This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/freestyle/intern/scene_graph/NodeTransform.cpp

167 lines
4.1 KiB
C++
Raw Normal View History

2008-04-30 15:41:54 +00:00
//
// Copyright (C) : Please refer to the COPYRIGHT file distributed
// with this source distribution.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
///////////////////////////////////////////////////////////////////////////////
#include "../system/FreestyleConfig.h"
#include "NodeTransform.h"
void NodeTransform::Translate(real x, real y, real z)
{
_Matrix(0, 3) += x;
_Matrix(1, 3) += y;
_Matrix(2, 3) += z;
}
void NodeTransform::Rotate(real iAngle, real x, real y, real z)
{
//Normalize the x,y,z vector;
real norm = (real)sqrt(x*x+y*y+z*z);
if(0 == norm)
return;
x /= norm;
y /= norm;
z /= norm;
// find the corresponding matrix with the Rodrigues formula:
// R = I + sin(iAngle)*Ntilda + (1-cos(iAngle))*Ntilda*Ntilda
Matrix33r Ntilda;
Ntilda(0,0) = Ntilda(1,1) = Ntilda(2,2) = 0.f;
Ntilda(0,1) = -z;
Ntilda(0,2) = y;
Ntilda(1,0) = z;
Ntilda(1,2) = -x;
Ntilda(2,0) = -y;
Ntilda(2,1) = x;
const Matrix33r Ntilda2(Ntilda * Ntilda);
const real sinAngle = (real)sin((iAngle/180.f)*M_PI);
const real cosAngle = (real)cos((iAngle/180.f)*M_PI);
Matrix33r NS(Ntilda*sinAngle);
Matrix33r NC(Ntilda2*(1.f-cosAngle));
Matrix33r R;
R = Matrix33r::identity();
R += NS + NC;
//R4 is the corresponding 4x4 matrix
Matrix44r R4;
R4 = Matrix44r::identity();
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
R4(i,j) = R(i,j);
// Finally, we multiply our current matrix by R4:
Matrix44r mat_tmp(_Matrix);
_Matrix = mat_tmp * R4;
}
void NodeTransform::Scale(real x, real y, real z)
{
_Matrix(0,0) *= x;
_Matrix(1,1) *= y;
_Matrix(2,2) *= z;
_Scaled = true;
}
void NodeTransform::MultiplyMatrix(const Matrix44r &iMatrix)
{
Matrix44r mat_tmp(_Matrix);
_Matrix = mat_tmp * iMatrix;
}
void NodeTransform::SetMatrix(const Matrix44r &iMatrix)
{
_Matrix = iMatrix;
if(isScaled(iMatrix))
_Scaled = true;
}
void NodeTransform::accept(SceneVisitor& v) {
v.visitNodeTransform(*this);
v.visitNodeTransformBefore(*this);
for(vector<Node *>::iterator node=_Children.begin(), end=_Children.end();
node!=end;
node++)
(*node)->accept(v);
v.visitNodeTransformAfter(*this);
}
void NodeTransform::AddBBox(const BBox<Vec3r>& iBBox)
{
Vec3r oldMin(iBBox.getMin());
Vec3r oldMax(iBBox.getMax());
// compute the 8 corners of the bbox
HVec3r box[8];
box[0] = HVec3r(iBBox.getMin());
box[1] = HVec3r(oldMax[0], oldMin[1], oldMin[2]);
box[2] = HVec3r(oldMax[0], oldMax[1], oldMin[2]);
box[3] = HVec3r(oldMin[0], oldMax[1], oldMin[2]);
box[4] = HVec3r(oldMin[0], oldMin[1], oldMax[2]);
box[5] = HVec3r(oldMax[0], oldMin[1], oldMax[2]);
box[6] = HVec3r(oldMax[0], oldMax[1], oldMax[2]);
box[7] = HVec3r(oldMin[0], oldMax[1], oldMax[2]);
// Computes the transform iBBox
HVec3r tbox[8];
unsigned i;
for(i = 0; i < 8; i++)
tbox[i] = _Matrix * box[i];
Vec3r newMin(tbox[0]);
Vec3r newMax(tbox[0]);
for (i=0; i<8; i++)
{
for (unsigned int j=0; j<3; j++)
{
if (newMin[j] > tbox[i][j])
newMin[j] = tbox[i][j];
if (newMax[j] < tbox[i][j])
newMax[j] = tbox[i][j];
}
}
BBox<Vec3r> transformBox(newMin, newMax);
Node::AddBBox(transformBox);
}
bool NodeTransform::isScaled(const Matrix44r &M)
{
for(unsigned int j=0; j<3; j++)
{
real norm = 0;
for(unsigned int i=0; i<3; i++)
{
norm += M(i,j)*M(i,j);
}
if((norm > 1.01) || (norm < 0.99))
return true;
}
return false;
}