differential Revision: https://developer.blender.org/D3383 https://code.blender.org/2018/05/collections-and-groups/
2018-04-30 15:57:22 +02:00
b = a % totcollection;
}
ob = oblist[b];
}
if (hair) {
/* Hair we handle separate and compute transform based on hair keys. */
if (a < totpart) {
cache = psys->pathcache[a];
psys_get_dupli_path_transform(&sim, pa, nullptr, cache, pamat, &scale);
}
else {
cache = psys->childcache[a - totpart];
psys_get_dupli_path_transform(&sim, nullptr, cpa, cache, pamat, &scale);
}
copy_v3_v3(pamat[3], cache->co);
pamat[3][3] = 1.0f;
}
else {
/* First key. */
state.time = ctime;
if (psys_get_particle_state(&sim, a, &state, 0) == 0) {
continue;
}
float tquat[4];
normalize_qt_qt(tquat, state.rot);
quat_to_mat4(pamat, tquat);
copy_v3_v3(pamat[3], state.co);
pamat[3][3] = 1.0f;
}
if (part->ren_as == PART_DRAW_GR && psys->part->draw & PART_DRAW_WHOLE_GR) {
b = 0;
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (
part->instance_collection, object, mode) {
copy_m4_m4(tmat, oblist[b]->obmat);
/* Apply collection instance offset. */
sub_v3_v3(tmat[3], part->instance_collection->instance_offset);
/* Apply particle scale. */
mul_mat3_m4_fl(tmat, size * scale);
mul_v3_fl(tmat[3], size * scale);
/* Individual particle transform. */
mul_m4_m4m4(mat, pamat, tmat);
dob = make_dupli(ctx, object, mat, a);
dob->particle_system = psys;
psys_get_dupli_texture(psys, part, sim.psmd, pa, cpa, dob->uv, dob->orco);
b++;
}
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END;
}
else {
float obmat[4][4];
copy_m4_m4(obmat, ob->obmat);
float vec[3];
copy_v3_v3(vec, obmat[3]);
zero_v3(obmat[3]);
/* Particle rotation uses x-axis as the aligned axis,
* so pre-rotate the object accordingly. */
if ((part->draw & PART_DRAW_ROTATE_OB) == 0) {
float xvec[3], q[4], size_mat[4][4], original_size[3];
mat4_to_size(original_size, obmat);
size_to_mat4(size_mat, original_size);
xvec[0] = -1.0f;
xvec[1] = xvec[2] = 0;
vec_to_quat(q, xvec, ob->trackflag, ob->upflag);
quat_to_mat4(obmat, q);
obmat[3][3] = 1.0f;
/* Add scaling if requested. */
if ((part->draw & PART_DRAW_NO_SCALE_OB) == 0) {
mul_m4_m4m4(obmat, obmat, size_mat);
}
}
else if (part->draw & PART_DRAW_NO_SCALE_OB) {
/* Remove scaling. */
float size_mat[4][4], original_size[3];
mat4_to_size(original_size, obmat);
size_to_mat4(size_mat, original_size);
invert_m4(size_mat);
mul_m4_m4m4(obmat, obmat, size_mat);
}
mul_m4_m4m4(tmat, pamat, obmat);
mul_mat3_m4_fl(tmat, size * scale);
copy_m4_m4(mat, tmat);
if (part->draw & PART_DRAW_GLOBAL_OB) {
add_v3_v3v3(mat[3], mat[3], vec);
}
dob = make_dupli(ctx, ob, mat, a);
dob->particle_system = psys;
psys_get_dupli_texture(psys, part, sim.psmd, pa, cpa, dob->uv, dob->orco);
}
}
BLI_rng_free(rng);
}
/* Clean up. */
if (oblist) {
MEM_freeN(oblist);
}
if (psys->lattice_deform_data) {
BKE_lattice_deform_data_destroy(psys->lattice_deform_data);
psys->lattice_deform_data = nullptr;
}
}
static void make_duplis_particles(const DupliContext *ctx)
{
/* Particle system take up one level in id, the particles another. */
int psysid;
LISTBASE_FOREACH_INDEX (ParticleSystem *, psys, &ctx->object->particlesystem, psysid) {
/* Particles create one more level for persistent `psys` index. */
DupliContext pctx;
copy_dupli_context(&pctx, ctx, ctx->object, nullptr, psysid);
make_duplis_particle_system(&pctx, psys);
}
}
static const DupliGenerator gen_dupli_particles = {
OB_DUPLIPARTS, /* type */
make_duplis_particles /* make_duplis */
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Generator Selector For The Given Context
* \{ */
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
static const DupliGenerator *get_dupli_generator(const DupliContext *ctx)
{
int transflag = ctx->object->transflag;
int restrictflag = ctx->object->restrictflag;
if ((transflag & OB_DUPLI) == 0 && ctx->object->runtime.geometry_set_eval == nullptr) {
return nullptr;
}
/* Should the dupli's be generated for this object? - Respect restrict flags. */
if (DEG_get_mode(ctx->depsgraph) == DAG_EVAL_RENDER ? (restrictflag & OB_RESTRICT_RENDER) :
(restrictflag & OB_RESTRICT_VIEWPORT)) {
return nullptr;
}
if (ctx->object->runtime.geometry_set_eval != nullptr) {
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
if (BKE_geometry_set_has_instances(ctx->object->runtime.geometry_set_eval)) {
return &gen_dupli_instances_component;
}
}
if (transflag & OB_DUPLIPARTS) {
return &gen_dupli_particles;
}
if (transflag & OB_DUPLIVERTS) {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
if (ctx->object->type == OB_MESH) {
return &gen_dupli_verts;
}
if (ctx->object->type == OB_FONT) {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
return &gen_dupli_verts_font;
}
if (ctx->object->type == OB_POINTCLOUD) {
return &gen_dupli_verts_pointcloud;
}
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
else if (transflag & OB_DUPLIFACES) {
if (ctx->object->type == OB_MESH) {
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
return &gen_dupli_faces;
}
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
Collections and groups unification OVERVIEW * In 2.7 terminology, all layers and groups are now collection datablocks. * These collections are nestable, linkable, instanceable, overrideable, .. which opens up new ways to set up scenes and link + override data. * Viewport/render visibility and selectability are now a part of the collection and shared across all view layers and linkable. * View layers define which subset of the scene collection hierarchy is excluded for each. For many workflows one view layer can be used, these are more of an advanced feature now. OUTLINER * The outliner now has a "View Layer" display mode instead of "Collections", which can display the collections and/or objects in the view layer. * In this display mode, collections can be excluded with the right click menu. These will then be greyed out and their objects will be excluded. * To view collections not linked to any scene, the "Blender File" display mode can be used, with the new filtering option to just see Colleciton datablocks. * The outliner right click menus for collections and objects were reorganized. * Drag and drop still needs to be improved. Like before, dragging the icon or text gives different results, we'll unify this later. LINKING AND OVERRIDES * Collections can now be linked into the scene without creating an instance, with the link/append operator or from the collections view in the outliner. * Collections can get static overrides with the right click menu in the outliner, but this is rather unreliable and not clearly communicated at the moment. * We still need to improve the make override operator to turn collection instances into collections with overrides directly in the scene. PERFORMANCE * We tried to make performance not worse than before and improve it in some cases. The main thing that's still a bit slower is multiple scenes, we have to change the layer syncing to only updated affected scenes. * Collections keep a list of their parent collections for faster incremental updates in syncing and caching. * View layer bases are now in a object -> base hash to avoid quadratic time lookups internally and in API functions like visible_get(). VERSIONING * Compatibility with 2.7 files should be improved due to the new visibility controls. Of course users may not want to set up their scenes differently now to avoid having separate layers and groups. * Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero files. There's a few things which are know to be not quite compatible, like nested layer collections inside groups. * The versioning code for 2.8 files is quite complicated, and isolated behind #ifdef so it can be removed at the end of the release cycle. KNOWN ISSUES * The G-key group operators in the 3D viewport were left mostly as is, they need to be modified still to fit better. * Same for the groups panel in the object properties. This needs to be updated still, or perhaps replaced by something better. * Collections must all have a unique name. Less restrictive namespacing is to be done later, we'll have to see how important this is as all objects within the collections must also have a unique name anyway. * Full scene copy and delete scene are exactly doing the right thing yet. Differential Revision: https://developer.blender.org/D3383 https://code.blender.org/2018/05/collections-and-groups/
2018-04-30 15:57:22 +02:00
else if (transflag & OB_DUPLICOLLECTION) {
return &gen_dupli_collection;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
return nullptr;
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Container Implementation
* \{ */
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
/**
* \return a #ListBase of #DupliObject.
*/
ListBase *object_duplilist(Depsgraph *depsgraph, Scene *sce, Object *ob)
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
{
ListBase *duplilist = (ListBase *)MEM_callocN(sizeof(ListBase), "duplilist");
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
DupliContext ctx;
Vector<Object *> instance_stack;
instance_stack.append(ob);
init_context(&ctx, depsgraph, sce, ob, nullptr, instance_stack);
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
if (ctx.gen) {
ctx.duplilist = duplilist;
ctx.gen->make_duplis(&ctx);
}
Code cleanup and structural improvements for dupli generation. This is a first step toward improving our dupli system. It implements a more generic way of treating the various methods of dupli generation by adding a few structs: * DupliContext holds a number of arguments commonly used in the recursive dupli functions and defines a recursion state for generating sub-duplis (nested groups). It also helps to prevent bloated argument lists. * DupliGenerator is a type struct that unifies the different dupli creation methods (groups, frames, verts, text chars, faces, particles). (As with context there should be no overhead from pointer indirection because everything can still be inlined inside anim.c) Beside making the code more easily understandable this implementation should also help to avoid weird side effects from custom matrix hacks by defining clearly what a generator does. The DupliContext is deliberately made const, so a generator can not simply add hidden matrix or flag modifications that are hard to track down. The result container for the generated duplis is stored in the context instead of being passed explicitly. This means the generators are oblivious to the storage of duplis, all they need to do is call the make_dupli function. This will allow us to implement more efficient ways of storing DupliObject instances, such as MemPools or batches. These can be implemented alongside the current ListBase so we can improve dupli bottlenecks without having to replace each and every dupli use case at once. Differential Revision: https://developer.blender.org/D189
2014-01-21 12:11:34 +01:00
return duplilist;
}
void free_object_duplilist(ListBase *lb)
{
BLI_freelistN(lb);
MEM_freeN(lb);
}
/** \} */