This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/particle_system.c

4609 lines
118 KiB
C
Raw Normal View History

/* particle_system.c
*
*
* $Id: particle_system.c $
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2007 by Janne Karhu.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_particle_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_force.h"
#include "DNA_object_types.h"
#include "DNA_material_types.h"
#include "DNA_ipo_types.h"
#include "DNA_curve_types.h"
#include "DNA_group_types.h"
#include "DNA_scene_types.h"
#include "DNA_texture_types.h"
#include "BLI_rand.h"
#include "BLI_jitter.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "BLI_kdtree.h"
#include "BLI_linklist.h"
#include "BLI_threads.h"
#include "BKE_anim.h"
#include "BKE_bad_level_calls.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_displist.h"
#include "BKE_particle.h"
#include "BKE_global.h"
#include "BKE_utildefines.h"
#include "BKE_DerivedMesh.h"
#include "BKE_object.h"
#include "BKE_material.h"
#include "BKE_ipo.h"
#include "BKE_softbody.h"
#include "BKE_depsgraph.h"
#include "BKE_lattice.h"
#include "BKE_pointcache.h"
#include "BKE_mesh.h"
#include "BKE_modifier.h"
#include "BSE_headerbuttons.h"
#include "blendef.h"
#include "RE_shader_ext.h"
/************************************************/
/* Reacting to system events */
/************************************************/
static int get_current_display_percentage(ParticleSystem *psys)
{
ParticleSettings *part=psys->part;
if(psys->renderdata || (part->child_nbr && part->childtype))
return 100;
if(part->phystype==PART_PHYS_KEYED){
if(psys->flag & PSYS_FIRST_KEYED)
return psys->part->disp;
else
return 100;
}
else
return psys->part->disp;
}
static void alloc_particles(Object *ob, ParticleSystem *psys, int new_totpart)
{
ParticleData *newpars = 0, *pa;
int i, totpart, totsaved = 0;
if(new_totpart<0) {
if(psys->part->distr==PART_DISTR_GRID) {
totpart= psys->part->grid_res;
totpart*=totpart*totpart;
}
else
totpart=psys->part->totpart;
}
else
totpart=new_totpart;
if(totpart)
newpars= MEM_callocN(totpart*sizeof(ParticleData), "particles");
if(psys->particles) {
totsaved=MIN2(psys->totpart,totpart);
/*save old pars*/
if(totsaved)
memcpy(newpars,psys->particles,totsaved*sizeof(ParticleData));
for(i=totsaved, pa=psys->particles+totsaved; i<psys->totpart; i++, pa++)
if(pa->hair) MEM_freeN(pa->hair);
MEM_freeN(psys->particles);
}
psys->particles=newpars;
if(psys->child) {
MEM_freeN(psys->child);
psys->child=0;
psys->totchild=0;
}
psys->totpart=totpart;
}
static int get_alloc_child_particles_tot(ParticleSystem *psys)
{
int child_nbr;
if(!psys->part->childtype)
return 0;
child_nbr= (psys->renderdata)? psys->part->ren_child_nbr: psys->part->child_nbr;
return psys->totpart*child_nbr;
}
static void alloc_child_particles(ParticleSystem *psys, int tot)
{
if(psys->child){
MEM_freeN(psys->child);
psys->child=0;
psys->totchild=0;
}
if(psys->part->childtype) {
psys->totchild= tot;
if(psys->totchild)
psys->child= MEM_callocN(psys->totchild*sizeof(ChildParticle), "child_particles");
}
}
/* only run this if from == PART_FROM_FACE */
void psys_calc_dmfaces(Object *ob, DerivedMesh *dm, ParticleSystem *psys)
{
/* use for building derived mesh face-origin info,
node - the allocated links - total derived mesh face count
node_array - is the array of nodes alligned with the base mesh's faces, so each original face can reference its derived faces
*/
Mesh *me= (Mesh*)ob->data;
ParticleData *pa= 0;
int p;
/* CACHE LOCATIONS */
if(!dm->deformedOnly) {
/* Will use later to speed up subsurf/derivedmesh */
int tot_dm_face = dm->getNumFaces(dm);
int totface = me->totface;
int *origindex = DM_get_face_data_layer(dm, CD_ORIGINDEX);
int i;
LinkNode *node, *node_dm_faces, **node_array;
node_dm_faces = node = MEM_callocN(sizeof(LinkNode)*tot_dm_face, "faceindicies");
node_array = MEM_callocN(sizeof(LinkNode *)*totface, "faceindicies array");
for(i=0; i < tot_dm_face; i++, origindex++, node++) {
node->link = (void *)i; // or use the index?
if(*origindex != -1) {
if(node_array[*origindex]) {
/* prepend */
node->next = node_array[*origindex];
node_array[*origindex] = node;
} else {
node_array[*origindex] = node;
}
}
}
/* cache the faces! */
for(p=0,pa=psys->particles; p<psys->totpart; p++,pa++) {
//i = pa->num;
//if (i<totface) // should never happen
i = psys_particle_dm_face_lookup(ob, dm, pa->num, pa->fuv, node_array[pa->num]);
pa->num_dmcache = i;
}
//for (i=0; i < totface; i++) {
// i = psys_particle_dm_face_lookup(ob, dm, node_array[], fuv, (LinkNode*)NULL);
//}
MEM_freeN(node_array);
MEM_freeN(node_dm_faces);
} else {
/* set the num_dmcache to an invalid value, just incase */
/* TODO PARTICLE, make the following line unnecessary, each function should know to use the num or num_dmcache */
/*
for(p=0,pa=psys->particles; p<psys->totpart; p++,pa++) {
pa->num_dmcache = pa->num;
}
*/
for(p=0,pa=psys->particles; p<psys->totpart; p++,pa++) {
pa->num_dmcache = -1;
}
}
}
static void distribute_particles_in_grid(DerivedMesh *dm, ParticleSystem *psys)
{
ParticleData *pa=0;
float min[3], max[3], delta[3], d;
MVert *mv, *mvert = dm->getVertDataArray(dm,0);
int totvert=dm->getNumVerts(dm), from=psys->part->from;
int i, j, k, p, res=psys->part->grid_res, size[3], axis;
mv=mvert;
/* find bounding box of dm */
VECCOPY(min,mv->co);
VECCOPY(max,mv->co);
mv++;
for(i=1; i<totvert; i++, mv++){
min[0]=MIN2(min[0],mv->co[0]);
min[1]=MIN2(min[1],mv->co[1]);
min[2]=MIN2(min[2],mv->co[2]);
max[0]=MAX2(max[0],mv->co[0]);
max[1]=MAX2(max[1],mv->co[1]);
max[2]=MAX2(max[2],mv->co[2]);
}
VECSUB(delta,max,min);
/* determine major axis */
axis = (delta[0]>=delta[1])?0:((delta[1]>=delta[2])?1:2);
d = delta[axis]/(float)res;
size[axis]=res;
size[(axis+1)%3]=(int)ceil(delta[(axis+1)%3]/d);
size[(axis+2)%3]=(int)ceil(delta[(axis+2)%3]/d);
/* float errors grrr.. */
size[(axis+1)%3] = MIN2(size[(axis+1)%3],res);
size[(axis+2)%3] = MIN2(size[(axis+2)%3],res);
min[0]+=d/2.0f;
min[1]+=d/2.0f;
min[2]+=d/2.0f;
for(i=0,p=0,pa=psys->particles; i<res; i++){
for(j=0; j<res; j++){
for(k=0; k<res; k++,p++,pa++){
pa->fuv[0]=min[0]+(float)i*d;
pa->fuv[1]=min[1]+(float)j*d;
pa->fuv[2]=min[2]+(float)k*d;
pa->flag |= PARS_UNEXIST;
pa->loop=0; /* abused in volume calculation */
}
}
}
/* enable particles near verts/edges/faces/inside surface */
if(from==PART_FROM_VERT){
float vec[3];
pa=psys->particles;
min[0]-=d/2.0f;
min[1]-=d/2.0f;
min[2]-=d/2.0f;
for(i=0,mv=mvert; i<totvert; i++,mv++){
VecSubf(vec,mv->co,min);
vec[0]/=delta[0];
vec[1]/=delta[1];
vec[2]/=delta[2];
(pa +((int)(vec[0]*(size[0]-1))*res
+(int)(vec[1]*(size[1]-1)))*res
+(int)(vec[2]*(size[2]-1)))->flag &= ~PARS_UNEXIST;
}
}
else if(ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)){
float co1[3], co2[3];
MFace *mface=0;
float v1[3], v2[3], v3[3], v4[4], lambda;
int a, a1, a2, a0mul, a1mul, a2mul, totface;
int amax= from==PART_FROM_FACE ? 3 : 1;
totface=dm->getNumFaces(dm);
mface=dm->getFaceDataArray(dm,CD_MFACE);
for(a=0; a<amax; a++){
if(a==0){ a0mul=res*res; a1mul=res; a2mul=1; }
else if(a==1){ a0mul=res; a1mul=1; a2mul=res*res; }
else{ a0mul=1; a1mul=res*res; a2mul=res; }
for(a1=0; a1<size[(a+1)%3]; a1++){
for(a2=0; a2<size[(a+2)%3]; a2++){
mface=dm->getFaceDataArray(dm,CD_MFACE);
pa=psys->particles + a1*a1mul + a2*a2mul;
VECCOPY(co1,pa->fuv);
co1[a]-=d/2.0f;
VECCOPY(co2,co1);
co2[a]+=delta[a] + 0.001f*d;
co1[a]-=0.001f*d;
/* lets intersect the faces */
for(i=0; i<totface; i++,mface++){
VECCOPY(v1,mvert[mface->v1].co);
VECCOPY(v2,mvert[mface->v2].co);
VECCOPY(v3,mvert[mface->v3].co);
if(AxialLineIntersectsTriangle(a,co1, co2, v2, v3, v1, &lambda)){
if(from==PART_FROM_FACE)
(pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
else /* store number of intersections */
(pa+(int)(lambda*size[a])*a0mul)->loop++;
}
if(mface->v4){
VECCOPY(v4,mvert[mface->v4].co);
if(AxialLineIntersectsTriangle(a,co1, co2, v4, v1, v3, &lambda)){
if(from==PART_FROM_FACE)
(pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
else
(pa+(int)(lambda*size[a])*a0mul)->loop++;
}
}
}
if(from==PART_FROM_VOLUME){
int in=pa->loop%2;
if(in) pa->loop++;
for(i=0; i<size[0]; i++){
if(in || (pa+i*a0mul)->loop%2)
(pa+i*a0mul)->flag &= ~PARS_UNEXIST;
/* odd intersections == in->out / out->in */
/* even intersections -> in stays same */
in=(in + (pa+i*a0mul)->loop) % 2;
}
}
}
}
}
}
if(psys->part->flag & PART_GRID_INVERT){
for(i=0,pa=psys->particles; i<size[0]; i++){
for(j=0; j<size[1]; j++){
pa=psys->particles + res*(i*res + j);
for(k=0; k<size[2]; k++, pa++){
pa->flag ^= PARS_UNEXIST;
}
}
}
}
}
/* modified copy from effect.c */
static void init_mv_jit(float *jit, int num, int seed2, float amount)
{
RNG *rng;
float *jit2, x, rad1, rad2, rad3;
int i, num2;
if(num==0) return;
rad1= (float)(1.0/sqrt((float)num));
rad2= (float)(1.0/((float)num));
rad3= (float)sqrt((float)num)/((float)num);
rng = rng_new(31415926 + num + seed2);
x= 0;
num2 = 2 * num;
for(i=0; i<num2; i+=2) {
jit[i]= x + amount*rad1*(0.5f - rng_getFloat(rng));
jit[i+1]= i/(2.0f*num) + amount*rad1*(0.5f - rng_getFloat(rng));
jit[i]-= (float)floor(jit[i]);
jit[i+1]-= (float)floor(jit[i+1]);
x+= rad3;
x -= (float)floor(x);
}
jit2= MEM_mallocN(12 + 2*sizeof(float)*num, "initjit");
for (i=0 ; i<4 ; i++) {
BLI_jitterate1(jit, jit2, num, rad1);
BLI_jitterate1(jit, jit2, num, rad1);
BLI_jitterate2(jit, jit2, num, rad2);
}
MEM_freeN(jit2);
rng_free(rng);
}
static void psys_uv_to_w(float u, float v, int quad, float *w)
{
float vert[4][3], co[3];
if(!quad) {
if(u+v > 1.0f)
v= 1.0f-v;
else
u= 1.0f-u;
}
vert[0][0]= 0.0f; vert[0][1]= 0.0f; vert[0][2]= 0.0f;
vert[1][0]= 1.0f; vert[1][1]= 0.0f; vert[1][2]= 0.0f;
vert[2][0]= 1.0f; vert[2][1]= 1.0f; vert[2][2]= 0.0f;
co[0]= u;
co[1]= v;
co[2]= 0.0f;
if(quad) {
vert[3][0]= 0.0f; vert[3][1]= 1.0f; vert[3][2]= 0.0f;
MeanValueWeights(vert, 4, co, w);
}
else {
MeanValueWeights(vert, 3, co, w);
w[3]= 0.0f;
}
}
static int binary_search_distribution(float *sum, int n, float value)
{
int mid, low=0, high=n;
while(low <= high) {
mid= (low + high)/2;
if(sum[mid] <= value && value <= sum[mid+1])
return mid;
else if(sum[mid] > value)
high= mid - 1;
else if(sum[mid] < value)
low= mid + 1;
else
return mid;
}
return low;
}
/* note: this function must be thread safe, for from == PART_FROM_CHILD */
#define ONLY_WORKING_WITH_PA_VERTS 0
void psys_thread_distribute_particle(ParticleThread *thread, ParticleData *pa, ChildParticle *cpa, int p)
{
ParticleThreadContext *ctx= thread->ctx;
Object *ob= ctx->ob;
DerivedMesh *dm= ctx->dm;
ParticleData *tpa;
ParticleSettings *part= ctx->psys->part;
float *v1, *v2, *v3, *v4, nor[3], orco1[3], co1[3], co2[3], nor1[3], ornor1[3];
float cur_d, min_d;
int from= ctx->from;
int cfrom= ctx->cfrom;
int distr= ctx->distr;
int i, intersect, tot;
if(from == PART_FROM_VERT) {
/* TODO_PARTICLE - use original index */
pa->num= ctx->index[p];
pa->fuv[0] = 1.0f;
pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0;
//pa->verts[0] = pa->verts[1] = pa->verts[2] = 0;
#if ONLY_WORKING_WITH_PA_VERTS
if(ctx->tree){
KDTreeNearest ptn[3];
int w, maxw;
psys_particle_on_dm(ctx->ob,ctx->dm,from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co1,0,0,0,orco1,0);
transform_mesh_orco_verts((Mesh*)ob->data, &orco1, 1, 1);
maxw = BLI_kdtree_find_n_nearest(ctx->tree,3,orco1,NULL,ptn);
for(w=0; w<maxw; w++){
pa->verts[w]=ptn->num;
}
}
#endif
}
else if(from == PART_FROM_FACE || from == PART_FROM_VOLUME) {
MFace *mface;
pa->num = i = ctx->index[p];
mface = dm->getFaceData(dm,i,CD_MFACE);
switch(distr){
case PART_DISTR_JIT:
ctx->jitoff[i] = fmod(ctx->jitoff[i],(float)ctx->jitlevel);
psys_uv_to_w(ctx->jit[2*(int)ctx->jitoff[i]], ctx->jit[2*(int)ctx->jitoff[i]+1], mface->v4, pa->fuv);
ctx->jitoff[i]++;
//ctx->jitoff[i]=(float)fmod(ctx->jitoff[i]+ctx->maxweight/ctx->weight[i],(float)ctx->jitlevel);
break;
case PART_DISTR_RAND:
psys_uv_to_w(rng_getFloat(thread->rng), rng_getFloat(thread->rng), mface->v4, pa->fuv);
break;
}
pa->foffset= 0.0f;
/*
pa->verts[0] = mface->v1;
pa->verts[1] = mface->v2;
pa->verts[2] = mface->v3;
*/
/* experimental */
if(from==PART_FROM_VOLUME){
MVert *mvert=dm->getVertDataArray(dm,CD_MVERT);
tot=dm->getNumFaces(dm);
psys_interpolate_face(mvert,mface,0,0,pa->fuv,co1,nor,0,0,0,0);
Normalize(nor);
VecMulf(nor,-100.0);
VECADD(co2,co1,nor);
min_d=2.0;
intersect=0;
for(i=0,mface=dm->getFaceDataArray(dm,CD_MFACE); i<tot; i++,mface++){
if(i==pa->num) continue;
v1=mvert[mface->v1].co;
v2=mvert[mface->v2].co;
v3=mvert[mface->v3].co;
if(LineIntersectsTriangle(co1, co2, v2, v3, v1, &cur_d, 0)){
if(cur_d<min_d){
min_d=cur_d;
pa->foffset=cur_d*50.0f; /* to the middle of volume */
intersect=1;
}
}
if(mface->v4){
v4=mvert[mface->v4].co;
if(LineIntersectsTriangle(co1, co2, v4, v1, v3, &cur_d, 0)){
if(cur_d<min_d){
min_d=cur_d;
pa->foffset=cur_d*50.0f; /* to the middle of volume */
intersect=1;
}
}
}
}
if(intersect==0)
pa->foffset=0.0;
else switch(distr){
case PART_DISTR_JIT:
pa->foffset*= ctx->jit[2*(int)ctx->jitoff[i]];
break;
case PART_DISTR_RAND:
pa->foffset*=BLI_frand();
break;
}
}
}
else if(from == PART_FROM_PARTICLE) {
//pa->verts[0]=0; /* not applicable */
//pa->verts[1]=0;
//pa->verts[2]=0;
tpa=ctx->tpars+ctx->index[p];
pa->num=ctx->index[p];
pa->fuv[0]=tpa->fuv[0];
pa->fuv[1]=tpa->fuv[1];
/* abusing foffset a little for timing in near reaction */
pa->foffset=ctx->weight[ctx->index[p]];
ctx->weight[ctx->index[p]]+=ctx->maxweight;
}
else if(from == PART_FROM_CHILD) {
MFace *mf;
if(ctx->index[p] < 0) {
cpa->num=0;
cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]=0.0f;
cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
cpa->rand[0]=cpa->rand[1]=cpa->rand[2]=0.0f;
return;
}
mf= dm->getFaceData(dm, ctx->index[p], CD_MFACE);
//switch(distr){
// case PART_DISTR_JIT:
// i=index[p];
// psys_uv_to_w(ctx->jit[2*(int)ctx->jitoff[i]], ctx->jit[2*(int)ctx->jitoff[i]+1], mf->v4, cpa->fuv);
// ctx->jitoff[i]=(float)fmod(ctx->jitoff[i]+ctx->maxweight/ctx->weight[i],(float)ctx->jitlevel);
// break;
// case PART_DISTR_RAND:
psys_uv_to_w(rng_getFloat(thread->rng), rng_getFloat(thread->rng), mf->v4, cpa->fuv);
// break;
//}
cpa->rand[0] = rng_getFloat(thread->rng);
cpa->rand[1] = rng_getFloat(thread->rng);
cpa->rand[2] = rng_getFloat(thread->rng);
cpa->num = ctx->index[p];
if(ctx->tree){
KDTreeNearest ptn[10];
int w,maxw, do_seams;
float maxd,mind,dd,totw=0.0;
int parent[10];
float pweight[10];
do_seams= (part->flag&PART_CHILD_SEAMS && ctx->seams);
psys_particle_on_dm(ob,dm,cfrom,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co1,nor1,0,0,orco1,ornor1);
transform_mesh_orco_verts((Mesh*)ob->data, &orco1, 1, 1);
maxw = BLI_kdtree_find_n_nearest(ctx->tree,(do_seams)?10:4,orco1,ornor1,ptn);
maxd=ptn[maxw-1].dist;
mind=ptn[0].dist;
dd=maxd-mind;
/* the weights here could be done better */
for(w=0; w<maxw; w++){
parent[w]=ptn[w].index;
pweight[w]=(float)pow(2.0,(double)(-6.0f*ptn[w].dist/maxd));
//pweight[w]= (1.0f - ptn[w].dist*ptn[w].dist/(maxd*maxd));
//pweight[w] *= pweight[w];
}
for(;w<10; w++){
parent[w]=-1;
pweight[w]=0.0f;
}
if(do_seams){
ParticleSeam *seam=ctx->seams;
float temp[3],temp2[3],tan[3];
float inp,cur_len,min_len=10000.0f;
int min_seam=0, near_vert=0;
/* find closest seam */
for(i=0; i<ctx->totseam; i++, seam++){
VecSubf(temp,co1,seam->v0);
inp=Inpf(temp,seam->dir)/seam->length2;
if(inp<0.0f){
cur_len=VecLenf(co1,seam->v0);
}
else if(inp>1.0f){
cur_len=VecLenf(co1,seam->v1);
}
else{
VecCopyf(temp2,seam->dir);
VecMulf(temp2,inp);
cur_len=VecLenf(temp,temp2);
}
if(cur_len<min_len){
min_len=cur_len;
min_seam=i;
if(inp<0.0f) near_vert=-1;
else if(inp>1.0f) near_vert=1;
else near_vert=0;
}
}
seam=ctx->seams+min_seam;
VecCopyf(temp,seam->v0);
if(near_vert){
if(near_vert==-1)
VecSubf(tan,co1,seam->v0);
else{
VecSubf(tan,co1,seam->v1);
VecCopyf(temp,seam->v1);
}
Normalize(tan);
}
else{
VecCopyf(tan,seam->tan);
VecSubf(temp2,co1,temp);
if(Inpf(tan,temp2)<0.0f)
VecMulf(tan,-1.0f);
}
for(w=0; w<maxw; w++){
VecSubf(temp2,ptn[w].co,temp);
if(Inpf(tan,temp2)<0.0f){
parent[w]=-1;
pweight[w]=0.0f;
}
}
}
for(w=0,i=0; w<maxw && i<4; w++){
if(parent[w]>=0){
cpa->pa[i]=parent[w];
cpa->w[i]=pweight[w];
totw+=pweight[w];
i++;
}
}
for(;i<4; i++){
cpa->pa[i]=-1;
cpa->w[i]=0.0f;
}
if(totw>0.0f) for(w=0; w<4; w++)
cpa->w[w]/=totw;
cpa->parent=cpa->pa[0];
}
}
}
void *exec_distribution(void *data)
{
ParticleThread *thread= (ParticleThread*)data;
ParticleSystem *psys= thread->ctx->psys;
ParticleData *pa;
ChildParticle *cpa;
int p, totpart;
if(thread->ctx->from == PART_FROM_CHILD) {
totpart= psys->totchild;
cpa= psys->child;
for(p=0; p<totpart; p++, cpa++) {
if(thread->ctx->skip) /* simplification skip */
rng_skip(thread->rng, 5*thread->ctx->skip[p]);
if((p+thread->num) % thread->tot == 0)
psys_thread_distribute_particle(thread, NULL, cpa, p);
else /* thread skip */
rng_skip(thread->rng, 5);
}
}
else {
totpart= psys->totpart;
pa= psys->particles + thread->num;
for(p=thread->num; p<totpart; p+=thread->tot, pa+=thread->tot)
psys_thread_distribute_particle(thread, pa, NULL, p);
}
return 0;
}
/* creates a distribution of coordinates on a DerivedMesh */
/* */
/* 1. lets check from what we are emitting */
/* 2. now we know that we have something to emit from so */
/* let's calculate some weights */
/* 2.1 from even distribution */
/* 2.2 and from vertex groups */
/* 3. next we determine the indexes of emitting thing that */
/* the particles will have */
/* 4. let's do jitter if we need it */
/* 5. now we're ready to set the indexes & distributions to */
/* the particles */
/* 6. and we're done! */
/* This is to denote functionality that does not yet work with mesh - only derived mesh */
int psys_threads_init_distribution(ParticleThread *threads, DerivedMesh *finaldm, int from)
{
ParticleThreadContext *ctx= threads[0].ctx;
Object *ob= ctx->ob;
ParticleSystem *psys= ctx->psys;
Object *tob;
ParticleData *pa=0, *tpars= 0;
ParticleSettings *part;
ParticleSystem *tpsys;
ParticleSeam *seams= 0;
ChildParticle *cpa=0;
KDTree *tree=0;
DerivedMesh *dm= NULL;
float *jit= NULL;
int i, seed, p=0, totthread= threads[0].tot;
int no_distr=0, cfrom=0;
int tot=0, totpart, *index=0, children=0, totseam=0;
//int *vertpart=0;
int jitlevel= 1, distr;
float *weight=0,*sum=0,*jitoff=0;
float cur, maxweight=0.0, tweight, totweight, co[3], nor[3], orco[3], ornor[3];
if(ob==0 || psys==0 || psys->part==0)
return 0;
part=psys->part;
totpart=psys->totpart;
if(totpart==0)
return 0;
if (!finaldm->deformedOnly && !CustomData_has_layer( &finaldm->faceData, CD_ORIGINDEX ) ) {
error("Can't paint with the current modifier stack, disable destructive modifiers");
return 0;
}
BLI_srandom(31415926 + psys->seed);
if(from==PART_FROM_CHILD){
distr=PART_DISTR_RAND;
if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES){
dm= finaldm;
children=1;
tree=BLI_kdtree_new(totpart);
for(p=0,pa=psys->particles; p<totpart; p++,pa++){
psys_particle_on_dm(ob,dm,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,orco,ornor);
transform_mesh_orco_verts((Mesh*)ob->data, &orco, 1, 1);
BLI_kdtree_insert(tree, p, orco, ornor);
}
BLI_kdtree_balance(tree);
totpart=get_alloc_child_particles_tot(psys);
cfrom=from=PART_FROM_FACE;
if(part->flag&PART_CHILD_SEAMS){
MEdge *ed, *medge=dm->getEdgeDataArray(dm,CD_MEDGE);
MVert *mvert=dm->getVertDataArray(dm,CD_MVERT);
int totedge=dm->getNumEdges(dm);
for(p=0, ed=medge; p<totedge; p++,ed++)
if(ed->flag&ME_SEAM)
totseam++;
if(totseam){
ParticleSeam *cur_seam=seams=MEM_callocN(totseam*sizeof(ParticleSeam),"Child Distribution Seams");
float temp[3],temp2[3];
for(p=0, ed=medge; p<totedge; p++,ed++){
if(ed->flag&ME_SEAM){
VecCopyf(cur_seam->v0,(mvert+ed->v1)->co);
VecCopyf(cur_seam->v1,(mvert+ed->v2)->co);
VecSubf(cur_seam->dir,cur_seam->v1,cur_seam->v0);
cur_seam->length2=VecLength(cur_seam->dir);
cur_seam->length2*=cur_seam->length2;
temp[0]=(float)((mvert+ed->v1)->no[0]);
temp[1]=(float)((mvert+ed->v1)->no[1]);
temp[2]=(float)((mvert+ed->v1)->no[2]);
temp2[0]=(float)((mvert+ed->v2)->no[0]);
temp2[1]=(float)((mvert+ed->v2)->no[1]);
temp2[2]=(float)((mvert+ed->v2)->no[2]);
VecAddf(cur_seam->nor,temp,temp2);
Normalize(cur_seam->nor);
Crossf(cur_seam->tan,cur_seam->dir,cur_seam->nor);
Normalize(cur_seam->tan);
cur_seam++;
}
}
}
}
}
else{
/* no need to figure out distribution */
int child_nbr= (psys->renderdata)? part->ren_child_nbr: part->child_nbr;
totpart= get_alloc_child_particles_tot(psys);
alloc_child_particles(psys, totpart);
cpa=psys->child;
for(i=0; i<child_nbr; i++){
for(p=0; p<psys->totpart; p++,cpa++){
float length=2.0;
cpa->parent=p;
/* create even spherical distribution inside unit sphere */
while(length>=1.0f){
cpa->fuv[0]=2.0f*BLI_frand()-1.0f;
cpa->fuv[1]=2.0f*BLI_frand()-1.0f;
cpa->fuv[2]=2.0f*BLI_frand()-1.0f;
length=VecLength(cpa->fuv);
}
cpa->rand[0]=BLI_frand();
cpa->rand[1]=BLI_frand();
cpa->rand[2]=BLI_frand();
cpa->num=-1;
}
}
return 0;
}
}
else{
dm= CDDM_from_mesh((Mesh*)ob->data, ob);
/* special handling of grid distribution */
if(part->distr==PART_DISTR_GRID){
distribute_particles_in_grid(dm,psys);
dm->release(dm);
return 0;
}
/* we need orco for consistent distributions */
DM_add_vert_layer(dm, CD_ORCO, CD_ASSIGN, get_mesh_orco_verts(ob));
distr=part->distr;
pa=psys->particles;
if(from==PART_FROM_VERT){
MVert *mv= dm->getVertDataArray(dm, CD_MVERT);
float (*orcodata)[3]= dm->getVertDataArray(dm, CD_ORCO);
int totvert = dm->getNumVerts(dm);
tree=BLI_kdtree_new(totvert);
for(p=0; p<totvert; p++){
if(orcodata) {
VECCOPY(co,orcodata[p])
transform_mesh_orco_verts((Mesh*)ob->data, &co, 1, 1);
}
else
VECCOPY(co,mv[p].co)
BLI_kdtree_insert(tree,p,co,NULL);
}
BLI_kdtree_balance(tree);
}
}
/* 1. */
switch(from){
case PART_FROM_VERT:
tot = dm->getNumVerts(dm);
break;
case PART_FROM_VOLUME:
case PART_FROM_FACE:
tot = dm->getNumFaces(dm);
break;
case PART_FROM_PARTICLE:
if(psys->target_ob)
tob=psys->target_ob;
else
tob=ob;
if((tpsys=BLI_findlink(&tob->particlesystem,psys->target_psys-1))){
tpars=tpsys->particles;
tot=tpsys->totpart;
}
break;
}
if(tot==0){
no_distr=1;
if(children){
fprintf(stderr,"Particle child distribution error: Nothing to emit from!\n");
for(p=0,cpa=psys->child; p<totpart; p++,cpa++){
cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]= 0.0;
cpa->foffset= 0.0f;
cpa->parent=0;
cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
cpa->num= -1;
}
}
else {
fprintf(stderr,"Particle distribution error: Nothing to emit from!\n");
for(p=0,pa=psys->particles; p<totpart; p++,pa++){
pa->fuv[0]=pa->fuv[1]=pa->fuv[2]= pa->fuv[3]= 0.0;
pa->foffset= 0.0f;
pa->num= -1;
}
}
if(dm != finaldm) dm->release(dm);
return 0;
}
/* 2. */
weight=MEM_callocN(sizeof(float)*tot, "particle_distribution_weights");
index=MEM_callocN(sizeof(int)*totpart, "particle_distribution_indexes");
sum=MEM_callocN(sizeof(float)*(tot+1), "particle_distribution_sum");
jitoff=MEM_callocN(sizeof(float)*tot, "particle_distribution_jitoff");
/* 2.1 */
if((part->flag&PART_EDISTR || children) && ELEM(from,PART_FROM_PARTICLE,PART_FROM_VERT)==0){
MVert *v1, *v2, *v3, *v4;
float totarea=0.0, co1[3], co2[3], co3[3], co4[3];
float (*orcodata)[3];
orcodata= dm->getVertDataArray(dm, CD_ORCO);
for(i=0; i<tot; i++){
MFace *mf=dm->getFaceData(dm,i,CD_MFACE);
if(orcodata) {
VECCOPY(co1, orcodata[mf->v1]);
VECCOPY(co2, orcodata[mf->v2]);
VECCOPY(co3, orcodata[mf->v3]);
transform_mesh_orco_verts((Mesh*)ob->data, &co1, 1, 1);
transform_mesh_orco_verts((Mesh*)ob->data, &co2, 1, 1);
transform_mesh_orco_verts((Mesh*)ob->data, &co3, 1, 1);
}
else {
v1= (MVert*)dm->getVertData(dm,mf->v1,CD_MVERT);
v2= (MVert*)dm->getVertData(dm,mf->v2,CD_MVERT);
v3= (MVert*)dm->getVertData(dm,mf->v3,CD_MVERT);
VECCOPY(co1, v1->co);
VECCOPY(co2, v2->co);
VECCOPY(co3, v3->co);
}
if (mf->v4){
if(orcodata) {
VECCOPY(co4, orcodata[mf->v4]);
transform_mesh_orco_verts((Mesh*)ob->data, &co4, 1, 1);
}
else {
v4= (MVert*)dm->getVertData(dm,mf->v4,CD_MVERT);
VECCOPY(co4, v4->co);
}
cur= AreaQ3Dfl(co1, co2, co3, co4);
}
else
cur= AreaT3Dfl(co1, co2, co3);
if(cur>maxweight)
maxweight=cur;
weight[i]= cur;
totarea+=cur;
}
for(i=0; i<tot; i++)
weight[i] /= totarea;
maxweight /= totarea;
}
else if(from==PART_FROM_PARTICLE){
float val=(float)tot/(float)totpart;
for(i=0; i<tot; i++)
weight[i]=val;
maxweight=val;
}
else{
float min=1.0f/(float)(MIN2(tot,totpart));
for(i=0; i<tot; i++)
weight[i]=min;
maxweight=min;
}
/* 2.2 */
if(ELEM3(from,PART_FROM_VERT,PART_FROM_FACE,PART_FROM_VOLUME)){
float *vweight= psys_cache_vgroup(dm,psys,PSYS_VG_DENSITY);
if(vweight){
if(from==PART_FROM_VERT) {
for(i=0;i<tot; i++)
weight[i]*=vweight[i];
}
else { /* PART_FROM_FACE / PART_FROM_VOLUME */
for(i=0;i<tot; i++){
MFace *mf=dm->getFaceData(dm,i,CD_MFACE);
tweight = vweight[mf->v1] + vweight[mf->v2] + vweight[mf->v3];
if(mf->v4) {
tweight += vweight[mf->v4];
tweight /= 4.0;
}
else {
tweight /= 3.0;
}
weight[i]*=tweight;
}
}
MEM_freeN(vweight);
}
}
/* 3. */
totweight= 0.0f;
for(i=0;i<tot; i++)
totweight += weight[i];
if(totweight > 0.0f)
totweight= 1.0f/totweight;
sum[0]= 0.0f;
for(i=0;i<tot; i++)
sum[i+1]= sum[i]+weight[i]*totweight;
if((part->flag&PART_TRAND) || (part->simplify_flag&PART_SIMPLIFY_ENABLE)) {
float pos;
for(p=0; p<totpart; p++) {
pos= BLI_frand();
index[p]= binary_search_distribution(sum, tot, pos);
index[p]= MIN2(tot-1, index[p]);
jitoff[index[p]]= pos;
}
}
else {
double step, pos;
step= (totpart <= 1)? 0.5: 1.0/(totpart-1);
pos= 0.0f;
i= 0;
for(p=0; p<totpart; p++, pos+=step) {
while((i < tot) && (pos > sum[i+1]))
i++;
index[p]= MIN2(tot-1, i);
if(p == totpart-1 && weight[index[p]] == 0.0f)
index[p]= index[p-1];
jitoff[index[p]]= pos;
}
}
MEM_freeN(sum);
/* weights are no longer used except for FROM_PARTICLE, which needs them zeroed for indexing */
if(from==PART_FROM_PARTICLE){
for(i=0; i<tot; i++)
weight[i]=0.0f;
}
/* 4. */
if(distr==PART_DISTR_JIT && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
jitlevel= part->userjit;
if(jitlevel == 0) {
jitlevel= totpart/tot;
if(part->flag & PART_EDISTR) jitlevel*= 2; /* looks better in general, not very scietific */
if(jitlevel<3) jitlevel= 3;
//if(jitlevel>100) jitlevel= 100;
}
jit= MEM_callocN(2+ jitlevel*2*sizeof(float), "jit");
init_mv_jit(jit, jitlevel, psys->seed, part->jitfac);
BLI_array_randomize(jit, 2*sizeof(float), jitlevel, psys->seed); /* for custom jit or even distribution */
}
/* 5. */
ctx->tree= tree;
ctx->seams= seams;
ctx->totseam= totseam;
ctx->psys= psys;
ctx->index= index;
ctx->jit= jit;
ctx->jitlevel= jitlevel;
ctx->jitoff= jitoff;
ctx->weight= weight;
ctx->maxweight= maxweight;
ctx->from= (children)? PART_FROM_CHILD: from;
ctx->cfrom= cfrom;
ctx->distr= distr;
ctx->dm= dm;
ctx->tpars= tpars;
if(children) {
totpart= psys_render_simplify_distribution(ctx, totpart);
alloc_child_particles(psys, totpart);
}
if(!children || psys->totchild < 10000)
totthread= 1;
seed= 31415926 + ctx->psys->seed;
for(i=0; i<totthread; i++) {
threads[i].rng= rng_new(seed);
threads[i].tot= totthread;
}
return 1;
}
static void distribute_particles_on_dm(DerivedMesh *finaldm, Object *ob, ParticleSystem *psys, int from)
{
ListBase threads;
ParticleThread *pthreads;
ParticleThreadContext *ctx;
int i, totthread;
pthreads= psys_threads_create(ob, psys, G.scene->r.threads);
if(!psys_threads_init_distribution(pthreads, finaldm, from)) {
psys_threads_free(pthreads);
return;
}
totthread= pthreads[0].tot;
if(totthread > 1) {
BLI_init_threads(&threads, exec_distribution, totthread);
for(i=0; i<totthread; i++)
BLI_insert_thread(&threads, &pthreads[i]);
BLI_end_threads(&threads);
}
else
exec_distribution(&pthreads[0]);
if (from == PART_FROM_FACE)
psys_calc_dmfaces(ob, finaldm, psys);
ctx= pthreads[0].ctx;
if(ctx->dm != finaldm)
ctx->dm->release(ctx->dm);
psys_threads_free(pthreads);
}
/* ready for future use, to emit particles without geometry */
static void distribute_particles_on_shape(Object *ob, ParticleSystem *psys, int from)
{
ParticleData *pa;
int totpart=psys->totpart, p;
fprintf(stderr,"Shape emission not yet possible!\n");
for(p=0,pa=psys->particles; p<totpart; p++,pa++){
pa->fuv[0]=pa->fuv[1]=pa->fuv[2]=pa->fuv[3]= 0.0;
pa->foffset= 0.0f;
pa->num= -1;
}
}
static void distribute_particles(Object *ob, ParticleSystem *psys, int from)
{
ParticleSystemModifierData *psmd=0;
int distr_error=0;
psmd=psys_get_modifier(ob,psys);
if(psmd){
if(psmd->dm)
distribute_particles_on_dm(psmd->dm,ob,psys,from);
else
distr_error=1;
}
else
distribute_particles_on_shape(ob,psys,from);
if(distr_error){
ParticleData *pa;
int totpart=psys->totpart, p;
fprintf(stderr,"Particle distribution error!\n");
for(p=0,pa=psys->particles; p<totpart; p++,pa++){
pa->fuv[0]=pa->fuv[1]=pa->fuv[2]=pa->fuv[3]= 0.0;
pa->foffset= 0.0f;
pa->num= -1;
}
}
}
/* threaded child particle distribution and path caching */
ParticleThread *psys_threads_create(struct Object *ob, struct ParticleSystem *psys, int totthread)
{
ParticleThread *threads;
ParticleThreadContext *ctx;
int i;
threads= MEM_callocN(sizeof(ParticleThread)*totthread, "ParticleThread");
ctx= MEM_callocN(sizeof(ParticleThreadContext), "ParticleThreadContext");
ctx->ob= ob;
ctx->psys= psys;
ctx->psmd= psys_get_modifier(ob, psys);
ctx->dm= ctx->psmd->dm;
ctx->ma= give_current_material(ob, psys->part->omat);
memset(threads, 0, sizeof(ParticleThread)*totthread);
for(i=0; i<totthread; i++) {
threads[i].ctx= ctx;
threads[i].num= i;
threads[i].tot= totthread;
}
return threads;
}
void psys_threads_free(ParticleThread *threads)
{
ParticleThreadContext *ctx= threads[0].ctx;
int i, totthread= threads[0].tot;
/* path caching */
if(ctx->vg_length)
MEM_freeN(ctx->vg_length);
if(ctx->vg_clump)
MEM_freeN(ctx->vg_clump);
if(ctx->vg_kink)
MEM_freeN(ctx->vg_kink);
if(ctx->vg_rough1)
MEM_freeN(ctx->vg_rough1);
if(ctx->vg_rough2)
MEM_freeN(ctx->vg_roughe);
if(ctx->vg_roughe)
MEM_freeN(ctx->vg_roughe);
if(ctx->psys->lattice){
end_latt_deform();
ctx->psys->lattice=0;
}
/* distribution */
if(ctx->jit) MEM_freeN(ctx->jit);
if(ctx->jitoff) MEM_freeN(ctx->jitoff);
if(ctx->weight) MEM_freeN(ctx->weight);
if(ctx->index) MEM_freeN(ctx->index);
if(ctx->skip) MEM_freeN(ctx->skip);
if(ctx->seams) MEM_freeN(ctx->seams);
//if(ctx->vertpart) MEM_freeN(ctx->vertpart);
BLI_kdtree_free(ctx->tree);
/* threads */
for(i=0; i<totthread; i++) {
if(threads[i].rng)
rng_free(threads[i].rng);
if(threads[i].rng_path)
rng_free(threads[i].rng_path);
}
MEM_freeN(ctx);
MEM_freeN(threads);
}
/* set particle parameters that don't change during particle's life */
void initialize_particle(ParticleData *pa, int p, Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd)
{
ParticleSettings *part;
ParticleTexture ptex;
Material *ma=0;
IpoCurve *icu=0;
int totpart;
float rand,length;
part=psys->part;
totpart=psys->totpart;
ptex.life=ptex.size=ptex.exist=ptex.length=1.0;
ptex.time=(float)p/(float)totpart;
BLI_srandom(psys->seed+p);
if(part->from!=PART_FROM_PARTICLE){
ma=give_current_material(ob,part->omat);
/* TODO: needs some work to make most blendtypes generally usefull */
psys_get_texture(ob,ma,psmd,psys,pa,&ptex,MAP_PA_INIT);
}
pa->lifetime= part->lifetime*ptex.life;
if(part->type==PART_HAIR)
pa->time=0.0f;
else if(part->type==PART_REACTOR && (part->flag&PART_REACT_STA_END)==0)
pa->time=MAXFRAMEF;
else{
//icu=find_ipocurve(psys->part->ipo,PART_EMIT_TIME);
//if(icu){
// calc_icu(icu,100*ptex.time);
// ptex.time=icu->curval;
//}
pa->time= part->sta + (part->end - part->sta)*ptex.time;
}
if(part->type==PART_HAIR){
pa->lifetime=100.0f;
}
else{
icu=find_ipocurve(psys->part->ipo,PART_EMIT_LIFE);
if(icu){
calc_icu(icu,100*ptex.time);
pa->lifetime*=icu->curval;
}
/* need to get every rand even if we don't use them so that randoms don't affect eachother */
rand= BLI_frand();
if(part->randlife!=0.0)
pa->lifetime*= 1.0f - part->randlife*rand;
}
pa->dietime= pa->time+pa->lifetime;
pa->sizemul= BLI_frand();
rand= BLI_frand();
/* while loops are to have a spherical distribution (avoid cubic distribution) */
length=2.0f;
while(length>1.0){
pa->r_ve[0]=2.0f*(BLI_frand()-0.5f);
pa->r_ve[1]=2.0f*(BLI_frand()-0.5f);
pa->r_ve[2]=2.0f*(BLI_frand()-0.5f);
length=VecLength(pa->r_ve);
}
length=2.0f;
while(length>1.0){
pa->r_ave[0]=2.0f*(BLI_frand()-0.5f);
pa->r_ave[1]=2.0f*(BLI_frand()-0.5f);
pa->r_ave[2]=2.0f*(BLI_frand()-0.5f);
length=VecLength(pa->r_ave);
}
pa->r_rot[0]=2.0f*(BLI_frand()-0.5f);
pa->r_rot[1]=2.0f*(BLI_frand()-0.5f);
pa->r_rot[2]=2.0f*(BLI_frand()-0.5f);
pa->r_rot[3]=2.0f*(BLI_frand()-0.5f);
NormalQuat(pa->r_rot);
if(part->distr!=PART_DISTR_GRID){
/* any unique random number will do (r_ave[0]) */
if(ptex.exist < 0.5*(1.0+pa->r_ave[0]))
pa->flag |= PARS_UNEXIST;
else
pa->flag &= ~PARS_UNEXIST;
}
pa->loop=0;
/* we can't reset to -1 anymore since we've figured out correct index in distribute_particles */
/* usage other than straight after distribute has to handle this index by itself - jahka*/
//pa->num_dmcache = DMCACHE_NOTFOUND; /* assume we dont have a derived mesh face */
}
static void initialize_all_particles(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd)
{
IpoCurve *icu=0;
ParticleData *pa;
int p, totpart=psys->totpart;
for(p=0, pa=psys->particles; p<totpart; p++, pa++)
initialize_particle(pa,p,ob,psys,psmd);
/* store the derived mesh face index for each particle */
icu=find_ipocurve(psys->part->ipo,PART_EMIT_FREQ);
if(icu){
float time=psys->part->sta, end=psys->part->end;
float v1, v2, a=0.0f, t1,t2, d;
p=0;
pa=psys->particles;
calc_icu(icu,time);
v1=icu->curval;
if(v1<0.0f) v1=0.0f;
calc_icu(icu,time+1.0f);
v2=icu->curval;
if(v2<0.0f) v2=0.0f;
for(p=0, pa=psys->particles; p<totpart && time<end; p++, pa++){
while(a+0.5f*(v1+v2) < (float)(p+1) && time<end){
a+=0.5f*(v1+v2);
v1=v2;
time++;
calc_icu(icu,time+1.0f);
v2=icu->curval;
}
if(time<end){
if(v1==v2){
pa->time=time+((float)(p+1)-a)/v1;
}
else{
d=(float)sqrt(v1*v1-2.0f*(v2-v1)*(a-(float)(p+1)));
t1=(-v1+d)/(v2-v1);
t2=(-v1-d)/(v2-v1);
/* the root between 0-1 is the correct one */
if(t1>0.0f && t1<=1.0f)
pa->time=time+t1;
else
pa->time=time+t2;
}
}
pa->dietime = pa->time+pa->lifetime;
pa->flag &= ~PARS_UNEXIST;
}
for(; p<totpart; p++, pa++){
pa->flag |= PARS_UNEXIST;
}
}
}
/* sets particle to the emitter surface with initial velocity & rotation */
void reset_particle(ParticleData *pa, ParticleSystem *psys, ParticleSystemModifierData *psmd, Object *ob,
float dtime, float cfra, float *vg_vel, float *vg_tan, float *vg_rot)
{
ParticleSettings *part;
ParticleTexture ptex;
ParticleKey state;
IpoCurve *icu=0;
float fac, nor[3]={0,0,0},loc[3],tloc[3],vel[3]={0.0,0.0,0.0},rot[4],*q2=0;
float r_vel[3],r_ave[3],r_rot[4],p_vel[3]={0.0,0.0,0.0};
float x_vec[3]={1.0,0.0,0.0}, utan[3]={0.0,1.0,0.0}, vtan[3]={0.0,0.0,1.0};
float q_one[4]={1.0,0.0,0.0,0.0}, q_phase[4];
part=psys->part;
ptex.ivel=1.0;
if(part->from==PART_FROM_PARTICLE){
Object *tob;
ParticleSystem *tpsys=0;
float speed;
tob=psys->target_ob;
if(tob==0)
tob=ob;
tpsys=BLI_findlink(&tob->particlesystem,psys->target_psys-1);
/*TODO: get precise location of particle at birth*/
state.time=cfra;
psys_get_particle_state(tob,tpsys,pa->num,&state,1);
psys_get_from_key(&state,loc,nor,rot,0);
QuatMulVecf(rot,vtan);
QuatMulVecf(rot,utan);
VECCOPY(r_vel,pa->r_ve);
VECCOPY(r_rot,pa->r_rot);
VECCOPY(r_ave,pa->r_ave);
VECCOPY(p_vel,state.vel);
speed=Normalize(p_vel);
VecMulf(p_vel,Inpf(pa->r_ve,p_vel));
VECSUB(p_vel,pa->r_ve,p_vel);
Normalize(p_vel);
VecMulf(p_vel,speed);
}
else{
/* get precise emitter matrix if particle is born */
if(part->type!=PART_HAIR && pa->time < cfra && pa->time >= psys->cfra)
where_is_object_time(ob,pa->time);
/* get birth location from object */
psys_particle_on_emitter(ob,psmd,part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,utan,vtan,0,0);
/* save local coordinates for later */
VECCOPY(tloc,loc);
/* get possible textural influence */
psys_get_texture(ob,give_current_material(ob,part->omat),psmd,psys,pa,&ptex,MAP_PA_IVEL);
if(vg_vel){
ptex.ivel*=psys_interpolate_value_from_verts(psmd->dm,part->from,pa->num,pa->fuv,vg_vel);
}
/* particles live in global space so */
/* let's convert: */
/* -location */
Mat4MulVecfl(ob->obmat,loc);
/* -normal */
VECADD(nor,tloc,nor);
Mat4MulVecfl(ob->obmat,nor);
VECSUB(nor,nor,loc);
Normalize(nor);
/* -tangent */
if(part->tanfac!=0.0){
float phase=vg_rot?2.0f*(psys_interpolate_value_from_verts(psmd->dm,part->from,pa->num,pa->fuv,vg_rot)-0.5f):0.0f;
VecMulf(vtan,-(float)cos(M_PI*(part->tanphase+phase)));
fac=-(float)sin(M_PI*(part->tanphase+phase));
VECADDFAC(vtan,vtan,utan,fac);
VECADD(vtan,tloc,vtan);
Mat4MulVecfl(ob->obmat,vtan);
VECSUB(vtan,vtan,loc);
VECCOPY(utan,nor);
VecMulf(utan,Inpf(vtan,nor));
VECSUB(vtan,vtan,utan);
Normalize(vtan);
}
/* -velocity */
if(part->randfac!=0.0){
VECADD(r_vel,tloc,pa->r_ve);
Mat4MulVecfl(ob->obmat,r_vel);
VECSUB(r_vel,r_vel,loc);
Normalize(r_vel);
}
/* -angular velocity */
if(part->avemode==PART_AVE_RAND){
VECADD(r_ave,tloc,pa->r_ave);
Mat4MulVecfl(ob->obmat,r_ave);
VECSUB(r_ave,r_ave,loc);
Normalize(r_ave);
}
/* -rotation */
if(part->rotmode==PART_ROT_RAND){
QUATCOPY(r_rot,pa->r_rot);
Mat4ToQuat(ob->obmat,rot);
QuatMul(r_rot,r_rot,rot);
}
}
/* conversion done so now we apply new: */
/* -velocity from: */
/* *emitter velocity */
if(dtime!=0.0 && part->obfac!=0.0){
VECSUB(vel,loc,pa->state.co);
VecMulf(vel,part->obfac/dtime);
}
/* *emitter normal */
if(part->normfac!=0.0)
VECADDFAC(vel,vel,nor,part->normfac);
/* *emitter tangent */
if(part->tanfac!=0.0)
VECADDFAC(vel,vel,vtan,part->tanfac*(vg_tan?psys_interpolate_value_from_verts(psmd->dm,part->from,pa->num,pa->fuv,vg_tan):1.0f));
/* *texture */
/* TODO */
/* *random */
if(part->randfac!=0.0)
VECADDFAC(vel,vel,r_vel,part->randfac);
/* *particle */
if(part->partfac!=0.0)
VECADDFAC(vel,vel,p_vel,part->partfac);
icu=find_ipocurve(psys->part->ipo,PART_EMIT_VEL);
if(icu){
calc_icu(icu,100*((pa->time-part->sta)/(part->end-part->sta)));
ptex.ivel*=icu->curval;
}
VecMulf(vel,ptex.ivel);
VECCOPY(pa->state.vel,vel);
/* -location from emitter */
VECCOPY(pa->state.co,loc);
/* -rotation */
pa->state.rot[0]=1.0;
pa->state.rot[1]=pa->state.rot[2]=pa->state.rot[3]=0.0;
if(part->rotmode){
switch(part->rotmode){
case PART_ROT_NOR:
VecMulf(nor,-1.0);
q2= vectoquat(nor, OB_POSX, OB_POSZ);
VecMulf(nor,-1.0);
break;
case PART_ROT_VEL:
VecMulf(vel,-1.0);
q2= vectoquat(vel, OB_POSX, OB_POSZ);
VecMulf(vel,-1.0);
break;
case PART_ROT_RAND:
q2= r_rot;
break;
}
/* how much to rotate from rest position */
QuatInterpol(rot,q_one,q2,part->rotfac);
/* phase */
VecRotToQuat(x_vec,part->phasefac*(float)M_PI,q_phase);
/* combine amount & phase */
QuatMul(pa->state.rot,rot,q_phase);
}
/* -angular velocity */
pa->state.ave[0]=pa->state.ave[1]=pa->state.ave[2]=0.0;
if(part->avemode){
switch(part->avemode){
case PART_AVE_SPIN:
VECCOPY(pa->state.ave,vel);
break;
case PART_AVE_RAND:
VECCOPY(pa->state.ave,r_ave);
break;
}
Normalize(pa->state.ave);
VecMulf(pa->state.ave,part->avefac);
icu=find_ipocurve(psys->part->ipo,PART_EMIT_AVE);
if(icu){
calc_icu(icu,100*((pa->time-part->sta)/(part->end-part->sta)));
VecMulf(pa->state.ave,icu->curval);
}
}
pa->dietime=pa->time+pa->lifetime;
if(pa->time >= cfra)
pa->alive=PARS_UNBORN;
pa->state.time=cfra;
pa->stick_ob=0;
pa->flag&=~PARS_STICKY;
}
static void reset_all_particles(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float dtime, float cfra, int from)
{
ParticleData *pa;
int p, totpart=psys->totpart;
float *vg_vel=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_VEL);
float *vg_tan=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_TAN);
float *vg_rot=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_ROT);
for(p=from, pa=psys->particles+from; p<totpart; p++, pa++)
reset_particle(pa, psys, psmd, ob, dtime, cfra, vg_vel, vg_tan, vg_rot);
if(vg_vel)
MEM_freeN(vg_vel);
}
/************************************************/
/* Keyed particles */
/************************************************/
/* a bit of an unintuitive function :) counts objects in a keyed chain and returns 1 if some of them were selected (used in drawing) */
int psys_count_keyed_targets(Object *ob, ParticleSystem *psys)
{
ParticleSystem *kpsys=psys,*tpsys;
ParticleSettings *tpart;
Object *kob=ob,*tob;
int select=ob->flag&SELECT;
short totkeyed=0;
Base *base;
ListBase lb;
lb.first=lb.last=0;
tob=psys->keyed_ob;
while(tob){
if((tpsys=BLI_findlink(&tob->particlesystem,kpsys->keyed_psys-1))){
tpart=tpsys->part;
if(tpart->phystype==PART_PHYS_KEYED){
if(lb.first){
for(base=lb.first;base;base=base->next){
if(tob==base->object){
fprintf(stderr,"Error: loop in keyed chain!\n");
BLI_freelistN(&lb);
return select;
}
}
}
base=MEM_callocN(sizeof(Base), "keyed base");
base->object=tob;
BLI_addtail(&lb,base);
if(tob->flag&SELECT)
select++;
kob=tob;
kpsys=tpsys;
tob=tpsys->keyed_ob;
totkeyed++;
}
else{
tob=0;
totkeyed++;
}
}
else
tob=0;
}
psys->totkeyed=totkeyed;
BLI_freelistN(&lb);
return select;
}
void set_keyed_keys(Object *ob, ParticleSystem *psys)
{
Object *kob = ob;
ParticleSystem *kpsys = psys;
ParticleData *pa;
ParticleKey state;
int totpart = psys->totpart, i, k, totkeys = psys->totkeyed + 1;
float prevtime, nexttime, keyedtime;
/* no proper targets so let's clear and bail out */
if(psys->totkeyed==0){
free_keyed_keys(psys);
psys->flag &= ~PSYS_KEYED;
return;
}
if(totpart && psys->particles->totkey != totkeys){
free_keyed_keys(psys);
psys->particles->keys = MEM_callocN(psys->totpart * totkeys * sizeof(ParticleKey),"Keyed keys");
psys->particles->totkey = totkeys;
for(i=1, pa=psys->particles+1; i<totpart; i++,pa++){
pa->keys = (pa-1)->keys + totkeys;
pa->totkey = totkeys;
}
}
psys->flag &= ~PSYS_KEYED;
state.time=-1.0;
for(k=0; k<totkeys; k++){
for(i=0,pa=psys->particles; i<totpart; i++, pa++){
psys_get_particle_state(kob, kpsys, i%kpsys->totpart, pa->keys + k, 1);
if(k==0)
pa->keys->time = pa->time;
else if(k==totkeys-1)
(pa->keys + k)->time = pa->time + pa->lifetime;
else{
if(psys->flag & PSYS_KEYED_TIME){
prevtime = (pa->keys + k - 1)->time;
nexttime = pa->time + pa->lifetime;
keyedtime = kpsys->part->keyed_time;
(pa->keys + k)->time = (1.0f - keyedtime) * prevtime + keyedtime * nexttime;
}
else
(pa->keys+k)->time = pa->time + (float)k / (float)(totkeys - 1) * pa->lifetime;
}
}
if(kpsys->keyed_ob){
kob = kpsys->keyed_ob;
kpsys = BLI_findlink(&kob->particlesystem, kpsys->keyed_psys - 1);
}
}
psys->flag |= PSYS_KEYED;
}
/************************************************/
/* Reactors */
/************************************************/
static void push_reaction(Object* ob, ParticleSystem *psys, int pa_num, int event, ParticleKey *state)
{
Object *rob;
ParticleSystem *rpsys;
ParticleSettings *rpart;
ParticleData *pa;
ListBase *lb=&psys->effectors;
ParticleEffectorCache *ec;
ParticleReactEvent *re;
if(lb->first) for(ec = lb->first; ec; ec= ec->next){
if(ec->type & PSYS_EC_REACTOR){
/* all validity checks already done in add_to_effectors */
rob=ec->ob;
rpsys=BLI_findlink(&rob->particlesystem,ec->psys_nbr);
rpart=rpsys->part;
if(rpsys->part->reactevent==event){
pa=psys->particles+pa_num;
re= MEM_callocN(sizeof(ParticleReactEvent), "react event");
re->event=event;
re->pa_num = pa_num;
re->ob = ob;
re->psys = psys;
re->size = pa->size;
copy_particle_key(&re->state,state,1);
switch(event){
case PART_EVENT_DEATH:
re->time=pa->dietime;
break;
case PART_EVENT_COLLIDE:
re->time=state->time;
break;
case PART_EVENT_NEAR:
re->time=state->time;
break;
}
BLI_addtail(&rpsys->reactevents, re);
}
}
}
}
static void react_to_events(ParticleSystem *psys, int pa_num)
{
ParticleSettings *part=psys->part;
ParticleData *pa=psys->particles+pa_num;
ParticleReactEvent *re=psys->reactevents.first;
int birth=0;
float dist=0.0f;
for(re=psys->reactevents.first; re; re=re->next){
birth=0;
if(part->from==PART_FROM_PARTICLE){
if(pa->num==re->pa_num){
if(re->event==PART_EVENT_NEAR){
ParticleData *tpa = re->psys->particles+re->pa_num;
float pa_time=tpa->time + pa->foffset*tpa->lifetime;
if(re->time > pa_time){
pa->alive=PARS_ALIVE;
pa->time=pa_time;
pa->dietime=pa->time+pa->lifetime;
}
}
else{
if(pa->alive==PARS_UNBORN){
pa->alive=PARS_ALIVE;
pa->time=re->time;
pa->dietime=pa->time+pa->lifetime;
}
}
}
}
else{
dist=VecLenf(pa->state.co, re->state.co);
if(dist <= re->size){
if(pa->alive==PARS_UNBORN){
pa->alive=PARS_ALIVE;
pa->time=re->time;
pa->dietime=pa->time+pa->lifetime;
birth=1;
}
if(birth || part->flag&PART_REACT_MULTIPLE){
float vec[3];
VECSUB(vec,pa->state.co, re->state.co);
if(birth==0)
VecMulf(vec,(float)pow(1.0f-dist/re->size,part->reactshape));
VECADDFAC(pa->state.vel,pa->state.vel,vec,part->reactfac);
VECADDFAC(pa->state.vel,pa->state.vel,re->state.vel,part->partfac);
}
if(birth)
VecMulf(pa->state.vel,(float)pow(1.0f-dist/re->size,part->reactshape));
}
}
}
}
void psys_get_reactor_target(Object *ob, ParticleSystem *psys, Object **target_ob, ParticleSystem **target_psys)
{
Object *tob;
tob=psys->target_ob;
if(tob==0)
tob=ob;
*target_psys=BLI_findlink(&tob->particlesystem,psys->target_psys-1);
if(*target_psys)
*target_ob=tob;
else
*target_ob=0;
}
/************************************************/
/* Point Cache */
/************************************************/
void clear_particles_from_cache(Object *ob, ParticleSystem *psys, int cfra)
{
ParticleSystemModifierData *psmd = psys_get_modifier(ob,psys);
int stack_index = modifiers_indexInObject(ob,(ModifierData*)psmd);
BKE_ptcache_id_clear((ID *)ob, PTCACHE_CLEAR_ALL, cfra, stack_index);
}
static void write_particles_to_cache(Object *ob, ParticleSystem *psys, int cfra)
{
FILE *fp = NULL;
ParticleSystemModifierData *psmd = psys_get_modifier(ob,psys);
ParticleData *pa;
int stack_index = modifiers_indexInObject(ob,(ModifierData*)psmd);
int i, totpart = psys->totpart;
if(totpart == 0) return;
fp = BKE_ptcache_id_fopen((ID *)ob, 'w', cfra, stack_index);
if(!fp) return;
for(i=0, pa=psys->particles; i<totpart; i++, pa++)
fwrite(&pa->state, sizeof(ParticleKey), 1, fp);
fclose(fp);
}
static int get_particles_from_cache(Object *ob, ParticleSystem *psys, int cfra)
{
FILE *fp = NULL;
ParticleSystemModifierData *psmd = psys_get_modifier(ob,psys);
ParticleData *pa;
int stack_index = modifiers_indexInObject(ob,(ModifierData*)psmd);
int i, totpart = psys->totpart, ret = 1;
if(totpart == 0) return 0;
fp = BKE_ptcache_id_fopen((ID *)ob, 'r', cfra, stack_index);
if(!fp)
ret = 0;
else {
for(i=0, pa=psys->particles; i<totpart; i++, pa++)
if((fread(&pa->state, sizeof(ParticleKey), 1, fp)) != 1) {
ret = 0;
break;
}
fclose(fp);
}
return ret;
}
/************************************************/
/* Effectors */
/************************************************/
static float effector_falloff(PartDeflect *pd, float *eff_velocity, float *vec_to_part)
{
float eff_dir[3], temp[3];
float falloff=1.0, fac, r_fac;
VecCopyf(eff_dir,eff_velocity);
Normalize(eff_dir);
if(pd->flag & PFIELD_POSZ && Inpf(eff_dir,vec_to_part)<0.0f)
falloff=0.0f;
else switch(pd->falloff){
case PFIELD_FALL_SPHERE:
fac=VecLength(vec_to_part);
if(pd->flag&PFIELD_USEMAX && fac>pd->maxdist){
falloff=0.0f;
break;
}
if(pd->flag & PFIELD_USEMIN){
if(fac>pd->mindist)
fac+=1.0f-pd->mindist;
else
fac=1.0f;
}
else if(fac<0.001)
fac=0.001f;
falloff=1.0f/(float)pow((double)fac,(double)pd->f_power);
break;
case PFIELD_FALL_TUBE:
fac=Inpf(vec_to_part,eff_dir);
if(pd->flag&PFIELD_USEMAX && ABS(fac)>pd->maxdist){
falloff=0.0f;
break;
}
VECADDFAC(temp,vec_to_part,eff_dir,-fac);
r_fac=VecLength(temp);
if(pd->flag&PFIELD_USEMAXR && r_fac>pd->maxrad){
falloff=0.0f;
break;
}
fac=ABS(fac);
if(pd->flag & PFIELD_USEMIN){
if(fac>pd->mindist)
fac+=1.0f-pd->mindist;
else
fac=1.0f;
}
else if(fac<0.001)
fac=0.001f;
if(pd->flag & PFIELD_USEMINR){
if(r_fac>pd->minrad)
r_fac+=1.0f-pd->minrad;
else
r_fac=1.0f;
}
else if(r_fac<0.001)
r_fac=0.001f;
falloff=1.0f/((float)pow((double)fac,(double)pd->f_power)*(float)pow((double)r_fac,(double)pd->f_power_r));
break;
case PFIELD_FALL_CONE:
fac=Inpf(vec_to_part,eff_dir);
if(pd->flag&PFIELD_USEMAX && ABS(fac)>pd->maxdist){
falloff=0.0f;
break;
}
r_fac=saacos(fac/VecLength(vec_to_part))*180.0f/(float)M_PI;
if(pd->flag&PFIELD_USEMAXR && r_fac>pd->maxrad){
falloff=0.0f;
break;
}
if(pd->flag & PFIELD_USEMIN){
if(fac>pd->mindist)
fac+=1.0f-pd->mindist;
else
fac=1.0f;
}
else if(fac<0.001)
fac=0.001f;
if(pd->flag & PFIELD_USEMINR){
if(r_fac>pd->minrad)
r_fac+=1.0f-pd->minrad;
else
r_fac=1.0f;
}
else if(r_fac<0.001)
r_fac=0.001f;
falloff=1.0f/((float)pow((double)fac,(double)pd->f_power)*(float)pow((double)r_fac,(double)pd->f_power_r));
break;
// case PFIELD_FALL_INSIDE:
//for(i=0; i<totface; i++,mface++){
// VECCOPY(v1,mvert[mface->v1].co);
// VECCOPY(v2,mvert[mface->v2].co);
// VECCOPY(v3,mvert[mface->v3].co);
// if(AxialLineIntersectsTriangle(a,co1, co2, v2, v3, v1, &lambda)){
// if(from==PART_FROM_FACE)
// (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
// else /* store number of intersections */
// (pa+(int)(lambda*size[a])*a0mul)->loop++;
// }
//
// if(mface->v4){
// VECCOPY(v4,mvert[mface->v4].co);
// if(AxialLineIntersectsTriangle(a,co1, co2, v4, v1, v3, &lambda)){
// if(from==PART_FROM_FACE)
// (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
// else
// (pa+(int)(lambda*size[a])*a0mul)->loop++;
// }
// }
//}
// break;
}
return falloff;
}
static void do_physical_effector(short type, float force_val, float distance, float falloff, float size, float damp,
float *eff_velocity, float *vec_to_part, float *velocity, float *field, int planar)
{
float mag_vec[3]={0,0,0};
float temp[3], temp2[3];
float eff_vel[3];
VecCopyf(eff_vel,eff_velocity);
Normalize(eff_vel);
switch(type){
case PFIELD_WIND:
VECCOPY(mag_vec,eff_vel);
VecMulf(mag_vec,force_val*falloff);
VecAddf(field,field,mag_vec);
break;
case PFIELD_FORCE:
if(planar)
Projf(mag_vec,vec_to_part,eff_vel);
else
VecCopyf(mag_vec,vec_to_part);
VecMulf(mag_vec,force_val*falloff);
VecAddf(field,field,mag_vec);
break;
case PFIELD_VORTEX:
Crossf(mag_vec,eff_vel,vec_to_part);
Normalize(mag_vec);
VecMulf(mag_vec,force_val*distance*falloff);
VecAddf(field,field,mag_vec);
break;
case PFIELD_MAGNET:
if(planar)
VecCopyf(temp,eff_vel);
else
/* magnetic field of a moving charge */
Crossf(temp,eff_vel,vec_to_part);
Crossf(temp2,velocity,temp);
VecAddf(mag_vec,mag_vec,temp2);
VecMulf(mag_vec,force_val*falloff);
VecAddf(field,field,mag_vec);
break;
case PFIELD_HARMONIC:
if(planar)
Projf(mag_vec,vec_to_part,eff_vel);
else
VecCopyf(mag_vec,vec_to_part);
VecMulf(mag_vec,force_val*falloff);
VecSubf(field,field,mag_vec);
VecCopyf(mag_vec,velocity);
/* 1.9 is an experimental value to get critical damping at damp=1.0 */
VecMulf(mag_vec,damp*1.9f*(float)sqrt(force_val));
VecSubf(field,field,mag_vec);
break;
case PFIELD_NUCLEAR:
/*pow here is root of cosine expression below*/
//rad=(float)pow(2.0,-1.0/power)*distance/size;
//VECCOPY(mag_vec,vec_to_part);
//Normalize(mag_vec);
//VecMulf(mag_vec,(float)cos(3.0*M_PI/2.0*(1.0-1.0/(pow(rad,power)+1.0)))/(rad+0.2f));
//VECADDFAC(field,field,mag_vec,force_val);
break;
}
}
static void do_texture_effector(Tex *tex, short mode, short is_2d, float nabla, short object, float *pa_co, float obmat[4][4], float force_val, float falloff, float *field)
{
TexResult result[4];
float tex_co[3], strength, mag_vec[3];
int i;
if(tex==0) return;
for(i=0; i<4; i++)
result[i].nor=0;
strength= force_val*falloff;///(float)pow((double)distance,(double)power);
VECCOPY(tex_co,pa_co);
if(is_2d){
float fac=-Inpf(tex_co,obmat[2]);
VECADDFAC(tex_co,tex_co,obmat[2],fac);
}
if(object){
VecSubf(tex_co,tex_co,obmat[3]);
Mat4Mul3Vecfl(obmat,tex_co);
}
multitex_ext(tex, tex_co, NULL,NULL, 1, result);
if(mode==PFIELD_TEX_RGB){
mag_vec[0]= (0.5f-result->tr)*strength;
mag_vec[1]= (0.5f-result->tg)*strength;
mag_vec[2]= (0.5f-result->tb)*strength;
}
else{
strength/=nabla;
tex_co[0]+= nabla;
multitex_ext(tex, tex_co, NULL,NULL, 1, result+1);
tex_co[0]-= nabla;
tex_co[1]+= nabla;
multitex_ext(tex, tex_co, NULL,NULL, 1, result+2);
tex_co[1]-= nabla;
tex_co[2]+= nabla;
multitex_ext(tex, tex_co, NULL,NULL, 1, result+3);
if(mode==PFIELD_TEX_GRAD){
mag_vec[0]= (result[0].tin-result[1].tin)*strength;
mag_vec[1]= (result[0].tin-result[2].tin)*strength;
mag_vec[2]= (result[0].tin-result[3].tin)*strength;
}
else{ /*PFIELD_TEX_CURL*/
float dbdy,dgdz,drdz,dbdx,dgdx,drdy;
dbdy= result[2].tb-result[0].tb;
dgdz= result[3].tg-result[0].tg;
drdz= result[3].tr-result[0].tr;
dbdx= result[1].tb-result[0].tb;
dgdx= result[1].tg-result[0].tg;
drdy= result[2].tr-result[0].tr;
mag_vec[0]=(dbdy-dgdz)*strength;
mag_vec[1]=(drdz-dbdx)*strength;
mag_vec[2]=(dgdx-drdy)*strength;
}
}
if(is_2d){
float fac=-Inpf(mag_vec,obmat[2]);
VECADDFAC(mag_vec,mag_vec,obmat[2],fac);
}
VecAddf(field,field,mag_vec);
}
static void add_to_effectors(ListBase *lb, Object *ob, Object *obsrc, ParticleSystem *psys)
{
ParticleEffectorCache *ec;
PartDeflect *pd= ob->pd;
short type=0,i;
if(pd && ob != obsrc){
if(pd->forcefield == PFIELD_GUIDE) {
if(ob->type==OB_CURVE) {
Curve *cu= ob->data;
if(cu->flag & CU_PATH) {
if(cu->path==NULL || cu->path->data==NULL)
makeDispListCurveTypes(ob, 0);
if(cu->path && cu->path->data) {
type |= PSYS_EC_EFFECTOR;
}
}
}
}
else if(pd->forcefield)
type |= PSYS_EC_EFFECTOR;
}
if(pd && pd->deflect)
type |= PSYS_EC_DEFLECT;
if(type){
ec= MEM_callocN(sizeof(ParticleEffectorCache), "effector cache");
ec->ob= ob;
ec->type=type;
ec->distances=0;
ec->locations=0;
BLI_addtail(lb, ec);
}
type=0;
/* add particles as different effectors */
if(ob->particlesystem.first){
ParticleSystem *epsys=ob->particlesystem.first;
ParticleSettings *epart=0;
Object *tob;
for(i=0; epsys; epsys=epsys->next,i++){
type=0;
if(epsys!=psys){
epart=epsys->part;
if(epsys->part->pd && epsys->part->pd->forcefield)
type=PSYS_EC_PARTICLE;
if(epart->type==PART_REACTOR) {
tob=epsys->target_ob;
if(tob==0)
tob=ob;
if(BLI_findlink(&tob->particlesystem,epsys->target_psys-1)==psys)
type|=PSYS_EC_REACTOR;
}
if(type){
ec= MEM_callocN(sizeof(ParticleEffectorCache), "effector cache");
ec->ob= ob;
ec->type=type;
ec->psys_nbr=i;
BLI_addtail(lb, ec);
}
}
}
}
}
void psys_init_effectors(Object *obsrc, Group *group, ParticleSystem *psys)
{
ListBase *listb=&psys->effectors;
Base *base;
unsigned int layer= obsrc->lay;
listb->first=listb->last=0;
if(group) {
GroupObject *go;
for(go= group->gobject.first; go; go= go->next) {
if( (go->ob->lay & layer) && (go->ob->pd || go->ob->particlesystem.first)) {
add_to_effectors(listb, go->ob, obsrc, psys);
}
}
}
else {
for(base = G.scene->base.first; base; base= base->next) {
if( (base->lay & layer) && (base->object->pd || base->object->particlesystem.first)) {
add_to_effectors(listb, base->object, obsrc, psys);
}
}
}
}
void psys_end_effectors(ParticleSystem *psys)
{
ListBase *lb=&psys->effectors;
if(lb->first) {
ParticleEffectorCache *ec;
for(ec= lb->first; ec; ec= ec->next){
if(ec->distances)
MEM_freeN(ec->distances);
if(ec->locations)
MEM_freeN(ec->locations);
if(ec->face_minmax)
MEM_freeN(ec->face_minmax);
if(ec->vert_cos)
MEM_freeN(ec->vert_cos);
if(ec->tree)
BLI_kdtree_free(ec->tree);
}
BLI_freelistN(lb);
}
}
static void precalc_effectors(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd)
{
ListBase *lb=&psys->effectors;
ParticleEffectorCache *ec;
ParticleSettings *part=psys->part;
ParticleData *pa;
float vec2[3],loc[3],*co=0;
int p,totpart,totvert;
for(ec= lb->first; ec; ec= ec->next) {
PartDeflect *pd= ec->ob->pd;
if(ec->type==PSYS_EC_EFFECTOR && pd->forcefield==PFIELD_GUIDE && ec->ob->type==OB_CURVE
&& part->phystype!=PART_PHYS_BOIDS) {
float vec[4];
where_on_path(ec->ob, 0.0, vec, vec2);
Mat4MulVecfl(ec->ob->obmat,vec);
Mat4Mul3Vecfl(ec->ob->obmat,vec2);
QUATCOPY(ec->firstloc,vec);
VECCOPY(ec->firstdir,vec2);
totpart=psys->totpart;
if(totpart){
ec->distances=MEM_callocN(totpart*sizeof(float),"particle distances");
ec->locations=MEM_callocN(totpart*3*sizeof(float),"particle locations");
for(p=0,pa=psys->particles; p<totpart; p++, pa++){
psys_particle_on_emitter(ob,psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,0,0,0,0,0);
Mat4MulVecfl(ob->obmat,loc);
ec->distances[p]=VecLenf(loc,vec);
VECSUB(loc,loc,vec);
VECCOPY(ec->locations+3*p,loc);
}
}
}
else if(ec->type==PSYS_EC_DEFLECT){
DerivedMesh *dm;
MFace *mface=0;
MVert *mvert=0;
int i, totface;
float v1[3],v2[3],v3[3],v4[4], *min, *max;
if(ob==ec->ob)
dm=psmd->dm;
else{
psys_disable_all(ec->ob);
dm=mesh_get_derived_final(ec->ob,0);
psys_enable_all(ec->ob);
}
if(dm){
totvert=dm->getNumVerts(dm);
totface=dm->getNumFaces(dm);
mface=dm->getFaceDataArray(dm,CD_MFACE);
mvert=dm->getVertDataArray(dm,CD_MVERT);
/* Decide which is faster to calculate by the amount of*/
/* matrice multiplications needed to convert spaces. */
/* With size deflect we have to convert allways because */
/* the object can be scaled nonuniformly (sphere->ellipsoid). */
if(totvert<2*psys->totpart || part->flag & PART_SIZE_DEFL){
co=ec->vert_cos=MEM_callocN(sizeof(float)*3*totvert,"Particle deflection vert cos");
/* convert vert coordinates to global (particle) coordinates */
for(i=0; i<totvert; i++, co+=3){
VECCOPY(co,mvert[i].co);
Mat4MulVecfl(ec->ob->obmat,co);
}
co=ec->vert_cos;
}
else
ec->vert_cos=0;
INIT_MINMAX(ec->ob_minmax,ec->ob_minmax+3);
min=ec->face_minmax=MEM_callocN(sizeof(float)*6*totface,"Particle deflection face minmax");
max=min+3;
for(i=0; i<totface; i++,mface++,min+=6,max+=6){
if(co){
VECCOPY(v1,co+3*mface->v1);
VECCOPY(v2,co+3*mface->v2);
VECCOPY(v3,co+3*mface->v3);
}
else{
VECCOPY(v1,mvert[mface->v1].co);
VECCOPY(v2,mvert[mface->v2].co);
VECCOPY(v3,mvert[mface->v3].co);
}
INIT_MINMAX(min,max);
DO_MINMAX(v1,min,max);
DO_MINMAX(v2,min,max);
DO_MINMAX(v3,min,max);
if(mface->v4){
if(co){
VECCOPY(v4,co+3*mface->v4);
}
else{
VECCOPY(v4,mvert[mface->v4].co);
}
DO_MINMAX(v4,min,max);
}
DO_MINMAX(min,ec->ob_minmax,ec->ob_minmax+3);
DO_MINMAX(max,ec->ob_minmax,ec->ob_minmax+3);
}
}
else
ec->face_minmax=0;
}
else if(ec->type==PSYS_EC_PARTICLE){
if(psys->part->phystype==PART_PHYS_BOIDS){
Object *eob = ec->ob;
ParticleSystem *epsys;
ParticleSettings *epart;
ParticleData *epa;
ParticleKey state;
PartDeflect *pd;
int totepart, p;
epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
epart= epsys->part;
pd= epart->pd;
totepart= epsys->totpart;
if(pd->forcefield==PFIELD_FORCE && totepart){
KDTree *tree;
tree=BLI_kdtree_new(totepart);
ec->tree=tree;
for(p=0, epa=epsys->particles; p<totepart; p++,epa++)
if(epa->alive==PARS_ALIVE && psys_get_particle_state(eob,epsys,p,&state,0))
BLI_kdtree_insert(tree, p, state.co, NULL);
BLI_kdtree_balance(tree);
}
}
}
}
}
/* calculate forces that all effectors apply to a particle*/
static void do_effectors(int pa_no, ParticleData *pa, ParticleKey *state, Object *ob, ParticleSystem *psys, float *force_field, float *vel,float framestep, float cfra)
{
Object *eob;
ParticleSystem *epsys;
ParticleSettings *epart;
ParticleData *epa;
ParticleKey estate;
PartDeflect *pd;
ListBase *lb=&psys->effectors;
ParticleEffectorCache *ec;
float distance, vec_to_part[3];
float falloff;
int p;
/* check all effector objects for interaction */
if(lb->first){
for(ec = lb->first; ec; ec= ec->next){
eob= ec->ob;
if(ec->type & PSYS_EC_EFFECTOR){
pd=eob->pd;
if(psys->part->type!=PART_HAIR && psys->part->integrator)
where_is_object_time(eob,cfra);
/* Get IPO force strength and fall off values here */
//if (has_ipo_code(eob->ipo, OB_PD_FSTR))
// force_val = IPO_GetFloatValue(eob->ipo, OB_PD_FSTR, cfra);
//else
// force_val = pd->f_strength;
//if (has_ipo_code(eob->ipo, OB_PD_FFALL))
// ffall_val = IPO_GetFloatValue(eob->ipo, OB_PD_FFALL, cfra);
//else
// ffall_val = pd->f_power;
//if (has_ipo_code(eob->ipo, OB_PD_FMAXD))
// maxdist = IPO_GetFloatValue(eob->ipo, OB_PD_FMAXD, cfra);
//else
// maxdist = pd->maxdist;
/* use center of object for distance calculus */
//obloc= eob->obmat[3];
VecSubf(vec_to_part, state->co, eob->obmat[3]);
distance = VecLength(vec_to_part);
falloff=effector_falloff(pd,eob->obmat[2],vec_to_part);
if(falloff<=0.0f)
; /* don't do anything */
else if(pd->forcefield==PFIELD_TEXTURE)
do_texture_effector(pd->tex, pd->tex_mode, pd->flag&PFIELD_TEX_2D, pd->tex_nabla,
pd->flag & PFIELD_TEX_OBJECT, state->co, eob->obmat,
pd->f_strength, falloff, force_field);
else
do_physical_effector(pd->forcefield,pd->f_strength,distance,
falloff,pd->f_dist,pd->f_damp,eob->obmat[2],vec_to_part,
pa->state.vel,force_field,pd->flag&PFIELD_PLANAR);
}
if(ec->type & PSYS_EC_PARTICLE){
int totepart;
epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
epart= epsys->part;
pd= epart->pd;
totepart= epsys->totpart;
if(pd->forcefield==PFIELD_HARMONIC){
/* every particle is mapped to only one harmonic effector particle */
p= pa_no%epsys->totpart;
totepart= p+1;
}
else{
p=0;
}
epsys->lattice=psys_get_lattice(ob,psys);
for(; p<totepart; p++){
epa = epsys->particles + p;
estate.time=-1.0;
if(psys_get_particle_state(eob,epsys,p,&estate,0)){
VECSUB(vec_to_part, state->co, estate.co);
distance = VecLength(vec_to_part);
//if(pd->forcefield==PFIELD_HARMONIC){
// //if(cfra < epa->time + radius){ /* radius is fade-in in ui */
// // eforce*=(cfra-epa->time)/radius;
// //}
//}
//else{
// /* Limit minimum distance to effector particle so that */
// /* the force is not too big */
// if (distance < 0.001) distance = 0.001f;
//}
falloff=effector_falloff(pd,estate.vel,vec_to_part);
if(falloff<=0.0f)
; /* don't do anything */
else
do_physical_effector(pd->forcefield,pd->f_strength,distance,
falloff,epart->size,pd->f_damp,estate.vel,vec_to_part,
state->vel,force_field,0);
}
else if(pd->forcefield==PFIELD_HARMONIC && cfra-framestep <= epa->dietime && cfra>epa->dietime){
/* first step after key release */
psys_get_particle_state(eob,epsys,p,&estate,1);
VECADD(vel,vel,estate.vel);
/* TODO: add rotation handling here too */
}
}
if(epsys->lattice){
end_latt_deform();
epsys->lattice=0;
}
}
}
}
}
/************************************************/
/* Newtonian physics */
/************************************************/
/* gathers all forces that effect particles and calculates a new state for the particle */
static void apply_particle_forces(int pa_no, ParticleData *pa, Object *ob, ParticleSystem *psys, ParticleSettings *part, float timestep, float dfra, float cfra, ParticleKey *state)
{
ParticleKey states[5], tkey;
float force[3],tvel[3],dx[4][3],dv[4][3];
float dtime=dfra*timestep, time, pa_mass=part->mass, fac, fra=psys->cfra;
int i, steps=1;
/* maintain angular velocity */
VECCOPY(state->ave,pa->state.ave);
if(part->flag & PART_SIZEMASS)
pa_mass*=pa->size;
switch(part->integrator){
case PART_INT_EULER:
steps=1;
break;
case PART_INT_MIDPOINT:
steps=2;
break;
case PART_INT_RK4:
steps=4;
break;
}
copy_particle_key(states,&pa->state,1);
for(i=0; i<steps; i++){
force[0]=force[1]=force[2]=0.0;
tvel[0]=tvel[1]=tvel[2]=0.0;
/* add effectors */
do_effectors(pa_no,pa,states+i,ob,psys,force,tvel,dfra,fra);
/* calculate air-particle interaction */
if(part->dragfac!=0.0f){
fac=-part->dragfac*pa->size*pa->size*VecLength(states[i].vel);
VECADDFAC(force,force,states[i].vel,fac);
}
/* brownian force */
if(part->brownfac!=0.0){
force[0]+=(BLI_frand()-0.5f)*part->brownfac;
force[1]+=(BLI_frand()-0.5f)*part->brownfac;
force[2]+=(BLI_frand()-0.5f)*part->brownfac;
}
/* force to acceleration*/
VecMulf(force,1.0f/pa_mass);
/* add global acceleration (gravitation) */
VECADD(force,force,part->acc);
//VecMulf(force,dtime);
/* calculate next state */
VECADD(states[i].vel,states[i].vel,tvel);
//VecMulf(force,0.5f*dt);
switch(part->integrator){
case PART_INT_EULER:
VECADDFAC(state->co,states->co,states->vel,dtime);
VECADDFAC(state->vel,states->vel,force,dtime);
break;
case PART_INT_MIDPOINT:
if(i==0){
VECADDFAC(states[1].co,states->co,states->vel,dtime*0.5f);
VECADDFAC(states[1].vel,states->vel,force,dtime*0.5f);
fra=psys->cfra+0.5f*dfra;
}
else{
VECADDFAC(state->co,states->co,states[1].vel,dtime);
VECADDFAC(state->vel,states->vel,force,dtime);
}
break;
case PART_INT_RK4:
switch(i){
case 0:
VECCOPY(dx[0],states->vel);
VecMulf(dx[0],dtime);
VECCOPY(dv[0],force);
VecMulf(dv[0],dtime);
VECADDFAC(states[1].co,states->co,dx[0],0.5f);
VECADDFAC(states[1].vel,states->vel,dv[0],0.5f);
fra=psys->cfra+0.5f*dfra;
break;
case 1:
VECADDFAC(dx[1],states->vel,dv[0],0.5f);
VecMulf(dx[1],dtime);
VECCOPY(dv[1],force);
VecMulf(dv[1],dtime);
VECADDFAC(states[2].co,states->co,dx[1],0.5f);
VECADDFAC(states[2].vel,states->vel,dv[1],0.5f);
break;
case 2:
VECADDFAC(dx[2],states->vel,dv[1],0.5f);
VecMulf(dx[2],dtime);
VECCOPY(dv[2],force);
VecMulf(dv[2],dtime);
VECADD(states[3].co,states->co,dx[2]);
VECADD(states[3].vel,states->vel,dv[2]);
fra=cfra;
break;
case 3:
VECADD(dx[3],states->vel,dv[2]);
VecMulf(dx[3],dtime);
VECCOPY(dv[3],force);
VecMulf(dv[3],dtime);
VECADDFAC(state->co,states->co,dx[0],1.0f/6.0f);
VECADDFAC(state->co,state->co,dx[1],1.0f/3.0f);
VECADDFAC(state->co,state->co,dx[2],1.0f/3.0f);
VECADDFAC(state->co,state->co,dx[3],1.0f/6.0f);
VECADDFAC(state->vel,states->vel,dv[0],1.0f/6.0f);
VECADDFAC(state->vel,state->vel,dv[1],1.0f/3.0f);
VECADDFAC(state->vel,state->vel,dv[2],1.0f/3.0f);
VECADDFAC(state->vel,state->vel,dv[3],1.0f/6.0f);
}
break;
}
//VECADD(states[i+1].co,states[i+1].co,force);
}
/* damp affects final velocity */
if(part->dampfac!=0.0)
VecMulf(state->vel,1.0f-part->dampfac);
/* finally we do guides */
time=(cfra-pa->time)/pa->lifetime;
CLAMP(time,0.0,1.0);
VECCOPY(tkey.co,state->co);
VECCOPY(tkey.vel,state->vel);
tkey.time=state->time;
if(do_guide(&tkey,pa_no,time,&psys->effectors)){
VECCOPY(state->co,tkey.co);
/* guides don't produce valid velocity */
VECSUB(state->vel,tkey.co,pa->state.co);
VecMulf(state->vel,1.0f/dtime);
state->time=tkey.time;
}
}
static void rotate_particle(ParticleSettings *part, ParticleData *pa, float dfra, float timestep, ParticleKey *state)
{
float rotfac, rot1[4], rot2[4]={1.0,0.0,0.0,0.0}, dtime=dfra*timestep;
if((part->flag & PART_ROT_DYN)==0){
if(ELEM(part->avemode,PART_AVE_SPIN,PART_AVE_VEL)){
float angle;
float len1 = VecLength(pa->state.vel);
float len2 = VecLength(state->vel);
if(len1==0.0f || len2==0.0f)
state->ave[0]=state->ave[1]=state->ave[2]=0.0f;
else{
Crossf(state->ave,pa->state.vel,state->vel);
Normalize(state->ave);
angle=Inpf(pa->state.vel,state->vel)/(len1*len2);
VecMulf(state->ave,saacos(angle)/dtime);
}
}
if(part->avemode == PART_AVE_SPIN)
VecRotToQuat(state->vel,dtime*part->avefac,rot2);
}
rotfac=VecLength(state->ave);
if(rotfac==0.0){ /* QuatOne (in VecRotToQuat) doesn't give unit quat [1,0,0,0]?? */
rot1[0]=1.0;
rot1[1]=rot1[2]=rot1[3]=0;
}
else{
VecRotToQuat(state->ave,rotfac*dtime,rot1);
}
QuatMul(state->rot,rot1,pa->state.rot);
QuatMul(state->rot,rot2,state->rot);
/* keep rotation quat in good health */
NormalQuat(state->rot);
}
/* convert from triangle barycentric weights to quad mean value weights */
static void intersect_dm_quad_weights(float *v1, float *v2, float *v3, float *v4, float *w)
{
float co[3], vert[4][3];
VECCOPY(vert[0], v1);
VECCOPY(vert[1], v2);
VECCOPY(vert[2], v3);
VECCOPY(vert[3], v4);
co[0]= v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2] + v4[0]*w[3];
co[1]= v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2] + v4[1]*w[3];
co[2]= v1[2]*w[0] + v2[2]*w[1] + v3[2]*w[2] + v4[2]*w[3];
MeanValueWeights(vert, 4, co, w);
}
/* check intersection with a derivedmesh */
int psys_intersect_dm(Object *ob, DerivedMesh *dm, float *vert_cos, float *co1, float* co2, float *min_d, int *min_face, float *min_w,
float *face_minmax, float *pa_minmax, float radius, float *ipoint)
{
MFace *mface=0;
MVert *mvert=0;
int i, totface, intersect=0;
float cur_d, cur_uv[2], v1[3], v2[3], v3[3], v4[3], min[3], max[3], p_min[3],p_max[3];
float cur_ipoint[3];
if(dm==0){
psys_disable_all(ob);
dm=mesh_get_derived_final(ob,0);
if(dm==0)
mesh_get_derived_deform(ob,0);
psys_enable_all(ob);
if(dm==0)
return 0;
}
if(pa_minmax==0){
INIT_MINMAX(p_min,p_max);
DO_MINMAX(co1,p_min,p_max);
DO_MINMAX(co2,p_min,p_max);
}
else{
VECCOPY(p_min,pa_minmax);
VECCOPY(p_max,pa_minmax+3);
}
totface=dm->getNumFaces(dm);
mface=dm->getFaceDataArray(dm,CD_MFACE);
mvert=dm->getVertDataArray(dm,CD_MVERT);
/* lets intersect the faces */
for(i=0; i<totface; i++,mface++){
if(vert_cos){
VECCOPY(v1,vert_cos+3*mface->v1);
VECCOPY(v2,vert_cos+3*mface->v2);
VECCOPY(v3,vert_cos+3*mface->v3);
if(mface->v4)
VECCOPY(v4,vert_cos+3*mface->v4)
}
else{
VECCOPY(v1,mvert[mface->v1].co);
VECCOPY(v2,mvert[mface->v2].co);
VECCOPY(v3,mvert[mface->v3].co);
if(mface->v4)
VECCOPY(v4,mvert[mface->v4].co)
}
if(face_minmax==0){
INIT_MINMAX(min,max);
DO_MINMAX(v1,min,max);
DO_MINMAX(v2,min,max);
DO_MINMAX(v3,min,max);
if(mface->v4)
DO_MINMAX(v4,min,max)
if(AabbIntersectAabb(min,max,p_min,p_max)==0)
continue;
}
else{
VECCOPY(min, face_minmax+6*i);
VECCOPY(max, face_minmax+6*i+3);
if(AabbIntersectAabb(min,max,p_min,p_max)==0)
continue;
}
if(radius>0.0f){
if(SweepingSphereIntersectsTriangleUV(co1, co2, radius, v2, v3, v1, &cur_d, cur_ipoint)){
if(cur_d<*min_d){
*min_d=cur_d;
VECCOPY(ipoint,cur_ipoint);
*min_face=i;
intersect=1;
}
}
if(mface->v4){
if(SweepingSphereIntersectsTriangleUV(co1, co2, radius, v4, v1, v3, &cur_d, cur_ipoint)){
if(cur_d<*min_d){
*min_d=cur_d;
VECCOPY(ipoint,cur_ipoint);
*min_face=i;
intersect=1;
}
}
}
}
else{
if(LineIntersectsTriangle(co1, co2, v1, v2, v3, &cur_d, cur_uv)){
if(cur_d<*min_d){
*min_d=cur_d;
min_w[0]= 1.0 - cur_uv[0] - cur_uv[1];
min_w[1]= cur_uv[0];
min_w[2]= cur_uv[1];
min_w[3]= 0.0f;
if(mface->v4)
intersect_dm_quad_weights(v1, v2, v3, v4, min_w);
*min_face=i;
intersect=1;
}
}
if(mface->v4){
if(LineIntersectsTriangle(co1, co2, v1, v3, v4, &cur_d, cur_uv)){
if(cur_d<*min_d){
*min_d=cur_d;
min_w[0]= 1.0 - cur_uv[0] - cur_uv[1];
min_w[1]= 0.0f;
min_w[2]= cur_uv[0];
min_w[3]= cur_uv[1];
intersect_dm_quad_weights(v1, v2, v3, v4, min_w);
*min_face=i;
intersect=1;
}
}
}
}
}
return intersect;
}
/* particle - mesh collision code */
/* in addition to basic point to surface collisions handles friction & damping,*/
/* angular momentum <-> linear momentum and swept sphere - mesh collisions */
/* 1. check for all possible deflectors for closest intersection on particle path */
/* 2. if deflection was found kill the particle or calculate new coordinates */
static void deflect_particle(Object *pob, ParticleSystemModifierData *psmd, ParticleSystem *psys, ParticleSettings *part, ParticleData *pa, int p, float dfra, float cfra, ParticleKey *state, int *pa_die){
Object *ob, *min_ob;
MFace *mface;
MVert *mvert;
DerivedMesh *dm;
ListBase *lb=&psys->effectors;
ParticleEffectorCache *ec;
ParticleKey cstate;
float imat[4][4];
float co1[3],co2[3],def_loc[3],def_nor[3],unit_nor[3],def_tan[3],dvec[3],def_vel[3],dave[3],dvel[3];
float pa_minmax[6];
float min_w[4], zerovec[3]={0.0,0.0,0.0}, ipoint[3];
float min_d,dotprod,damp,frict,o_len,d_len,radius=-1.0f;
int min_face=0, intersect=1, through=0;
short deflections=0, global=0;
VECCOPY(def_loc,pa->state.co);
VECCOPY(def_vel,pa->state.vel);
/* 10 iterations to catch multiple deflections */
if(lb->first) while(deflections<10){
intersect=0;
global=0;
min_d=20000.0;
min_ob=NULL;
/* 1. */
for(ec=lb->first; ec; ec=ec->next){
if(ec->type & PSYS_EC_DEFLECT){
ob= ec->ob;
if(part->type!=PART_HAIR)
where_is_object_time(ob,cfra);
if(ob==pob){
dm=psmd->dm;
/* particles should not collide with emitter at birth */
if(pa->time < cfra && pa->time >= psys->cfra)
continue;
}
else
dm=0;
VECCOPY(co1,def_loc);
VECCOPY(co2,state->co);
if(ec->vert_cos==0){
/* convert particle coordinates to object coordinates */
Mat4Invert(imat,ob->obmat);
Mat4MulVecfl(imat,co1);
Mat4MulVecfl(imat,co2);
}
INIT_MINMAX(pa_minmax,pa_minmax+3);
DO_MINMAX(co1,pa_minmax,pa_minmax+3);
DO_MINMAX(co2,pa_minmax,pa_minmax+3);
if(part->flag&PART_SIZE_DEFL){
pa_minmax[0]-=pa->size;
pa_minmax[1]-=pa->size;
pa_minmax[2]-=pa->size;
pa_minmax[3]+=pa->size;
pa_minmax[4]+=pa->size;
pa_minmax[5]+=pa->size;
radius=pa->size;
}
if(ec->face_minmax==0 || AabbIntersectAabb(pa_minmax,pa_minmax+3,ec->ob_minmax,ec->ob_minmax+3))
if(psys_intersect_dm(ob,dm,ec->vert_cos,co1,co2,&min_d,&min_face,min_w,
ec->face_minmax,pa_minmax,radius,ipoint)){
min_ob=ob;
if(ec->vert_cos)
global=1;
else
global=0;
}
}
}
/* 2. */
if(min_ob){
BLI_srandom((int)cfra+p);
ob=min_ob;
if(ob==pob){
dm=psmd->dm;
}
else{
psys_disable_all(ob);
dm=mesh_get_derived_final(ob,0);
psys_enable_all(ob);
}
mface=dm->getFaceDataArray(dm,CD_MFACE);
mface+=min_face;
mvert=dm->getVertDataArray(dm,CD_MVERT);
/* permeability check */
if(BLI_frand()<ob->pd->pdef_perm)
through=1;
else
through=0;
if(through==0 && (part->flag & PART_DIE_ON_COL || ob->pd->flag & PDEFLE_KILL_PART)){
pa->dietime = cfra-(1.0f-min_d)*dfra;
VecLerpf(def_loc,co1,co2,min_d);
if(global==0)
Mat4MulVecfl(ob->obmat,def_loc);
VECCOPY(state->co,def_loc);
VecLerpf(state->vel,pa->state.vel,state->vel,min_d);
QuatInterpol(state->rot,pa->state.rot,state->rot,min_d);
VecLerpf(state->ave,pa->state.ave,state->ave,min_d);
*pa_die=1;
/* particle is dead so we don't need to calculate further */
deflections=10;
/* store for reactors */
copy_particle_key(&cstate,state,0);
if(part->flag & PART_STICKY){
pa->stick_ob=ob;
pa->flag |= PARS_STICKY;
//stick_particle_to_object(ob,pa,state);
}
}
else{
VecLerpf(def_loc,co1,co2,min_d);
if(radius>0.0f){
VECSUB(unit_nor,def_loc,ipoint);
}
else{
/* get deflection point & normal */
psys_interpolate_face(mvert,mface,0,0,min_w,ipoint,unit_nor,0,0,0,0);
if(global){
Mat4Mul3Vecfl(ob->obmat,unit_nor);
Mat4MulVecfl(ob->obmat,ipoint);
}
}
Normalize(unit_nor);
VECSUB(dvec,co1,co2);
/* scale to remaining length after deflection */
VecMulf(dvec,1.0f-min_d);
/* flip normal to face particle */
if(Inpf(unit_nor,dvec)<0.0f)
VecMulf(unit_nor,-1.0f);
/* store for easy velocity calculation */
o_len=VecLength(dvec);
/* project particle movement to normal & create tangent */
dotprod=Inpf(dvec,unit_nor);
VECCOPY(def_nor,unit_nor);
VecMulf(def_nor,dotprod);
VECSUB(def_tan,def_nor,dvec);
damp=ob->pd->pdef_damp+ob->pd->pdef_rdamp*2*(BLI_frand()-0.5f);
/* create location after deflection */
VECCOPY(dvec,def_nor);
damp=ob->pd->pdef_damp+ob->pd->pdef_rdamp*2*(BLI_frand()-0.5f);
CLAMP(damp,0.0,1.0);
VecMulf(dvec,1.0f-damp);
if(through)
VecMulf(dvec,-1.0);
frict=ob->pd->pdef_frict+ob->pd->pdef_rfrict*2.0f*(BLI_frand()-0.5f);
CLAMP(frict,0.0,1.0);
VECADDFAC(dvec,dvec,def_tan,1.0f-frict);
/* store for easy velocity calculation */
d_len=VecLength(dvec);
/* just to be sure we don't hit the current face again */
if(through){
VECADDFAC(ipoint,ipoint,unit_nor,-0.0001f);
VECADDFAC(def_loc,def_loc,unit_nor,-0.0001f);
if(part->flag & PART_ROT_DYN){
VECADDFAC(def_tan,def_tan,unit_nor,-0.0001f);
VECADDFAC(def_nor,def_nor,unit_nor,-0.0001f);
}
}
else{
VECADDFAC(ipoint,ipoint,unit_nor,0.0001f);
VECADDFAC(def_loc,def_loc,unit_nor,0.0001f);
if(part->flag & PART_ROT_DYN){
VECADDFAC(def_tan,def_tan,unit_nor,0.0001f);
VECADDFAC(def_nor,def_nor,unit_nor,0.0001f);
}
}
/* lets get back to global space */
if(global==0){
Mat4Mul3Vecfl(ob->obmat,dvec);
Mat4MulVecfl(ob->obmat,ipoint);
Mat4MulVecfl(ob->obmat,def_loc);/* def_loc remains as intersection point for next iteration */
}
/* store for reactors */
VECCOPY(cstate.co,ipoint);
VecLerpf(cstate.vel,pa->state.vel,state->vel,min_d);
QuatInterpol(cstate.rot,pa->state.rot,state->rot,min_d);
/* slightly unphysical but looks nice enough */
if(part->flag & PART_ROT_DYN){
if(global==0){
Mat4Mul3Vecfl(ob->obmat,def_nor);
Mat4Mul3Vecfl(ob->obmat,def_tan);
}
Normalize(def_tan);
Normalize(def_nor);
VECCOPY(unit_nor,def_nor);
/* create normal velocity */
VecMulf(def_nor,Inpf(pa->state.vel,def_nor));
/* create tangential velocity */
VecMulf(def_tan,Inpf(pa->state.vel,def_tan));
/* angular velocity change due to tangential velocity */
Crossf(dave,unit_nor,def_tan);
VecMulf(dave,1.0f/pa->size);
/* linear velocity change due to angular velocity */
VecMulf(unit_nor,pa->size); /* point of impact from particle center */
Crossf(dvel,pa->state.ave,unit_nor);
if(through)
VecMulf(def_nor,-1.0);
VecMulf(def_nor,1.0f-damp);
VECSUB(dvel,dvel,def_nor);
VecMulf(dvel,1.0f-frict);
VecMulf(dave,1.0f-frict);
}
if(d_len<0.001 && VecLength(pa->state.vel)<0.001){
/* kill speed to stop slipping */
VECCOPY(state->vel,zerovec);
VECCOPY(state->co,def_loc);
if(part->flag & PART_ROT_DYN)
VECCOPY(state->ave,zerovec);
deflections=10;
}
else{
/* apply new coordinates */
VECADD(state->co,def_loc,dvec);
Normalize(dvec);
/* we have to use original velocity because otherwise we get slipping */
/* when forces like gravity balance out damping & friction */
VecMulf(dvec,VecLength(pa->state.vel)*(d_len/o_len));
VECCOPY(state->vel,dvec);
if(part->flag & PART_ROT_DYN){
VECADD(state->vel,state->vel,dvel);
VecMulf(state->vel,0.5);
VECADD(state->ave,state->ave,dave);
VecMulf(state->ave,0.5);
}
}
}
deflections++;
cstate.time=cfra-(1.0f-min_d)*dfra;
//particle_react_to_collision(min_ob,pob,psys,pa,p,&cstate);
push_reaction(pob,psys,p,PART_EVENT_COLLIDE,&cstate);
}
else
return;
}
}
/************************************************/
/* Boid physics */
/************************************************/
static int boid_see_mesh(ListBase *lb, Object *pob, ParticleSystem *psys, float *vec1, float *vec2, float *loc, float *nor, float cfra)
{
Object *ob, *min_ob;
DerivedMesh *dm;
MFace *mface;
MVert *mvert;
ParticleEffectorCache *ec;
ParticleSystemModifierData *psmd=psys_get_modifier(pob,psys);
float imat[4][4];
float co1[3], co2[3], min_w[4], min_d;
int min_face=0, intersect=0;
if(lb->first){
intersect=0;
min_d=20000.0;
min_ob=NULL;
for(ec=lb->first; ec; ec=ec->next){
if(ec->type & PSYS_EC_DEFLECT){
ob= ec->ob;
if(psys->part->type!=PART_HAIR)
where_is_object_time(ob,cfra);
if(ob==pob)
dm=psmd->dm;
else
dm=0;
VECCOPY(co1,vec1);
VECCOPY(co2,vec2);
if(ec->vert_cos==0){
/* convert particle coordinates to object coordinates */
Mat4Invert(imat,ob->obmat);
Mat4MulVecfl(imat,co1);
Mat4MulVecfl(imat,co2);
}
if(psys_intersect_dm(ob,dm,ec->vert_cos,co1,co2,&min_d,&min_face,min_w,ec->face_minmax,0,0,0))
min_ob=ob;
}
}
if(min_ob){
ob=min_ob;
if(ob==pob){
dm=psmd->dm;
}
else{
psys_disable_all(ob);
dm=mesh_get_derived_deform(ob,0);
psys_enable_all(ob);
}
mface=dm->getFaceDataArray(dm,CD_MFACE);
mface+=min_face;
mvert=dm->getVertDataArray(dm,CD_MVERT);
/* get deflection point & normal */
psys_interpolate_face(mvert,mface,0,0,min_w,loc,nor,0,0,0,0);
VECADD(nor,nor,loc);
Mat4MulVecfl(ob->obmat,loc);
Mat4MulVecfl(ob->obmat,nor);
VECSUB(nor,nor,loc);
return 1;
}
}
return 0;
}
/* vector calculus functions in 2d vs. 3d */
static void set_boid_vec_func(BoidVecFunc *bvf, int is_2d)
{
if(is_2d){
bvf->Addf = Vec2Addf;
bvf->Subf = Vec2Subf;
bvf->Mulf = Vec2Mulf;
bvf->Length = Vec2Length;
bvf->Normalize = Normalize2;
bvf->Inpf = Inp2f;
bvf->Copyf = Vec2Copyf;
}
else{
bvf->Addf = VecAddf;
bvf->Subf = VecSubf;
bvf->Mulf = VecMulf;
bvf->Length = VecLength;
bvf->Normalize = Normalize;
bvf->Inpf = Inpf;
bvf->Copyf = VecCopyf;
}
}
/* boids have limited processing capability so once there's too much information (acceleration) no more is processed */
static int add_boid_acc(BoidVecFunc *bvf, float lat_max, float tan_max, float *lat_accu, float *tan_accu, float *acc, float *dvec, float *vel)
{
static float tangent[3];
static float tan_length;
if(vel){
bvf->Copyf(tangent,vel);
tan_length=bvf->Normalize(tangent);
return 1;
}
else{
float cur_tan, cur_lat;
float tan_acc[3], lat_acc[3];
int ret=0;
bvf->Copyf(tan_acc,tangent);
if(tan_length>0.0){
bvf->Mulf(tan_acc,Inpf(tangent,dvec));
bvf->Subf(lat_acc,dvec,tan_acc);
}
else{
bvf->Copyf(tan_acc,dvec);
lat_acc[0]=lat_acc[1]=lat_acc[2]=0.0f;
*lat_accu=lat_max;
}
cur_tan=bvf->Length(tan_acc);
cur_lat=bvf->Length(lat_acc);
/* add tangential acceleration */
if(*lat_accu+cur_lat<=lat_max){
bvf->Addf(acc,acc,lat_acc);
*lat_accu+=cur_lat;
ret=1;
}
else{
bvf->Mulf(lat_acc,(lat_max-*lat_accu)/cur_lat);
bvf->Addf(acc,acc,lat_acc);
*lat_accu=lat_max;
}
/* add lateral acceleration */
if(*tan_accu+cur_tan<=tan_max){
bvf->Addf(acc,acc,tan_acc);
*tan_accu+=cur_tan;
ret=1;
}
else{
bvf->Mulf(tan_acc,(tan_max-*tan_accu)/cur_tan);
bvf->Addf(acc,acc,tan_acc);
*tan_accu=tan_max;
}
return ret;
}
}
/* determines the acceleration that the boid tries to acchieve */
static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleSystem *psys, ParticleSettings *part, KDTree *tree, float timestep, float cfra, float *acc, int *pa_die)
{
ParticleData *pars=psys->particles;
KDTreeNearest ptn[MAX_BOIDNEIGHBOURS+1];
ParticleEffectorCache *ec=0;
float dvec[3]={0.0,0.0,0.0}, ob_co[3], ob_nor[3];
float avoid[3]={0.0,0.0,0.0}, velocity[3]={0.0,0.0,0.0}, center[3]={0.0,0.0,0.0};
float cubedist[MAX_BOIDNEIGHBOURS+1];
int i, n, neighbours=0, near, not_finished=1;
float cur_vel;
float lat_accu=0.0f, max_lat_acc=part->max_vel*part->max_lat_acc;
float tan_accu=0.0f, max_tan_acc=part->max_vel*part->max_tan_acc;
float avg_vel=part->average_vel*part->max_vel;
acc[0]=acc[1]=acc[2]=0.0f;
/* the +1 neighbour is because boid itself is in the tree */
neighbours=BLI_kdtree_find_n_nearest(tree,part->boidneighbours+1,pa->state.co,NULL,ptn);
for(n=1; n<neighbours; n++){
cubedist[n]=(float)pow((double)(ptn[n].dist/pa->size),3.0);
cubedist[n]=1.0f/MAX2(cubedist[n],1.0f);
}
/* initialize tangent */
add_boid_acc(bvf,0.0,0.0,0,0,0,0,pa->state.vel);
for(i=0; i<BOID_TOT_RULES && not_finished; i++){
switch(part->boidrule[i]){
case BOID_COLLIDE:
/* collision avoidance */
bvf->Copyf(dvec,pa->state.vel);
bvf->Mulf(dvec,5.0f);
bvf->Addf(dvec,dvec,pa->state.co);
if(boid_see_mesh(&psys->effectors,ob,psys,pa->state.co,dvec,ob_co,ob_nor,cfra)){
float probelen = bvf->Length(dvec);
float proj;
float oblen;
Normalize(ob_nor);
proj = bvf->Inpf(ob_nor,pa->state.vel);
bvf->Subf(dvec,pa->state.co,ob_co);
oblen=bvf->Length(dvec);
bvf->Copyf(dvec,ob_nor);
bvf->Mulf(dvec,-proj);
bvf->Mulf(dvec,((probelen/oblen)-1.0f)*100.0f*part->boidfac[BOID_COLLIDE]);
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
break;
case BOID_AVOID:
/* predator avoidance */
if(psys->effectors.first){
for(ec=psys->effectors.first; ec; ec=ec->next){
if(ec->type & PSYS_EC_EFFECTOR){
Object *eob = ec->ob;
PartDeflect *pd = eob->pd;
if(pd->forcefield==PFIELD_FORCE && pd->f_strength<0.0){
float distance;
VECSUB(dvec,eob->obmat[3],pa->state.co);
distance=Normalize(dvec);
if(part->flag & PART_DIE_ON_COL && distance < pd->mindist){
*pa_die=1;
pa->dietime=cfra;
i=BOID_TOT_RULES;
break;
}
if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
;
else{
bvf->Mulf(dvec,part->boidfac[BOID_AVOID]*pd->f_strength/(float)pow((double)distance,(double)pd->f_power));
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
}
}
else if(ec->type & PSYS_EC_PARTICLE){
Object *eob = ec->ob;
ParticleSystem *epsys;
ParticleSettings *epart;
ParticleKey state;
PartDeflect *pd;
KDTreeNearest ptn2[MAX_BOIDNEIGHBOURS];
int totepart, p, count;
float distance;
epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
epart= epsys->part;
pd= epart->pd;
totepart= epsys->totpart;
if(pd->forcefield==PFIELD_FORCE && pd->f_strength<0.0){
count=BLI_kdtree_find_n_nearest(ec->tree,epart->boidneighbours,pa->state.co,NULL,ptn2);
for(p=0; p<count; p++){
state.time=-1.0;
if(psys_get_particle_state(eob,epsys,ptn2[p].index,&state,0)){
VECSUB(dvec, state.co, pa->state.co);
distance = Normalize(dvec);
if(part->flag & PART_DIE_ON_COL && distance < (epsys->particles+ptn2[p].index)->size){
*pa_die=1;
pa->dietime=cfra;
i=BOID_TOT_RULES;
break;
}
if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
;
else{
bvf->Mulf(dvec,part->boidfac[BOID_AVOID]*pd->f_strength/(float)pow((double)distance,(double)pd->f_power));
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
}
}
}
}
}
}
break;
case BOID_CROWD:
/* crowd avoidance */
near=0;
for(n=1; n<neighbours; n++){
if(ptn[n].dist<2.0f*pa->size){
bvf->Subf(dvec,pa->state.co,pars[ptn[n].index].state.co);
bvf->Mulf(dvec,(2.0f*pa->size-ptn[n].dist)/ptn[n].dist);
bvf->Addf(avoid,avoid,dvec);
near++;
}
/* ptn[] is distance ordered so no need to check others */
else break;
}
if(near){
bvf->Mulf(avoid,part->boidfac[BOID_CROWD]*2.0f/timestep);
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,avoid,0);
}
break;
case BOID_CENTER:
/* flock centering */
if(neighbours>1){
for(n=1; n<neighbours; n++){
bvf->Addf(center,center,pars[ptn[n].index].state.co);
}
bvf->Mulf(center,1.0f/((float)neighbours-1.0f));
bvf->Subf(dvec,center,pa->state.co);
bvf->Mulf(dvec,part->boidfac[BOID_CENTER]*2.0f);
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
break;
case BOID_AV_VEL:
/* average velocity */
cur_vel=bvf->Length(pa->state.vel);
if(cur_vel>0.0){
bvf->Copyf(dvec,pa->state.vel);
bvf->Mulf(dvec,part->boidfac[BOID_AV_VEL]*(avg_vel-cur_vel)/cur_vel);
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
break;
case BOID_VEL_MATCH:
/* velocity matching */
if(neighbours>1){
for(n=1; n<neighbours; n++){
bvf->Copyf(dvec,pars[ptn[n].index].state.vel);
bvf->Mulf(dvec,cubedist[n]);
bvf->Addf(velocity,velocity,dvec);
}
bvf->Mulf(velocity,1.0f/((float)neighbours-1.0f));
bvf->Subf(dvec,velocity,pa->state.vel);
bvf->Mulf(dvec,part->boidfac[BOID_VEL_MATCH]);
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
break;
case BOID_GOAL:
/* goal seeking */
if(psys->effectors.first){
for(ec=psys->effectors.first; ec; ec=ec->next){
if(ec->type & PSYS_EC_EFFECTOR){
Object *eob = ec->ob;
PartDeflect *pd = eob->pd;
float temp[4];
if(pd->forcefield==PFIELD_FORCE && pd->f_strength>0.0){
float distance;
VECSUB(dvec,eob->obmat[3],pa->state.co);
distance=Normalize(dvec);
if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
;
else{
VecMulf(dvec,pd->f_strength*part->boidfac[BOID_GOAL]/(float)pow((double)distance,(double)pd->f_power));
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
}
else if(pd->forcefield==PFIELD_GUIDE){
float distance;
where_on_path(eob, (cfra-pa->time)/pa->lifetime, temp, dvec);
VECSUB(dvec,temp,pa->state.co);
distance=Normalize(dvec);
if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
;
else{
VecMulf(dvec,pd->f_strength*part->boidfac[BOID_GOAL]/(float)pow((double)distance,(double)pd->f_power));
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
}
}
else if(ec->type & PSYS_EC_PARTICLE){
Object *eob = ec->ob;
ParticleSystem *epsys;
ParticleSettings *epart;
ParticleKey state;
PartDeflect *pd;
KDTreeNearest ptn2[MAX_BOIDNEIGHBOURS];
int totepart, p, count;
float distance;
epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
epart= epsys->part;
pd= epart->pd;
totepart= epsys->totpart;
if(pd->forcefield==PFIELD_FORCE && pd->f_strength>0.0){
count=BLI_kdtree_find_n_nearest(ec->tree,epart->boidneighbours,pa->state.co,NULL,ptn2);
for(p=0; p<count; p++){
state.time=-1.0;
if(psys_get_particle_state(eob,epsys,ptn2[p].index,&state,0)){
VECSUB(dvec, state.co, pa->state.co);
distance = Normalize(dvec);
if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
;
else{
bvf->Mulf(dvec,part->boidfac[BOID_AVOID]*pd->f_strength/(float)pow((double)distance,(double)pd->f_power));
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
}
}
}
}
}
}
break;
case BOID_LEVEL:
/* level flight */
if((part->flag & PART_BOIDS_2D)==0){
dvec[0]=dvec[1]=0.0;
dvec[2]=-pa->state.vel[2];
VecMulf(dvec,part->boidfac[BOID_LEVEL]);
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
break;
}
}
}
/* tries to realize the wanted acceleration */
static void boid_body(BoidVecFunc *bvf, ParticleData *pa, ParticleSystem *psys, ParticleSettings *part, float timestep, float *acc, ParticleKey *state)
{
float dvec[3], bvec[3], length, max_vel=part->max_vel;
float *q2, q[4];
float g=9.81f, pa_mass=part->mass;
float yvec[3]={0.0,1.0,0.0}, zvec[3]={0.0,0.0,-1.0}, bank;
/* apply new velocity, location & rotation */
copy_particle_key(state,&pa->state,0);
if(part->flag & PART_SIZEMASS)
pa_mass*=pa->size;
/* by regarding the acceleration as a force at this stage we*/
/* can get better controll allthough it's a bit unphysical */
bvf->Mulf(acc,1.0f/pa_mass);
bvf->Copyf(dvec,acc);
bvf->Mulf(dvec,timestep*timestep*0.5f);
bvf->Copyf(bvec,state->vel);
bvf->Mulf(bvec,timestep);
bvf->Addf(dvec,dvec,bvec);
bvf->Addf(state->co,state->co,dvec);
/* air speed from wind effectors */
if(psys->effectors.first){
ParticleEffectorCache *ec;
for(ec=psys->effectors.first; ec; ec=ec->next){
if(ec->type & PSYS_EC_EFFECTOR){
Object *eob = ec->ob;
PartDeflect *pd = eob->pd;
if(pd->forcefield==PFIELD_WIND && pd->f_strength!=0.0){
float distance, wind[3];
VecCopyf(wind,eob->obmat[2]);
distance=VecLenf(state->co,eob->obmat[3]);
if (distance < 0.001) distance = 0.001f;
if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
;
else{
Normalize(wind);
VecMulf(wind,pd->f_strength/(float)pow((double)distance,(double)pd->f_power));
bvf->Addf(state->co,state->co,wind);
}
}
}
}
}
if((part->flag & PART_BOIDS_2D)==0 && pa->state.vel[0]!=0.0 && pa->state.vel[0]!=0.0 && pa->state.vel[0]!=0.0){
Crossf(yvec,state->vel,zvec);
Normalize(yvec);
bank=Inpf(yvec,acc);
bank=-(float)atan((double)(bank/g));
bank*=part->banking;
bank-=pa->bank;
if(bank>M_PI*part->max_bank){
bank=pa->bank+(float)M_PI*part->max_bank;
}
else if(bank<-M_PI*part->max_bank){
bank=pa->bank-(float)M_PI*part->max_bank;
}
else
bank+=pa->bank;
pa->bank=bank;
}
else{
bank=0.0;
}
VecRotToQuat(state->vel,bank,q);
VECCOPY(dvec,state->vel);
VecMulf(dvec,-1.0f);
q2= vectoquat(dvec, OB_POSX, OB_POSZ);
QuatMul(state->rot,q,q2);
bvf->Mulf(acc,timestep);
bvf->Addf(state->vel,state->vel,acc);
if(part->flag & PART_BOIDS_2D){
state->vel[2]=0.0;
state->co[2]=part->groundz;
if(psys->keyed_ob){
Object *zob=psys->keyed_ob;
int min_face;
float co1[3],co2[3],min_d=2.0,min_w[4],imat[4][4];
VECCOPY(co1,state->co);
VECCOPY(co2,state->co);
co1[2]=1000.0f;
co2[2]=-1000.0f;
Mat4Invert(imat,zob->obmat);
Mat4MulVecfl(imat,co1);
Mat4MulVecfl(imat,co2);
if(psys_intersect_dm(zob,0,0,co1,co2,&min_d,&min_face,min_w,0,0,0,0)){
DerivedMesh *dm;
MFace *mface;
MVert *mvert;
float loc[3],nor[3],q1[4];
psys_disable_all(zob);
dm=mesh_get_derived_final(zob,0);
psys_enable_all(zob);
mface=dm->getFaceDataArray(dm,CD_MFACE);
mface+=min_face;
mvert=dm->getVertDataArray(dm,CD_MVERT);
/* get deflection point & normal */
psys_interpolate_face(mvert,mface,0,0,min_w,loc,nor,0,0,0,0);
Mat4MulVecfl(zob->obmat,loc);
Mat4Mul3Vecfl(zob->obmat,nor);
Normalize(nor);
VECCOPY(state->co,loc);
zvec[2]=1.0;
Crossf(loc,zvec,nor);
bank=VecLength(loc);
if(bank>0.0){
bank=saasin(bank);
VecRotToQuat(loc,bank,q);
QUATCOPY(q1,state->rot);
QuatMul(state->rot,q,q1);
}
}
}
}
length=bvf->Length(state->vel);
if(length > max_vel)
bvf->Mulf(state->vel,max_vel/length);
}
/************************************************/
/* Hair */
/************************************************/
void save_hair(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra){
ParticleData *pa;
HairKey *key;
int totpart;
int i;
Mat4Invert(ob->imat,ob->obmat);
psys->lattice=psys_get_lattice(ob,psys);
if(psys->totpart==0) return;
totpart=psys->totpart;
/* save new keys for elements if needed */
for(i=0,pa=psys->particles; i<totpart; i++,pa++) {
/* first time alloc */
if(pa->totkey==0 || pa->hair==NULL) {
pa->hair = MEM_callocN((psys->part->hair_step + 1) * sizeof(HairKey), "HairKeys");
pa->totkey = 0;
}
key = pa->hair + pa->totkey;
/* convert from global to geometry space */
VecCopyf(key->co, pa->state.co);
Mat4MulVecfl(ob->imat, key->co);
if(pa->totkey) {
VECSUB(key->co, key->co, pa->hair->co);
psys_vec_rot_to_face(psmd->dm, pa, key->co);
}
key->time = pa->state.time;
key->weight = 1.0f - key->time / 100.0f;
pa->totkey++;
/* root is always in the origin of hair space so we set it to be so after the last key is saved*/
if(pa->totkey == psys->part->hair_step + 1)
pa->hair->co[0] = pa->hair->co[1] = pa->hair->co[2] = 0.0f;
}
}
/************************************************/
/* System Core */
/************************************************/
/* unbaked particles are calculated dynamically */
static void dynamics_step(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra,
float *vg_vel, float *vg_tan, float *vg_rot, float *vg_size)
{
ParticleData *pa;
ParticleKey *outstate, *key;
ParticleSettings *part=psys->part;
KDTree *tree=0;
BoidVecFunc bvf;
IpoCurve *icu_esize=find_ipocurve(part->ipo,PART_EMIT_SIZE);
Material *ma=give_current_material(ob,part->omat);
float timestep;
int p, totpart, pa_die;
/* current time */
float ctime, ipotime;
/* frame & time changes */
float dfra, dtime, pa_dtime, pa_dfra=0.0;
float birthtime, dietime;
/* where have we gone in time since last time */
dfra= cfra - psys->cfra;
totpart=psys->totpart;
timestep=psys_get_timestep(part);
dtime= dfra*timestep;
ctime= cfra*timestep;
ipotime= cfra;
if(part->flag&PART_ABS_TIME && part->ipo){
calc_ipo(part->ipo, cfra);
execute_ipo((ID *)part, part->ipo);
}
if(dfra<0.0){
float *vg_size=0;
if(part->type==PART_REACTOR)
vg_size=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_SIZE);
for(p=0, pa=psys->particles; p<totpart; p++,pa++){
if(pa->flag & (PARS_NO_DISP+PARS_UNEXIST)) continue;
/* set correct ipo timing */
if((part->flag&PART_ABS_TIME)==0 && part->ipo){
ipotime=100.0f*(cfra-pa->time)/pa->lifetime;
calc_ipo(part->ipo, ipotime);
execute_ipo((ID *)part, part->ipo);
}
pa->size=psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size);
if(part->type==PART_REACTOR)
initialize_particle(pa,p,ob,psys,psmd);
reset_particle(pa,psys,psmd,ob,dtime,cfra,vg_vel,vg_tan,vg_rot);
if(cfra>pa->time && part->flag & PART_LOOP && (part->flag & PART_LOOP_INSTANT)==0){
pa->loop=(short)((cfra-pa->time)/pa->lifetime)+1;
pa->alive=PARS_UNBORN;
}
else{
pa->loop=0;
if(cfra<=pa->time)
pa->alive=PARS_UNBORN;
/* without dynamics the state is allways known so no need to kill */
else if(ELEM(part->phystype,PART_PHYS_NO,PART_PHYS_KEYED)==0)
pa->alive=PARS_KILLED;
}
}
if(vg_size)
MEM_freeN(vg_size);
//if(part->phystype==PART_PHYS_SOLID)
// reset_to_first_fragment(psys);
}
else{
BLI_srandom(31415926 + (int)cfra + psys->seed);
/* outstate is used so that particles are updated in parallel */
outstate=MEM_callocN(totpart*sizeof(ParticleKey),"Particle Outstates");
/* update effectors */
if(psys->effectors.first)
psys_end_effectors(psys);
psys_init_effectors(ob,part->eff_group,psys);
if(psys->effectors.first)
precalc_effectors(ob,psys,psmd);
if(part->phystype==PART_PHYS_BOIDS){
/* create particle tree for fast inter-particle comparisons */
tree=BLI_kdtree_new(totpart);
for(p=0, pa=psys->particles; p<totpart; p++,pa++){
if(pa->flag & (PARS_NO_DISP+PARS_UNEXIST) || pa->alive!=PARS_ALIVE)
continue;
BLI_kdtree_insert(tree, p, pa->state.co, NULL);
}
BLI_kdtree_balance(tree);
set_boid_vec_func(&bvf,part->flag&PART_BOIDS_2D);
}
/* main loop: calculate physics for all particles */
for(p=0, pa=psys->particles, key=outstate; p<totpart; p++,pa++,key++){
if(pa->flag & (PARS_NO_DISP|PARS_UNEXIST)) continue;
copy_particle_key(key,&pa->state,1);
/* set correct ipo timing */
if((part->flag&PART_ABS_TIME)==0 && part->ipo){
ipotime=100.0f*(cfra-pa->time)/pa->lifetime;
calc_ipo(part->ipo, ipotime);
execute_ipo((ID *)part, part->ipo);
}
pa->size=psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size);
pa_die=0;
if(pa->alive==PARS_UNBORN || pa->alive==PARS_KILLED || ELEM(part->phystype,PART_PHYS_NO,PART_PHYS_KEYED)){
/* allways reset particles to emitter before birth */
reset_particle(pa,psys,psmd,ob,dtime,cfra,vg_vel,vg_tan,vg_rot);
copy_particle_key(key,&pa->state,1);
}
if(dfra>0.0 || psys->recalc){
if(psys->reactevents.first && ELEM(pa->alive,PARS_DEAD,PARS_KILLED)==0)
react_to_events(psys,p);
pa_dfra= dfra;
pa_dtime= dtime;
if(pa->flag & PART_LOOP && pa->flag & PART_LOOP_INSTANT)
birthtime=pa->dietime;
else
birthtime=pa->time+pa->loop*pa->lifetime;
dietime=birthtime+pa->lifetime;
if(birthtime < cfra && birthtime >= psys->cfra){
/* particle is born some time between this and last step*/
pa->alive=PARS_ALIVE;
pa_dfra= cfra - birthtime;
pa_dtime= pa_dfra*timestep;
}
else if(dietime <= cfra && psys->cfra < dietime){
/* particle dies some time between this and last step */
pa_dfra= dietime - psys->cfra;
pa_dtime= pa_dfra*timestep;
pa_die=1;
}
else if(dietime < cfra){
/* TODO: figure out if there's something to be done when particle is dead */
}
copy_particle_key(key,&pa->state,1);
if(dfra>0.0 && pa->alive==PARS_ALIVE){
switch(part->phystype){
case PART_PHYS_NEWTON:
/* do global forces & effectors */
apply_particle_forces(p,pa,ob,psys,part,timestep,pa_dfra,cfra,key);
/* deflection */
deflect_particle(ob,psmd,psys,part,pa,p,pa_dfra,cfra,key,&pa_die);
/* rotations */
rotate_particle(part,pa,pa_dfra,timestep,key);
break;
case PART_PHYS_BOIDS:
{
float acc[3];
boid_brain(&bvf,pa,ob,psys,part,tree,timestep,cfra,acc,&pa_die);
if(pa_die==0)
boid_body(&bvf,pa,psys,part,timestep,acc,key);
break;
}
}
push_reaction(ob,psys,p,PART_EVENT_NEAR,key);
if(pa_die){
push_reaction(ob,psys,p,PART_EVENT_DEATH,key);
if(part->flag & PART_LOOP){
pa->loop++;
if(part->flag & PART_LOOP_INSTANT){
reset_particle(pa,psys,psmd,ob,0.0,cfra,vg_vel,vg_tan,vg_rot);
pa->alive=PARS_ALIVE;
copy_particle_key(key,&pa->state,1);
}
else
pa->alive=PARS_UNBORN;
}
else{
pa->alive=PARS_DEAD;
key->time=pa->dietime;
if(pa->flag&PARS_STICKY)
psys_key_to_object(pa->stick_ob,key,0);
}
}
else
key->time=cfra;
}
}
}
/* apply outstates to particles */
for(p=0, pa=psys->particles, key=outstate; p<totpart; p++,pa++,key++)
copy_particle_key(&pa->state,key,1);
MEM_freeN(outstate);
}
if(psys->reactevents.first)
BLI_freelistN(&psys->reactevents);
if(tree)
BLI_kdtree_free(tree);
}
/* check if path cache or children need updating and do it if needed */
static void psys_update_path_cache(Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys, float cfra)
{
ParticleSettings *part=psys->part;
ParticleEditSettings *pset=&G.scene->toolsettings->particle;
int distr=0,alloc=0;
int child_nbr= (psys->renderdata)? part->ren_child_nbr: part->child_nbr;
if((psys->part->childtype && psys->totchild != psys->totpart*child_nbr) || psys->recalc&PSYS_ALLOC)
alloc=1;
if(alloc || psys->recalc&PSYS_DISTR || (psys->vgroup[PSYS_VG_DENSITY] && (G.f & G_WEIGHTPAINT)))
distr=1;
if(distr){
if(alloc)
alloc_particles(ob,psys,psys->totpart);
if(get_alloc_child_particles_tot(psys)) {
/* don't generate children while computing the hair keys */
if(!(psys->part->type == PART_HAIR) || (psys->flag & PSYS_HAIR_DONE)) {
distribute_particles(ob,psys,PART_FROM_CHILD);
if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES && part->parents!=0.0)
psys_find_parents(ob,psmd,psys);
}
}
}
if((part->type==PART_HAIR || psys->flag&PSYS_KEYED) && (psys_in_edit_mode(psys)
|| part->draw_as==PART_DRAW_PATH || part->draw&PART_DRAW_KEYS)){
psys_cache_paths(ob, psys, cfra, 0);
/* for render, child particle paths are computed on the fly */
if(part->childtype) {
if(((psys->totchild!=0)) || (psys_in_edit_mode(psys) && (pset->flag&PE_SHOW_CHILD)))
psys_cache_child_paths(ob, psys, cfra, 0);
}
}
else if(psys->pathcache)
psys_free_path_cache(psys);
}
static void hair_step(Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys, float cfra)
{
ParticleSettings *part = psys->part;
if(psys->recalc & PSYS_DISTR)
/* need this for changing subsurf levels */
psys_calc_dmfaces(ob, psmd->dm, psys);
if(psys->effectors.first)
psys_end_effectors(psys);
psys_init_effectors(ob,part->eff_group,psys);
if(psys->effectors.first)
precalc_effectors(ob,psys,psmd);
if(psys_in_edit_mode(psys))
PE_recalc_world_cos(ob, psys);
psys_update_path_cache(ob,psmd,psys,cfra);
}
/* updates cached particles' alive & other flags etc..*/
static void cached_step(Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys, float cfra, float *vg_size)
{
ParticleSettings *part=psys->part;
ParticleData *pa;
ParticleKey state;
IpoCurve *icu_esize=find_ipocurve(part->ipo,PART_EMIT_SIZE);
Material *ma=give_current_material(ob,part->omat);
int p;
float ipotime=cfra, disp;
/* deprecated */
//if(psys->recalc&PSYS_DISTR){
// /* The dm could have been changed so particle emitter element */
// /* indices might be wrong. There's really no "nice" way to handle*/
// /* this so we just try not to crash by correcting indices. */
// int totnum=-1;
// switch(part->from){
// case PART_FROM_VERT:
// totnum=psmd->dm->getNumVerts(psmd->dm);
// break;
// case PART_FROM_FACE:
// case PART_FROM_VOLUME:
// totnum=psmd->dm->getNumFaces(psmd->dm);
// break;
// }
// if(totnum==0){
// /* Now we're in real trouble, there's no emitter elements!! */
// for(p=0, pa=psys->particles; p<psys->totpart; p++,pa++)
// pa->num=-1;
// }
// else if(totnum>0){
// for(p=0, pa=psys->particles; p<psys->totpart; p++,pa++)
// pa->num=pa->num%totnum;
// }
//}
if(psys->effectors.first)
psys_end_effectors(psys);
//if(part->flag & (PART_BAKED_GUIDES+PART_BAKED_DEATHS)){
psys_init_effectors(ob,part->eff_group,psys);
if(psys->effectors.first)
precalc_effectors(ob,psys,psmd);
//}
disp= (float)get_current_display_percentage(psys)/50.0f-1.0f;
for(p=0, pa=psys->particles; p<psys->totpart; p++,pa++){
if((part->flag&PART_ABS_TIME)==0 && part->ipo){
ipotime=100.0f*(cfra-pa->time)/pa->lifetime;
calc_ipo(part->ipo, ipotime);
execute_ipo((ID *)part, part->ipo);
}
pa->size= psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size);
psys->lattice=psys_get_lattice(ob,psys);
/* update alive status and push events */
if(pa->time>cfra)
pa->alive=PARS_UNBORN;
else if(pa->dietime<=cfra){
if(pa->dietime>psys->cfra){
state.time=pa->dietime;
psys_get_particle_state(ob,psys,p,&state,1);
push_reaction(ob,psys,p,PART_EVENT_DEATH,&state);
}
pa->alive=PARS_DEAD;
}
else{
pa->alive=PARS_ALIVE;
state.time=cfra;
psys_get_particle_state(ob,psys,p,&state,1);
state.time=cfra;
push_reaction(ob,psys,p,PART_EVENT_NEAR,&state);
}
if(psys->lattice){
end_latt_deform();
psys->lattice=0;
}
if(pa->r_rot[0] > disp)
pa->flag |= PARS_NO_DISP;
else
pa->flag &= ~PARS_NO_DISP;
}
}
/* Calculates the next state for all particles of the system */
/* In particles code most fra-ending are frames, time-ending are fra*timestep (seconds)*/
static void system_step(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra)
{
ParticleSettings *part;
ParticleData *pa;
int totpart,oldtotpart=0,p;
float disp, *vg_vel=0, *vg_tan=0, *vg_rot=0, *vg_size=0;
int init=0,distr=0,alloc=0;
int child_nbr;
/*----start validity checks----*/
part=psys->part;
if(part->flag&PART_ABS_TIME && part->ipo){
calc_ipo(part->ipo, cfra);
execute_ipo((ID *)part, part->ipo);
}
if(part->from!=PART_FROM_PARTICLE)
vg_size=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_SIZE);
if(part->type == PART_HAIR) {
if(psys->flag & PSYS_HAIR_DONE) {
hair_step(ob, psmd, psys, cfra);
psys->cfra = cfra;
psys->recalc = 0;
return;
}
}
else if(part->phystype != PART_PHYS_NO) { /* cache shouldn't be used for none physics */
if(psys->recalc && (psys->flag & PSYS_PROTECT_CACHE) == 0)
clear_particles_from_cache(ob,psys,(int)cfra);
else if(get_particles_from_cache(ob, psys, (int)cfra)) {
cached_step(ob,psmd,psys,cfra,vg_size);
psys->cfra=cfra;
psys->recalc = 0;
return;
}
}
/* if still here react to events */
if(psys->recalc&PSYS_TYPE) {
/* system type has changed so set sensible defaults and clear non applicable flags */
if(part->from == PART_FROM_PARTICLE) {
if(part->type != PART_REACTOR)
part->from = PART_FROM_FACE;
if(part->distr == PART_DISTR_GRID)
part->distr = PART_DISTR_JIT;
}
if(psys->part->phystype != PART_PHYS_KEYED)
psys->flag &= ~PSYS_KEYED;
if(part->type == PART_HAIR) {
part->draw_as = PART_DRAW_PATH;
part->rotfrom = PART_ROT_IINCR;
}
else
free_hair(psys);
psys->recalc &= ~PSYS_TYPE;
alloc = 1;
/* this is a bad level call, but currently type change
* can happen after redraw, so force redraw from here */
allqueue(REDRAWBUTSOBJECT, 0);
}
else
oldtotpart = psys->totpart;
if(part->distr == PART_DISTR_GRID)
totpart = part->grid_res * part->grid_res * part->grid_res;
else
totpart = psys->part->totpart;
child_nbr= (psys->renderdata)? part->ren_child_nbr: part->child_nbr;
if(oldtotpart != totpart || psys->recalc&PSYS_ALLOC || (psys->part->childtype && psys->totchild != psys->totpart*child_nbr))
alloc = 1;
if(alloc || psys->recalc&PSYS_DISTR || (psys->vgroup[PSYS_VG_DENSITY] && (G.f & G_WEIGHTPAINT) && ob==OBACT))
distr = 1;
if(distr || psys->recalc&PSYS_INIT)
init = 1;
if(init) {
if(distr) {
if(alloc)
alloc_particles(ob, psys, totpart);
distribute_particles(ob, psys, part->from);
if(get_alloc_child_particles_tot(psys))
distribute_particles(ob, psys, PART_FROM_CHILD);
}
initialize_all_particles(ob, psys, psmd);
if(alloc)
reset_all_particles(ob, psys, psmd, 0.0, cfra, oldtotpart);
/* flag for possible explode modifiers after this system */
psmd->flag |= eParticleSystemFlag_Pars;
}
if(part->phystype==PART_PHYS_KEYED && psys->flag&PSYS_FIRST_KEYED)
psys_count_keyed_targets(ob,psys);
if(part->from!=PART_FROM_PARTICLE){
vg_vel=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_VEL);
vg_tan=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_TAN);
vg_rot=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_ROT);
}
/* set particles to be not calculated */
disp= (float)get_current_display_percentage(psys)/50.0f-1.0f;
for(p=0, pa=psys->particles; p<totpart; p++,pa++){
if(pa->r_rot[0] > disp)
pa->flag |= PARS_NO_DISP;
else
pa->flag &= ~PARS_NO_DISP;
}
/* ok now we're all set so let's go */
if(psys->totpart)
dynamics_step(ob,psys,psmd,cfra,vg_vel,vg_tan,vg_rot,vg_size);
psys->recalc = 0;
psys->cfra=cfra;
if(part->type!=PART_HAIR)
write_particles_to_cache(ob, psys, cfra);
/* for keyed particles the path is allways known so it can be drawn */
if(part->phystype==PART_PHYS_KEYED && psys->flag&PSYS_FIRST_KEYED){
set_keyed_keys(ob, psys);
psys_update_path_cache(ob,psmd,psys,(int)cfra);
}
else if(psys->pathcache)
psys_free_path_cache(psys);
if(vg_vel)
MEM_freeN(vg_vel);
if(psys->lattice){
end_latt_deform();
psys->lattice=0;
}
}
void psys_to_softbody(Object *ob, ParticleSystem *psys, int force_recalc)
{
SoftBody *sb;
short softflag;
if((psys->softflag&OB_SB_ENABLE)==0) return;
if(psys->recalc || force_recalc)
psys->softflag|=OB_SB_REDO;
/* let's replace the object's own softbody with the particle softbody */
/* a temporary solution before cloth simulation is implemented, jahka */
/* save these */
sb=ob->soft;
softflag=ob->softflag;
/* swich to new ones */
ob->soft=psys->soft;
ob->softflag=psys->softflag;
/* do softbody */
sbObjectStep(ob, (float)G.scene->r.cfra, NULL, psys_count_keys(psys));
/* return things back to normal */
psys->soft=ob->soft;
psys->softflag=ob->softflag;
ob->soft=sb;
ob->softflag=softflag;
}
static int hair_needs_recalc(ParticleSystem *psys)
{
if((psys->flag & PSYS_EDITED)==0 && (
(psys->flag & PSYS_HAIR_DONE)==0
|| psys->recalc & PSYS_RECALC_HAIR)
) {
psys->recalc &= ~PSYS_RECALC_HAIR;
return 1;
}
return 0;
}
/* main particle update call, checks that things are ok on the large scale before actual particle calculations */
void particle_system_update(Object *ob, ParticleSystem *psys){
ParticleSystemModifierData *psmd=0;
float cfra;
if(!psys_check_enabled(ob, psys))
return;
cfra=bsystem_time(ob,(float)CFRA,0.0);
psmd= psys_get_modifier(ob, psys);
/* system was already updated from modifier stack */
if(psmd->flag&eParticleSystemFlag_psys_updated) {
psmd->flag &= ~eParticleSystemFlag_psys_updated;
/* make sure it really was updated to cfra */
if(psys->cfra==cfra)
return;
}
if(!psmd->dm)
return;
/* baked path softbody */
if(psys->part->type==PART_HAIR && psys->soft)
psys_to_softbody(ob, psys, 0);
/* not needed, this is all handled in hair_step */
///* is the mesh changing under the edited particles? */
//if((psys->flag & PSYS_EDITED) && psys->part->type==PART_HAIR && psys->recalc & PSYS_RECALC_HAIR) {
// /* Just update the particles on the mesh */
// psys_update_edithair_dmfaces(ob, psmd->dm, psys);
//}
if(psys->part->type==PART_HAIR && hair_needs_recalc(psys)){
float hcfra=0.0f;
int i;
free_hair(psys);
/* first step is negative so particles get killed and reset */
psys->cfra=1.0f;
for(i=0; i<=psys->part->hair_step; i++){
hcfra=100.0f*(float)i/(float)psys->part->hair_step;
system_step(ob,psys,psmd,hcfra);
save_hair(ob,psys,psmd,hcfra);
}
psys->flag |= PSYS_HAIR_DONE;
if(psys->softflag&OB_SB_ENABLE)
psys_to_softbody(ob,psys,1);
}
system_step(ob,psys,psmd,cfra);
Mat4Invert(psys->imat, ob->obmat); /* used for duplicators */
}