This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/Mathutils.c

1188 lines
36 KiB
C
Raw Normal View History

/*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Joseph Gilbert
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "Mathutils.h"
//***************************************************************************
// Function: M_Mathutils_Rand
//***************************************************************************
static PyObject *M_Mathutils_Rand(PyObject *self, PyObject *args)
{
float high, low, range;
double rand;
high = 1.0;
low = 0.0;
if (!PyArg_ParseTuple(args, "|ff", &low, &high))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected optional float & float\n"));
if ( (high < low) ||(high < 0 && low > 0))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"high value should be larger than low value\n"));
//seed the generator
BLI_srand((unsigned int) (PIL_check_seconds_timer()*0x7FFFFFFF));
//get the random number 0 - 1
rand = BLI_drand();
//set it to range
range = high - low;
rand = rand * range;
rand = rand + low;
return PyFloat_FromDouble((double)rand);
}
//***************************************************************************
// Function: M_Mathutils_Vector
// Python equivalent: Blender.Mathutils.Vector
// Supports 2D, 3D, and 4D vector objects both int and float values
// accepted. Mixed float and int values accepted. Ints are parsed to float
//***************************************************************************
static PyObject *M_Mathutils_Vector(PyObject *self, PyObject *args)
{
PyObject *listObject = NULL;
PyObject *checkOb = NULL;
int x;
float *vec;
if (!PyArg_ParseTuple(args, "|O!", &PyList_Type, &listObject))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"0 or 1 list expected"));
if(!listObject) return (PyObject *)newVectorObject(NULL, 3);
//2D 3D 4D supported
if(PyList_Size(listObject) != 2 && PyList_Size(listObject) != 3
&& PyList_Size(listObject) != 4)
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"2D, 3D and 4D vectors supported\n"));
for (x = 0; x < PyList_Size(listObject); x++) {
checkOb = PyList_GetItem(listObject, x);
if(!PyInt_Check(checkOb) && !PyFloat_Check(checkOb))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected list of numbers\n"));
}
//allocate memory
vec = PyMem_Malloc (PyList_Size(listObject)*sizeof (float));
//parse it all as floats
for (x = 0; x < PyList_Size(listObject); x++) {
if (!PyArg_Parse(PyList_GetItem(listObject, x), "f", &vec[x])){
return EXPP_ReturnPyObjError (PyExc_TypeError,
"python list not parseable\n");
}
}
return (PyObject *)newVectorObject(vec, PyList_Size(listObject));
}
//***************************************************************************
//Begin Vector Utils
static PyObject *M_Mathutils_CopyVec(PyObject *self, PyObject *args)
{
VectorObject * vector;
float *vec;
int x;
if (!PyArg_ParseTuple(args, "O!", &vector_Type, &vector))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected vector type\n"));
vec = PyMem_Malloc(vector->size * sizeof(float));
for(x = 0; x < vector->size; x++){
vec[x] = vector->vec[x];
}
return (PyObject *)newVectorObject(vec, vector->size);
}
//finds perpendicular vector - only 3D is supported
static PyObject *M_Mathutils_CrossVecs(PyObject *self, PyObject *args)
{
PyObject * vecCross;
VectorObject * vec1;
VectorObject * vec2;
if (!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected 2 vector types\n"));
if(vec1->size != 3 || vec2->size != 3)
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"only 3D vectors are supported\n"));
vecCross = newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
Crossf(((VectorObject*)vecCross)->vec, vec1->vec, vec2->vec);
return vecCross;
}
static PyObject *M_Mathutils_DotVecs(PyObject *self, PyObject *args)
{
VectorObject * vec1;
VectorObject * vec2;
float dot;
int x;
dot = 0;
if (!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected vector types\n"));
if(vec1->size != vec2->size)
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"vectors must be of the same size\n"));
for(x = 0; x < vec1->size; x++){
dot += vec1->vec[x] * vec2->vec[x];
}
return PyFloat_FromDouble((double)dot);
}
static PyObject *M_Mathutils_AngleBetweenVecs(PyObject *self, PyObject *args)
{
VectorObject * vec1;
VectorObject * vec2;
float dot, angleRads, norm;
int x;
dot = 0;
if (!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected 2 vector types\n"));
if(vec1->size != vec2->size)
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"vectors must be of the same size\n"));
if(vec1->size > 3 || vec2->size > 3)
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"only 2D,3D vectors are supported\n"));
//normalize vec1
norm = 0.0f;
for(x = 0; x < vec1->size; x++){
norm += vec1->vec[x] * vec1->vec[x];
}
norm = (float)sqrt(norm);
for(x = 0; x < vec1->size; x++){
vec1->vec[x] /= norm;
}
//normalize vec2
norm = 0.0f;
for(x = 0; x < vec2->size; x++){
norm += vec2->vec[x] * vec2->vec[x];
}
norm = (float)sqrt(norm);
for(x = 0; x < vec2->size; x++){
vec2->vec[x] /= norm;
}
//dot product
for(x = 0; x < vec1->size; x++){
dot += vec1->vec[x] * vec2->vec[x];
}
//I believe saacos checks to see if the vectors are normalized
angleRads = saacos(dot);
return PyFloat_FromDouble((double)(angleRads*(180/Py_PI)));
}
static PyObject *M_Mathutils_MidpointVecs(PyObject *self, PyObject *args)
{
VectorObject * vec1;
VectorObject * vec2;
float * vec;
int x;
if (!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected vector types\n"));
if(vec1->size != vec2->size)
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"vectors must be of the same size\n"));
vec = PyMem_Malloc (vec1->size*sizeof (float));
for(x = 0; x < vec1->size; x++){
vec[x]= 0.5f*(vec1->vec[x] + vec2->vec[x]);
}
return (PyObject *)newVectorObject(vec, vec1->size);
}
//row vector multiplication
static PyObject *M_Mathutils_VecMultMat(PyObject *self, PyObject *args)
{
PyObject * ob1 = NULL;
PyObject * ob2 = NULL;
MatrixObject * mat;
VectorObject * vec;
float * vecNew;
int x, y;
int z = 0;
float dot = 0.0f;
//get pyObjects
if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &ob1, &matrix_Type, &ob2))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"vector and matrix object expected - in that order\n"));
mat = (MatrixObject*)ob2;
vec = (VectorObject*)ob1;
if(mat->colSize != vec->size)
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
"matrix col size and vector size must be the same\n"));
vecNew = PyMem_Malloc (vec->size*sizeof (float));
for(x = 0; x < mat->colSize; x++){
for(y = 0; y < mat->rowSize; y++){
dot += mat->matrix[y][x] * vec->vec[y];
}
vecNew[z] = dot;
z++; dot = 0;
}
return (PyObject *)newVectorObject(vecNew, vec->size);
}
static PyObject *M_Mathutils_ProjectVecs(PyObject *self, PyObject *args)
{
VectorObject * vec1;
VectorObject * vec2;
float *vec;
float dot = 0.0f;
float dot2 = 0.0f;
int x;
if (!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected vector types\n"));
if(vec1->size != vec2->size)
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"vectors must be of the same size\n"));
vec = PyMem_Malloc (vec1->size * sizeof (float));
//dot of vec1 & vec2
for(x = 0; x < vec1->size; x++){
dot += vec1->vec[x] * vec2->vec[x];
}
//dot of vec2 & vec2
for(x = 0; x < vec2->size; x++){
dot2 += vec2->vec[x] * vec2->vec[x];
}
dot /= dot2;
for(x = 0; x < vec1->size; x++){
vec[x] = dot * vec2->vec[x];
}
return (PyObject *)newVectorObject(vec, vec1->size);
}
//End Vector Utils
//***************************************************************************
// Function: M_Mathutils_Matrix
// Python equivalent: Blender.Mathutils.Matrix
//***************************************************************************
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static PyObject *M_Mathutils_Matrix(PyObject *self, PyObject *args)
{
PyObject *rowA = NULL;
PyObject *rowB = NULL;
PyObject *rowC = NULL;
PyObject *rowD = NULL;
PyObject *checkOb = NULL;
int x, rowSize, colSize;
float * mat;
int OK;
if (!PyArg_ParseTuple(args, "|O!O!O!O!", &PyList_Type, &rowA,
&PyList_Type, &rowB,
&PyList_Type, &rowC,
&PyList_Type, &rowD)){
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected 0, 2,3 or 4 lists\n"));
}
if(!rowA)
return newMatrixObject (NULL, 4, 4);
if(!rowB)
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected 0, 2,3 or 4 lists\n"));
//get rowSize
if(rowC){
if(rowD){
rowSize = 4;
}else{
rowSize = 3;
}
}else{
rowSize = 2;
}
//check size and get colSize
OK = 0;
if((PyList_Size(rowA) == PyList_Size(rowB))){
if(rowC){
if((PyList_Size(rowA) == PyList_Size(rowC))){
if(rowD){
if((PyList_Size(rowA) == PyList_Size(rowD))){
OK = 1;
}
} OK = 1;
}
}else OK = 1;
}
if(!OK) return EXPP_ReturnPyObjError (PyExc_AttributeError,
"each row of vector must contain the same number of parameters\n");
colSize = PyList_Size(rowA);
//check for numeric types
for (x = 0; x < colSize; x++) {
checkOb = PyList_GetItem(rowA, x);
if(!PyInt_Check(checkOb) && !PyFloat_Check(checkOb))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"1st list - expected list of numbers\n"));
checkOb = PyList_GetItem(rowB, x);
if(!PyInt_Check(checkOb) && !PyFloat_Check(checkOb))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"2nd list - expected list of numbers\n"));
if(rowC){
checkOb = PyList_GetItem(rowC, x);
if(!PyInt_Check(checkOb) && !PyFloat_Check(checkOb))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"3rd list - expected list of numbers\n"));
}
if(rowD){
checkOb = PyList_GetItem(rowD, x);
if(!PyInt_Check(checkOb) && !PyFloat_Check(checkOb))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"4th list - expected list of numbers\n"));
}
}
//allocate space for 1D array
mat = PyMem_Malloc (rowSize * colSize * sizeof (float));
//parse rows
for (x = 0; x < colSize; x++) {
if (!PyArg_Parse(PyList_GetItem(rowA, x), "f", &mat[x]))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"rowA - python list not parseable\n");
}
for (x = 0; x < colSize; x++) {
if (!PyArg_Parse(PyList_GetItem(rowB, x), "f", &mat[(colSize + x)]))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"rowB - python list not parseable\n");
}
if(rowC){
for (x = 0; x < colSize; x++) {
if (!PyArg_Parse(PyList_GetItem(rowC, x), "f", &mat[((2*colSize) + x)]))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"rowC - python list not parseable\n");
}
}
if(rowD){
for (x = 0; x < colSize; x++) {
if (!PyArg_Parse(PyList_GetItem(rowD, x), "f", &mat[((3*colSize) + x)]))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"rowD - python list not parseable\n");
}
}
//pass to matrix creation
return newMatrixObject (mat, rowSize, colSize);
}
//***************************************************************************
// Function: M_Mathutils_RotationMatrix
// Python equivalent: Blender.Mathutils.RotationMatrix
//***************************************************************************
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static PyObject *M_Mathutils_RotationMatrix(PyObject *self, PyObject *args)
{
float *mat;
float angle = 0.0f;
char *axis = NULL;
VectorObject * vec = NULL;
int matSize;
float norm = 0.0f;
float cosAngle = 0.0f;
float sinAngle = 0.0f;
if (!PyArg_ParseTuple(args, "fi|sO!", &angle, &matSize, &axis, &vector_Type, &vec)){
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected float int and optional string and vector\n"));
}
if(angle < -360.0f || angle > 360.0f)
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"angle size not appropriate\n");
if(matSize != 2 && matSize != 3 && matSize != 4)
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"can only return a 2x2 3x3 or 4x4 matrix\n");
if(matSize == 2 && (axis != NULL || vec != NULL))
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"cannot create a 2x2 rotation matrix around arbitrary axis\n");
if((matSize == 3 || matSize == 4) && axis == NULL)
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"please choose an axis of rotation\n");
if(axis){
if(((strcmp (axis, "r") == 0) ||
(strcmp (axis, "R") == 0)) && vec == NULL)
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"please define the arbitrary axis of rotation\n");
}
if(vec){
if(vec->size != 3)
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"the arbitrary axis must be a 3D vector\n");
}
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
//convert to radians
angle = angle * (float)(Py_PI/180);
if(axis == NULL && matSize == 2){
//2D rotation matrix
mat[0] = ((float)cos((double)(angle)));
mat[1] = ((float)sin((double)(angle)));
mat[2] = (-((float)sin((double)(angle))));
mat[3] = ((float)cos((double)(angle)));
}else if((strcmp(axis,"x") == 0) ||
(strcmp(axis,"X") == 0)){
//rotation around X
mat[0] = 1.0f; mat[1] = 0.0f; mat[2] = 0.0f; mat[3] = 0.0f;
mat[4] = ((float)cos((double)(angle)));
mat[5] = ((float)sin((double)(angle)));
mat[6] = 0.0f;
mat[7] = (-((float)sin((double)(angle))));
mat[8] = ((float)cos((double)(angle)));
}else if ((strcmp(axis,"y") == 0) ||
(strcmp(axis,"Y") == 0)){
//rotation around Y
mat[0] = ((float)cos((double)(angle)));
mat[1] = 0.0f;
mat[2] = (-((float)sin((double)(angle))));
mat[3] = 0.0f; mat[4] = 1.0f; mat[5] = 0.0f;
mat[6] = ((float)sin((double)(angle)));
mat[7] = 0.0f;
mat[8] = ((float)cos((double)(angle)));
}else if ((strcmp(axis,"z") == 0) ||
(strcmp(axis,"Z") == 0)){
//rotation around Z
mat[0] = ((float)cos((double)(angle)));
mat[1] = ((float)sin((double)(angle)));
mat[2] = 0.0f;
mat[3] = (-((float)sin((double)(angle))));
mat[4] = ((float)cos((double)(angle)));
mat[5] = 0.0f; mat[6] = 0.0f; mat[7] = 0.0f; mat[8] = 1.0f;
}else if ((strcmp(axis,"r") == 0) ||
(strcmp(axis,"R") == 0)){
//arbitrary rotation
//normalize arbitrary axis
norm = (float)sqrt(vec->vec[0] * vec->vec[0] + vec->vec[1] * vec->vec[1] +
vec->vec[2] * vec->vec[2]);
vec->vec[0] /= norm; vec->vec[1] /= norm; vec->vec[2] /= norm;
//create matrix
cosAngle = ((float)cos((double)(angle)));
sinAngle = ((float)sin((double)(angle)));
mat[0] = ((vec->vec[0] * vec->vec[0]) * (1 - cosAngle)) +
cosAngle;
mat[1] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) +
(vec->vec[2] * sinAngle);
mat[2] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) -
(vec->vec[1] * sinAngle);
mat[3] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) -
(vec->vec[2] * sinAngle);
mat[4] = ((vec->vec[1] * vec->vec[1]) * (1 - cosAngle)) +
cosAngle;
mat[5] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) +
(vec->vec[0] * sinAngle);
mat[6] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) +
(vec->vec[1] * sinAngle);
mat[7] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) -
(vec->vec[0] * sinAngle);
mat[8] = ((vec->vec[2] * vec->vec[2]) * (1 - cosAngle)) +
cosAngle;
}else{
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"unrecognizable axis of rotation type - expected x,y,z or r\n");
}
if(matSize == 4){
//resize matrix
mat[15] = 1.0f; mat[14] = 0.0f;
mat[13] = 0.0f; mat[12] = 0.0f;
mat[11] = 0.0f; mat[10] = mat[8];
mat[9] = mat[7]; mat[8] = mat[6];
mat[7] = 0.0f; mat[6] = mat[5];
mat[5] = mat[4];mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject (mat, matSize, matSize);
}
//***************************************************************************
// Function: M_Mathutils_TranslationMatrix
// Python equivalent: Blender.Mathutils.TranslationMatrix
//***************************************************************************
static PyObject *M_Mathutils_TranslationMatrix(PyObject *self, PyObject *args)
{
VectorObject *vec;
float *mat;
if (!PyArg_ParseTuple(args, "O!", &vector_Type, &vec)){
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected vector\n"));
}
if(vec->size != 3 && vec->size != 4){
return EXPP_ReturnPyObjError(PyExc_TypeError,
"vector must be 3D or 4D\n");
}
mat = PyMem_Malloc(4*4*sizeof(float));
Mat4One((float(*)[4])mat);
mat[12] = vec->vec[0];
mat[13] = vec->vec[1];
mat[14] = vec->vec[2];
return newMatrixObject(mat, 4,4);
}
//***************************************************************************
// Function: M_Mathutils_ScaleMatrix
// Python equivalent: Blender.Mathutils.ScaleMatrix
//***************************************************************************
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static PyObject *M_Mathutils_ScaleMatrix(PyObject *self, PyObject *args)
{
float factor;
int matSize;
VectorObject *vec = NULL;
float *mat;
float norm = 0.0f;
int x;
if (!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)){
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected float int and optional vector\n"));
}
if(matSize != 2 && matSize != 3 && matSize != 4)
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"can only return a 2x2 3x3 or 4x4 matrix\n");
if(vec){
if(vec->size > 2 && matSize == 2)
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"please use 2D vectors when scaling in 2D\n");
}
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
if(vec == NULL){ //scaling along axis
if(matSize == 2){
mat[0] = factor;
mat[1] = 0.0f; mat[2] = 0.0f;
mat[3] = factor;
}else {
mat[0] = factor;
mat[1] = 0.0f; mat[2] = 0.0f; mat[3] = 0.0f;
mat[4] = factor;
mat[5] = 0.0f; mat[6] = 0.0f; mat[7] = 0.0f;
mat[8] = factor;
}
}else{ //scaling in arbitrary direction
//normalize arbitrary axis
for(x = 0; x < vec->size; x++){
norm += vec->vec[x] * vec->vec[x];
}
norm = (float)sqrt(norm);
for(x = 0; x < vec->size; x++){
vec->vec[x] /= norm;
}
if(matSize ==2){
mat[0] = 1 + ((factor - 1) * (vec->vec[0] * vec->vec[0]));
mat[1] = ((factor - 1) * (vec->vec[0] * vec->vec[1]));
mat[2] = ((factor - 1) * (vec->vec[0] * vec->vec[1]));
mat[3] = 1 + ((factor - 1) * (vec->vec[1] * vec->vec[1]));
}else{
mat[0] = 1 + ((factor - 1) * (vec->vec[0] * vec->vec[0]));
mat[1] = ((factor - 1) * (vec->vec[0] * vec->vec[1]));
mat[2] = ((factor - 1) * (vec->vec[0] * vec->vec[2]));
mat[3] = ((factor - 1) * (vec->vec[0] * vec->vec[1]));
mat[4] = 1 + ((factor - 1) * (vec->vec[1] * vec->vec[1]));
mat[5] = ((factor - 1) * (vec->vec[1] * vec->vec[2]));
mat[6] = ((factor - 1) * (vec->vec[0] * vec->vec[2]));
mat[7] = ((factor - 1) * (vec->vec[1] * vec->vec[2]));
mat[8] = 1 + ((factor - 1) * (vec->vec[2] * vec->vec[2]));
}
}
if(matSize == 4){
//resize matrix
mat[15] = 1.0f; mat[14] = 0.0f; mat[13] = 0.0f;
mat[12] = 0.0f; mat[11] = 0.0f;
mat[10] = mat[8]; mat[9] = mat[7];
mat[8] = mat[6]; mat[7] = 0.0f;
mat[6] = mat[5]; mat[5] = mat[4];
mat[4] = mat[3]; mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject (mat, matSize, matSize);
}
//***************************************************************************
// Function: M_Mathutils_OrthoProjectionMatrix
// Python equivalent: Blender.Mathutils.OrthoProjectionMatrix
//***************************************************************************
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject *self, PyObject *args)
{
char *plane;
int matSize;
float *mat;
VectorObject *vec = NULL;
float norm = 0.0f;
int x;
if (!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)){
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected string and int and optional vector\n"));
}
if(matSize != 2 && matSize != 3 && matSize != 4)
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"can only return a 2x2 3x3 or 4x4 matrix\n");
if(vec){
if(vec->size > 2 && matSize == 2)
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"please use 2D vectors when scaling in 2D\n");
}
if(vec == NULL){ //ortho projection onto cardinal plane
if (((strcmp(plane, "x") == 0) || (strcmp(plane, "X") == 0)) &&
matSize == 2){
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
mat[0] = 1.0f;
mat[1] = 0.0f; mat[2] = 0.0f; mat[3] = 0.0f;
}else if(((strcmp(plane, "y") == 0) || (strcmp(plane, "Y") == 0)) &&
matSize == 2){
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
mat[0] = 0.0f; mat[1] = 0.0f; mat[2] = 0.0f;
mat[3] = 1.0f;
}else if(((strcmp(plane, "xy") == 0) || (strcmp(plane, "XY") == 0)) &&
matSize > 2){
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
mat[0] = 1.0f;
mat[1] = 0.0f; mat[2] = 0.0f; mat[3] = 0.0f;
mat[4] = 1.0f;
mat[5] = 0.0f; mat[6] = 0.0f; mat[7] = 0.0f; mat[8] = 0.0f;
}else if(((strcmp(plane, "xz") == 0) || (strcmp(plane, "XZ") == 0)) &&
matSize > 2){
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
mat[0] = 1.0f;
mat[1] = 0.0f; mat[2] = 0.0f; mat[3] = 0.0f; mat[4] = 0.0f;
mat[5] = 0.0f; mat[6] = 0.0f; mat[7] = 0.0f;
mat[8] = 1.0f;
}else if(((strcmp(plane, "yz") == 0) || (strcmp(plane, "YZ") == 0)) &&
matSize > 2){
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
mat[0] = 0.0f; mat[1] = 0.0f; mat[2] = 0.0f; mat[3] = 0.0f;
mat[4] = 1.0f;
mat[5] = 0.0f; mat[6] = 0.0f; mat[7] = 0.0f;
mat[8] = 1.0f;
}else{
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"unknown plane - expected: x, y, xy, xz, yz\n");
}
}else{ //arbitrary plane
//normalize arbitrary axis
for(x = 0; x < vec->size; x++){
norm += vec->vec[x] * vec->vec[x];
}
norm = (float)sqrt(norm);
for(x = 0; x < vec->size; x++){
vec->vec[x] /= norm;
}
if (((strcmp(plane, "r") == 0) || (strcmp(plane, "R") == 0)) &&
matSize == 2){
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
mat[1] = - (vec->vec[0] * vec->vec[1]);
mat[2] = - (vec->vec[0] * vec->vec[1]);
mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
}else if (((strcmp(plane, "r") == 0) || (strcmp(plane, "R") == 0)) &&
matSize > 2){
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
mat[1] = - (vec->vec[0] * vec->vec[1]);
mat[2] = - (vec->vec[0] * vec->vec[2]);
mat[3] = - (vec->vec[0] * vec->vec[1]);
mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
mat[5] = - (vec->vec[1] * vec->vec[2]);
mat[6] = - (vec->vec[0] * vec->vec[2]);
mat[7] = - (vec->vec[1] * vec->vec[2]);
mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
}else{
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"unknown plane - expected: 'r' expected for axis designation\n");
}
}
if(matSize == 4){
//resize matrix
mat[15] = 1.0f; mat[14] = 0.0f;
mat[13] = 0.0f; mat[12] = 0.0f;
mat[11] = 0.0f; mat[10] = mat[8];
mat[9] = mat[7];mat[8] = mat[6];
mat[7] = 0.0f; mat[6] = mat[5];
mat[5] = mat[4];mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject (mat, matSize, matSize);
}
//***************************************************************************
// Function: M_Mathutils_ShearMatrix
// Python equivalent: Blender.Mathutils.ShearMatrix
//***************************************************************************
static PyObject *M_Mathutils_ShearMatrix(PyObject *self, PyObject *args)
{
float factor;
int matSize;
char *plane;
float *mat;
if (!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)){
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected string float and int\n"));
}
if(matSize != 2 && matSize != 3 && matSize != 4)
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"can only return a 2x2 3x3 or 4x4 matrix\n");
if (((strcmp(plane, "x") == 0) || (strcmp(plane, "X") == 0)) &&
matSize == 2){
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
mat[0] = 1.0f; mat[1] = 0.0f;
mat[2] = factor; mat[3] = 1.0f;
}else if(((strcmp(plane, "y") == 0) || (strcmp(plane, "Y") == 0)) &&
matSize == 2){
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
mat[0] = 1.0f; mat[1] = factor;
mat[2] = 0.0f; mat[3] = 1.0f;
}else if(((strcmp(plane, "xy") == 0) || (strcmp(plane, "XY") == 0)) &&
matSize > 2){
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
mat[0] = 1.0f; mat[1] = 0.0f; mat[2] = 0.0f; mat[3] = 0.0f;
mat[4] = 1.0f; mat[5] = 0.0f;
mat[6] = factor; mat[7] = factor; mat[8] = 0.0f;
}else if(((strcmp(plane, "xz") == 0) || (strcmp(plane, "XZ") == 0)) &&
matSize > 2){
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
mat[0] = 1.0f; mat[1] = 0.0f; mat[2] = 0.0f;
mat[3] = factor; mat[4] = 1.0f; mat[5] = factor;
mat[6] = 0.0f; mat[7] = 0.0f; mat[8] = 1.0f;
}else if(((strcmp(plane, "yz") == 0) || (strcmp(plane, "YZ") == 0)) &&
matSize > 2){
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
mat[0] = 1.0f; mat[1] = factor; mat[2] = factor;
mat[3] = 0.0f; mat[4] = 1.0f;
mat[5] = 0.0f; mat[6] = 0.0f; mat[7] = 0.0f;
mat[8] = 1.0f;
}else{
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
}
if(matSize == 4){
//resize matrix
mat[15] = 1.0f; mat[14] = 0.0f;
mat[13] = 0.0f; mat[12] = 0.0f;
mat[11] = 0.0f; mat[10] = mat[8];
mat[9] = mat[7];mat[8] = mat[6];
mat[7] = 0.0f; mat[6] = mat[5];
mat[5] = mat[4];mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject (mat, matSize, matSize);
}
//***************************************************************************
//Begin Matrix Utils
static PyObject *M_Mathutils_CopyMat(PyObject *self, PyObject *args)
{
MatrixObject *matrix;
float *mat;
int x,y,z;
if(!PyArg_ParseTuple(args, "O!", &matrix_Type, &matrix))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected matrix\n"));
mat = PyMem_Malloc(matrix->rowSize * matrix->colSize * sizeof(float));
z = 0;
for(x = 0; x < matrix->rowSize; x++){
for(y = 0; y < matrix->colSize; y++){
mat[z] = matrix->matrix[x][y];
z++;
}
}
return (PyObject*)newMatrixObject (mat, matrix->rowSize, matrix->colSize);
}
static PyObject *M_Mathutils_MatMultVec(PyObject *self, PyObject *args)
{
PyObject * ob1 = NULL;
PyObject * ob2 = NULL;
MatrixObject * mat;
VectorObject * vec;
float * vecNew;
int x, y;
int z = 0;
float dot = 0.0f;
//get pyObjects
if(!PyArg_ParseTuple(args, "O!O!", &matrix_Type, &ob1, &vector_Type, &ob2))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"matrix and vector object expected - in that order\n"));
mat = (MatrixObject*)ob1;
vec = (VectorObject*)ob2;
if(mat->rowSize != vec->size)
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
"matrix row size and vector size must be the same\n"));
vecNew = PyMem_Malloc (vec->size*sizeof (float));
for(x = 0; x < mat->rowSize; x++){
for(y = 0; y < mat->colSize; y++){
dot += mat->matrix[x][y] * vec->vec[y];
}
vecNew[z] = dot;
z++;
dot = 0;
}
return (PyObject *)newVectorObject(vecNew, vec->size);
}
//***************************************************************************
// Function: M_Mathutils_Quaternion
// Python equivalent: Blender.Mathutils.Quaternion
//***************************************************************************
static PyObject *M_Mathutils_Quaternion(PyObject *self, PyObject *args)
{
PyObject *listObject;
float *vec;
float *quat;
float angle = 0.0f;
int x;
float norm;
if (!PyArg_ParseTuple(args, "O!|f", &PyList_Type, &listObject, &angle))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected list and optional float\n"));
if(PyList_Size(listObject) != 4 && PyList_Size(listObject) != 3)
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"3 or 4 expected floats for the quaternion\n"));
vec = PyMem_Malloc (PyList_Size(listObject)*sizeof (float));
for (x = 0; x < PyList_Size(listObject); x++) {
if (!PyArg_Parse(PyList_GetItem(listObject, x), "f", &vec[x]))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"python list not parseable\n");
}
if(PyList_Size(listObject) == 3){ //an axis of rotation
norm = (float)sqrt(vec[0] * vec[0] + vec[1] * vec[1] +
vec[2] * vec[2]);
vec[0] /= norm; vec[1] /= norm; vec[2] /= norm;
angle = angle * (float)(Py_PI/180);
quat = PyMem_Malloc(4*sizeof(float));
quat[0] = (float)(cos((double)(angle)/2));
quat[1] = (float)(sin((double)(angle)/2)) * vec[0];
quat[2] = (float)(sin((double)(angle)/2)) * vec[1];
quat[3] = (float)(sin((double)(angle)/2)) * vec[2];
PyMem_Free(vec);
return newQuaternionObject(quat);
}else
return newQuaternionObject(vec);
}
//***************************************************************************
//Begin Quaternion Utils
static PyObject *M_Mathutils_CopyQuat(PyObject *self, PyObject *args)
{
QuaternionObject * quatU;
float * quat;
if (!PyArg_ParseTuple(args, "O!", &quaternion_Type, &quatU))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected Quaternion type"));
quat = PyMem_Malloc (4*sizeof(float));
quat[0] = quatU->quat[0];
quat[1] = quatU->quat[1];
quat[2] = quatU->quat[2];
quat[3] = quatU->quat[3];
return (PyObject*)newQuaternionObject(quat);
}
static PyObject *M_Mathutils_CrossQuats(PyObject *self, PyObject *args)
{
QuaternionObject * quatU;
QuaternionObject * quatV;
float * quat;
if (!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU,
&quaternion_Type, &quatV))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected Quaternion types"));
quat = PyMem_Malloc (4*sizeof(float));
QuatMul(quat, quatU->quat, quatV->quat);
return (PyObject*)newQuaternionObject(quat);
}
static PyObject *M_Mathutils_DotQuats(PyObject *self, PyObject *args)
{
QuaternionObject * quatU;
QuaternionObject * quatV;
float * quat;
int x;
float dot = 0.0f;
if (!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU,
&quaternion_Type, &quatV))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected Quaternion types"));
quat = PyMem_Malloc (4*sizeof(float));
for(x = 0; x < 4; x++){
dot += quatU->quat[x] * quatV->quat[x];
}
return PyFloat_FromDouble((double)(dot));
}
static PyObject *M_Mathutils_DifferenceQuats(PyObject *self, PyObject *args)
{
QuaternionObject * quatU;
QuaternionObject * quatV;
float * quat;
float * tempQuat;
int x;
float dot = 0.0f;
if (!PyArg_ParseTuple(args, "O!O!", &quaternion_Type,
&quatU, &quaternion_Type, &quatV))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected Quaternion types"));
quat = PyMem_Malloc (4*sizeof(float));
tempQuat = PyMem_Malloc (4*sizeof(float));
tempQuat[0] = quatU->quat[0];
tempQuat[1] = -quatU->quat[1];
tempQuat[2] = -quatU->quat[2];
tempQuat[3] = -quatU->quat[3];
dot= (float)sqrt((double)tempQuat[0] * (double)tempQuat[0] +
(double)tempQuat[1] * (double)tempQuat[1] +
(double)tempQuat[2] * (double)tempQuat[2] +
(double)tempQuat[3] * (double)tempQuat[3]);
for(x = 0; x < 4; x++){
tempQuat[x] /= (dot * dot);
}
QuatMul(quat, tempQuat, quatV->quat);
return (PyObject*)newQuaternionObject(quat);
}
static PyObject *M_Mathutils_Slerp(PyObject *self, PyObject *args)
{
QuaternionObject * quatU;
QuaternionObject * quatV;
float * quat;
float param, x,y, cosD, sinD, deltaD, IsinD, val;
int flag, z;
if (!PyArg_ParseTuple(args, "O!O!f", &quaternion_Type,
&quatU, &quaternion_Type, &quatV, &param))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected Quaternion types and float"));
quat = PyMem_Malloc (4*sizeof(float));
cosD = quatU->quat[0] * quatV->quat[0] +
quatU->quat[1] * quatV->quat[1] +
quatU->quat[2] * quatV->quat[2] +
quatU->quat[3] * quatV->quat[3];
flag = 0;
if(cosD< 0.0f){
flag = 1;
cosD = -cosD;
}
if(cosD > .99999f){
x = 1.0f - param;
y = param;
}else{
sinD = (float)sqrt(1.0f - cosD * cosD);
deltaD = (float)atan2(sinD, cosD);
IsinD = 1.0f/sinD;
x = (float)sin((1.0f - param) * deltaD) * IsinD;
y = (float)sin(param * deltaD) * IsinD;
}
for(z = 0; z < 4; z++){
val = quatV->quat[z];
if(val) val = -val;
quat[z] = (quatU->quat[z] * x) + (val * y);
}
return (PyObject*)newQuaternionObject(quat);
}
//***************************************************************************
// Function: M_Mathutils_Euler
// Python equivalent: Blender.Mathutils.Euler
//***************************************************************************
static PyObject *M_Mathutils_Euler(PyObject *self, PyObject *args)
{
PyObject *listObject;
float *vec;
int x;
if (!PyArg_ParseTuple(args, "O!", &PyList_Type, &listObject))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected list\n"));
if(PyList_Size(listObject) != 3)
return EXPP_ReturnPyObjError (PyExc_TypeError,
"only 3d eulers are supported\n");
vec = PyMem_Malloc (3*sizeof (float));
for (x = 0; x < 3; x++) {
if (!PyArg_Parse(PyList_GetItem(listObject, x), "f", &vec[x]))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"python list not parseable\n");
}
return (PyObject*)newEulerObject(vec);
}
//***************************************************************************
//Begin Euler Util
static PyObject *M_Mathutils_CopyEuler(PyObject *self, PyObject *args)
{
EulerObject * eulU;
float * eul;
if (!PyArg_ParseTuple(args, "O!", &euler_Type, &eulU))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected Euler types"));
eul = PyMem_Malloc (3*sizeof(float));
eul[0] = eulU->eul[0];
eul[1] = eulU->eul[1];
eul[2] = eulU->eul[2];
return (PyObject*)newEulerObject(eul);
}
static PyObject *M_Mathutils_RotateEuler(PyObject *self, PyObject *args)
{
EulerObject * Eul;
float angle;
char *axis;
int x;
if (!PyArg_ParseTuple(args, "O!fs", &euler_Type, &Eul, &angle, &axis))
return (EXPP_ReturnPyObjError (PyExc_TypeError,
"expected euler type & float & string"));
angle *= (float)(Py_PI/180);
for(x = 0; x < 3; x++){
Eul->eul[x] *= (float)(Py_PI/180);
}
euler_rot(Eul->eul, angle, *axis);
for(x = 0; x < 3; x++){
Eul->eul[x] *= (float)(180/Py_PI);
}
return EXPP_incr_ret(Py_None);
}
//***************************************************************************
// Function: Mathutils_Init
//***************************************************************************
PyObject *Mathutils_Init (void)
{
PyObject *mod= Py_InitModule3("Blender.Mathutils", M_Mathutils_methods, M_Mathutils_doc);
return(mod);
}