2004-02-29 13:20:34 +00:00
|
|
|
/*
|
2004-09-18 18:47:03 +00:00
|
|
|
* $Id$
|
2004-02-29 13:20:34 +00:00
|
|
|
*
|
|
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version 2
|
|
|
|
* of the License, or (at your option) any later version. The Blender
|
|
|
|
* Foundation also sells licenses for use in proprietary software under
|
|
|
|
* the Blender License. See http://www.blender.org/BL/ for information
|
|
|
|
* about this.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*
|
|
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This is a new part of Blender.
|
|
|
|
*
|
|
|
|
* Contributor(s): Joseph Gilbert
|
|
|
|
*
|
|
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "Mathutils.h"
|
|
|
|
|
|
|
|
//***************************************************************************
|
|
|
|
// Function: M_Mathutils_Rand
|
|
|
|
//***************************************************************************
|
|
|
|
static PyObject *M_Mathutils_Rand(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
|
|
|
|
float high, low, range;
|
|
|
|
double rand;
|
|
|
|
high = 1.0;
|
|
|
|
low = 0.0;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "|ff", &low, &high))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected optional float & float\n"));
|
|
|
|
|
|
|
|
if ( (high < low) ||(high < 0 && low > 0))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"high value should be larger than low value\n"));
|
|
|
|
|
|
|
|
//seed the generator
|
|
|
|
BLI_srand((unsigned int) (PIL_check_seconds_timer()*0x7FFFFFFF));
|
|
|
|
|
|
|
|
//get the random number 0 - 1
|
|
|
|
rand = BLI_drand();
|
|
|
|
|
|
|
|
//set it to range
|
|
|
|
range = high - low;
|
|
|
|
rand = rand * range;
|
|
|
|
rand = rand + low;
|
|
|
|
|
|
|
|
return PyFloat_FromDouble((double)rand);
|
|
|
|
}
|
|
|
|
|
|
|
|
//***************************************************************************
|
|
|
|
// Function: M_Mathutils_Vector
|
|
|
|
// Python equivalent: Blender.Mathutils.Vector
|
|
|
|
// Supports 2D, 3D, and 4D vector objects both int and float values
|
|
|
|
// accepted. Mixed float and int values accepted. Ints are parsed to float
|
|
|
|
//***************************************************************************
|
|
|
|
static PyObject *M_Mathutils_Vector(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
PyObject *listObject = NULL;
|
|
|
|
PyObject *checkOb = NULL;
|
|
|
|
int x;
|
|
|
|
float *vec;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "|O!", &PyList_Type, &listObject))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"0 or 1 list expected"));
|
|
|
|
|
|
|
|
if(!listObject) return (PyObject *)newVectorObject(NULL, 3);
|
|
|
|
|
|
|
|
//2D 3D 4D supported
|
|
|
|
if(PyList_Size(listObject) != 2 && PyList_Size(listObject) != 3
|
|
|
|
&& PyList_Size(listObject) != 4)
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"2D, 3D and 4D vectors supported\n"));
|
|
|
|
|
|
|
|
for (x = 0; x < PyList_Size(listObject); x++) {
|
|
|
|
checkOb = PyList_GetItem(listObject, x);
|
|
|
|
if(!PyInt_Check(checkOb) && !PyFloat_Check(checkOb))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected list of numbers\n"));
|
|
|
|
}
|
|
|
|
|
|
|
|
//allocate memory
|
|
|
|
vec = PyMem_Malloc (PyList_Size(listObject)*sizeof (float));
|
|
|
|
|
|
|
|
//parse it all as floats
|
|
|
|
for (x = 0; x < PyList_Size(listObject); x++) {
|
|
|
|
if (!PyArg_Parse(PyList_GetItem(listObject, x), "f", &vec[x])){
|
|
|
|
return EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"python list not parseable\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return (PyObject *)newVectorObject(vec, PyList_Size(listObject));
|
|
|
|
}
|
|
|
|
|
|
|
|
//***************************************************************************
|
|
|
|
//Begin Vector Utils
|
|
|
|
|
|
|
|
static PyObject *M_Mathutils_CopyVec(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
VectorObject * vector;
|
|
|
|
float *vec;
|
|
|
|
int x;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "O!", &vector_Type, &vector))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected vector type\n"));
|
|
|
|
|
|
|
|
vec = PyMem_Malloc(vector->size * sizeof(float));
|
|
|
|
for(x = 0; x < vector->size; x++){
|
|
|
|
vec[x] = vector->vec[x];
|
|
|
|
}
|
|
|
|
|
|
|
|
return (PyObject *)newVectorObject(vec, vector->size);
|
|
|
|
}
|
|
|
|
|
|
|
|
//finds perpendicular vector - only 3D is supported
|
|
|
|
static PyObject *M_Mathutils_CrossVecs(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
PyObject * vecCross;
|
|
|
|
VectorObject * vec1;
|
|
|
|
VectorObject * vec2;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected 2 vector types\n"));
|
|
|
|
if(vec1->size != 3 || vec2->size != 3)
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"only 3D vectors are supported\n"));
|
|
|
|
|
|
|
|
vecCross = newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
|
|
|
|
Crossf(((VectorObject*)vecCross)->vec, vec1->vec, vec2->vec);
|
|
|
|
|
|
|
|
return vecCross;
|
|
|
|
}
|
|
|
|
|
|
|
|
static PyObject *M_Mathutils_DotVecs(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
VectorObject * vec1;
|
|
|
|
VectorObject * vec2;
|
|
|
|
float dot;
|
|
|
|
int x;
|
|
|
|
|
|
|
|
dot = 0;
|
|
|
|
if (!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected vector types\n"));
|
|
|
|
if(vec1->size != vec2->size)
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"vectors must be of the same size\n"));
|
|
|
|
|
|
|
|
for(x = 0; x < vec1->size; x++){
|
|
|
|
dot += vec1->vec[x] * vec2->vec[x];
|
|
|
|
}
|
|
|
|
|
|
|
|
return PyFloat_FromDouble((double)dot);
|
|
|
|
}
|
|
|
|
|
|
|
|
static PyObject *M_Mathutils_AngleBetweenVecs(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
VectorObject * vec1;
|
|
|
|
VectorObject * vec2;
|
|
|
|
float dot, angleRads, norm;
|
|
|
|
int x;
|
|
|
|
|
|
|
|
dot = 0;
|
|
|
|
if (!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected 2 vector types\n"));
|
|
|
|
if(vec1->size != vec2->size)
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"vectors must be of the same size\n"));
|
|
|
|
if(vec1->size > 3 || vec2->size > 3)
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"only 2D,3D vectors are supported\n"));
|
|
|
|
|
|
|
|
//normalize vec1
|
|
|
|
norm = 0.0f;
|
|
|
|
for(x = 0; x < vec1->size; x++){
|
|
|
|
norm += vec1->vec[x] * vec1->vec[x];
|
|
|
|
}
|
|
|
|
norm = (float)sqrt(norm);
|
|
|
|
for(x = 0; x < vec1->size; x++){
|
|
|
|
vec1->vec[x] /= norm;
|
|
|
|
}
|
|
|
|
|
|
|
|
//normalize vec2
|
|
|
|
norm = 0.0f;
|
|
|
|
for(x = 0; x < vec2->size; x++){
|
|
|
|
norm += vec2->vec[x] * vec2->vec[x];
|
|
|
|
}
|
|
|
|
norm = (float)sqrt(norm);
|
|
|
|
for(x = 0; x < vec2->size; x++){
|
|
|
|
vec2->vec[x] /= norm;
|
|
|
|
}
|
|
|
|
|
|
|
|
//dot product
|
|
|
|
for(x = 0; x < vec1->size; x++){
|
|
|
|
dot += vec1->vec[x] * vec2->vec[x];
|
|
|
|
}
|
|
|
|
|
|
|
|
//I believe saacos checks to see if the vectors are normalized
|
|
|
|
angleRads = saacos(dot);
|
|
|
|
|
|
|
|
return PyFloat_FromDouble((double)(angleRads*(180/Py_PI)));
|
|
|
|
}
|
|
|
|
|
|
|
|
static PyObject *M_Mathutils_MidpointVecs(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
|
|
|
|
VectorObject * vec1;
|
|
|
|
VectorObject * vec2;
|
|
|
|
float * vec;
|
|
|
|
int x;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected vector types\n"));
|
|
|
|
if(vec1->size != vec2->size)
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"vectors must be of the same size\n"));
|
|
|
|
|
|
|
|
vec = PyMem_Malloc (vec1->size*sizeof (float));
|
|
|
|
|
|
|
|
for(x = 0; x < vec1->size; x++){
|
|
|
|
vec[x]= 0.5f*(vec1->vec[x] + vec2->vec[x]);
|
|
|
|
}
|
|
|
|
return (PyObject *)newVectorObject(vec, vec1->size);
|
|
|
|
}
|
|
|
|
|
|
|
|
//row vector multiplication
|
|
|
|
static PyObject *M_Mathutils_VecMultMat(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
PyObject * ob1 = NULL;
|
|
|
|
PyObject * ob2 = NULL;
|
|
|
|
MatrixObject * mat;
|
|
|
|
VectorObject * vec;
|
|
|
|
float * vecNew;
|
|
|
|
int x, y;
|
|
|
|
int z = 0;
|
|
|
|
float dot = 0.0f;
|
|
|
|
|
|
|
|
//get pyObjects
|
|
|
|
if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &ob1, &matrix_Type, &ob2))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"vector and matrix object expected - in that order\n"));
|
|
|
|
|
|
|
|
mat = (MatrixObject*)ob2;
|
|
|
|
vec = (VectorObject*)ob1;
|
|
|
|
if(mat->colSize != vec->size)
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
|
|
|
|
"matrix col size and vector size must be the same\n"));
|
|
|
|
|
|
|
|
vecNew = PyMem_Malloc (vec->size*sizeof (float));
|
|
|
|
|
|
|
|
for(x = 0; x < mat->colSize; x++){
|
|
|
|
for(y = 0; y < mat->rowSize; y++){
|
|
|
|
dot += mat->matrix[y][x] * vec->vec[y];
|
|
|
|
}
|
|
|
|
vecNew[z] = dot;
|
|
|
|
z++; dot = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (PyObject *)newVectorObject(vecNew, vec->size);
|
|
|
|
}
|
|
|
|
|
|
|
|
static PyObject *M_Mathutils_ProjectVecs(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
VectorObject * vec1;
|
|
|
|
VectorObject * vec2;
|
|
|
|
float *vec;
|
|
|
|
float dot = 0.0f;
|
|
|
|
float dot2 = 0.0f;
|
|
|
|
int x;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected vector types\n"));
|
|
|
|
if(vec1->size != vec2->size)
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"vectors must be of the same size\n"));
|
|
|
|
|
|
|
|
vec = PyMem_Malloc (vec1->size * sizeof (float));
|
|
|
|
|
|
|
|
//dot of vec1 & vec2
|
|
|
|
for(x = 0; x < vec1->size; x++){
|
|
|
|
dot += vec1->vec[x] * vec2->vec[x];
|
|
|
|
}
|
|
|
|
//dot of vec2 & vec2
|
|
|
|
for(x = 0; x < vec2->size; x++){
|
|
|
|
dot2 += vec2->vec[x] * vec2->vec[x];
|
|
|
|
}
|
|
|
|
dot /= dot2;
|
|
|
|
for(x = 0; x < vec1->size; x++){
|
|
|
|
vec[x] = dot * vec2->vec[x];
|
|
|
|
}
|
|
|
|
return (PyObject *)newVectorObject(vec, vec1->size);
|
|
|
|
}
|
|
|
|
|
|
|
|
//End Vector Utils
|
|
|
|
|
|
|
|
//***************************************************************************
|
|
|
|
// Function: M_Mathutils_Matrix
|
|
|
|
// Python equivalent: Blender.Mathutils.Matrix
|
|
|
|
//***************************************************************************
|
|
|
|
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
|
|
|
|
static PyObject *M_Mathutils_Matrix(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
|
|
|
|
PyObject *rowA = NULL;
|
|
|
|
PyObject *rowB = NULL;
|
|
|
|
PyObject *rowC = NULL;
|
|
|
|
PyObject *rowD = NULL;
|
|
|
|
PyObject *checkOb = NULL;
|
|
|
|
int x, rowSize, colSize;
|
|
|
|
float * mat;
|
|
|
|
int OK;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "|O!O!O!O!", &PyList_Type, &rowA,
|
|
|
|
&PyList_Type, &rowB,
|
|
|
|
&PyList_Type, &rowC,
|
|
|
|
&PyList_Type, &rowD)){
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected 0, 2,3 or 4 lists\n"));
|
|
|
|
}
|
|
|
|
|
|
|
|
if(!rowA)
|
|
|
|
return newMatrixObject (NULL, 4, 4);
|
|
|
|
|
|
|
|
if(!rowB)
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected 0, 2,3 or 4 lists\n"));
|
|
|
|
|
|
|
|
//get rowSize
|
|
|
|
if(rowC){
|
|
|
|
if(rowD){
|
|
|
|
rowSize = 4;
|
|
|
|
}else{
|
|
|
|
rowSize = 3;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
rowSize = 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
//check size and get colSize
|
|
|
|
OK = 0;
|
|
|
|
if((PyList_Size(rowA) == PyList_Size(rowB))){
|
|
|
|
if(rowC){
|
|
|
|
if((PyList_Size(rowA) == PyList_Size(rowC))){
|
|
|
|
if(rowD){
|
|
|
|
if((PyList_Size(rowA) == PyList_Size(rowD))){
|
|
|
|
OK = 1;
|
|
|
|
}
|
|
|
|
} OK = 1;
|
|
|
|
}
|
|
|
|
}else OK = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(!OK) return EXPP_ReturnPyObjError (PyExc_AttributeError,
|
|
|
|
"each row of vector must contain the same number of parameters\n");
|
|
|
|
colSize = PyList_Size(rowA);
|
|
|
|
|
|
|
|
//check for numeric types
|
|
|
|
for (x = 0; x < colSize; x++) {
|
|
|
|
checkOb = PyList_GetItem(rowA, x);
|
|
|
|
if(!PyInt_Check(checkOb) && !PyFloat_Check(checkOb))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"1st list - expected list of numbers\n"));
|
|
|
|
checkOb = PyList_GetItem(rowB, x);
|
|
|
|
if(!PyInt_Check(checkOb) && !PyFloat_Check(checkOb))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"2nd list - expected list of numbers\n"));
|
|
|
|
if(rowC){
|
|
|
|
checkOb = PyList_GetItem(rowC, x);
|
|
|
|
if(!PyInt_Check(checkOb) && !PyFloat_Check(checkOb))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"3rd list - expected list of numbers\n"));
|
|
|
|
}
|
|
|
|
if(rowD){
|
|
|
|
checkOb = PyList_GetItem(rowD, x);
|
|
|
|
if(!PyInt_Check(checkOb) && !PyFloat_Check(checkOb))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"4th list - expected list of numbers\n"));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//allocate space for 1D array
|
|
|
|
mat = PyMem_Malloc (rowSize * colSize * sizeof (float));
|
|
|
|
|
|
|
|
//parse rows
|
|
|
|
for (x = 0; x < colSize; x++) {
|
|
|
|
if (!PyArg_Parse(PyList_GetItem(rowA, x), "f", &mat[x]))
|
|
|
|
return EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"rowA - python list not parseable\n");
|
|
|
|
}
|
|
|
|
for (x = 0; x < colSize; x++) {
|
|
|
|
if (!PyArg_Parse(PyList_GetItem(rowB, x), "f", &mat[(colSize + x)]))
|
|
|
|
return EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"rowB - python list not parseable\n");
|
|
|
|
}
|
|
|
|
if(rowC){
|
|
|
|
for (x = 0; x < colSize; x++) {
|
|
|
|
if (!PyArg_Parse(PyList_GetItem(rowC, x), "f", &mat[((2*colSize) + x)]))
|
|
|
|
return EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"rowC - python list not parseable\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if(rowD){
|
|
|
|
for (x = 0; x < colSize; x++) {
|
|
|
|
if (!PyArg_Parse(PyList_GetItem(rowD, x), "f", &mat[((3*colSize) + x)]))
|
|
|
|
return EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"rowD - python list not parseable\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//pass to matrix creation
|
|
|
|
return newMatrixObject (mat, rowSize, colSize);
|
|
|
|
}
|
|
|
|
|
|
|
|
//***************************************************************************
|
|
|
|
// Function: M_Mathutils_RotationMatrix
|
|
|
|
// Python equivalent: Blender.Mathutils.RotationMatrix
|
|
|
|
//***************************************************************************
|
|
|
|
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
|
|
|
|
static PyObject *M_Mathutils_RotationMatrix(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
|
|
|
|
float *mat;
|
|
|
|
float angle = 0.0f;
|
|
|
|
char *axis = NULL;
|
|
|
|
VectorObject * vec = NULL;
|
|
|
|
int matSize;
|
|
|
|
float norm = 0.0f;
|
|
|
|
float cosAngle = 0.0f;
|
|
|
|
float sinAngle = 0.0f;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "fi|sO!", &angle, &matSize, &axis, &vector_Type, &vec)){
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected float int and optional string and vector\n"));
|
|
|
|
}
|
|
|
|
if(angle < -360.0f || angle > 360.0f)
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
|
|
"angle size not appropriate\n");
|
|
|
|
if(matSize != 2 && matSize != 3 && matSize != 4)
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
|
|
"can only return a 2x2 3x3 or 4x4 matrix\n");
|
|
|
|
if(matSize == 2 && (axis != NULL || vec != NULL))
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
|
|
"cannot create a 2x2 rotation matrix around arbitrary axis\n");
|
|
|
|
if((matSize == 3 || matSize == 4) && axis == NULL)
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
|
|
"please choose an axis of rotation\n");
|
|
|
|
if(axis){
|
|
|
|
if(((strcmp (axis, "r") == 0) ||
|
|
|
|
(strcmp (axis, "R") == 0)) && vec == NULL)
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
|
|
"please define the arbitrary axis of rotation\n");
|
|
|
|
}
|
|
|
|
if(vec){
|
|
|
|
if(vec->size != 3)
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
|
|
"the arbitrary axis must be a 3D vector\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
|
|
|
|
|
|
|
|
//convert to radians
|
|
|
|
angle = angle * (float)(Py_PI/180);
|
|
|
|
|
|
|
|
if(axis == NULL && matSize == 2){
|
|
|
|
//2D rotation matrix
|
|
|
|
mat[0] = ((float)cos((double)(angle)));
|
|
|
|
mat[1] = ((float)sin((double)(angle)));
|
|
|
|
mat[2] = (-((float)sin((double)(angle))));
|
|
|
|
mat[3] = ((float)cos((double)(angle)));
|
|
|
|
}else if((strcmp(axis,"x") == 0) ||
|
|
|
|
(strcmp(axis,"X") == 0)){
|
|
|
|
//rotation around X
|
|
|
|
mat[0] = 1.0f; mat[1] = 0.0f; mat[2] = 0.0f; mat[3] = 0.0f;
|
|
|
|
mat[4] = ((float)cos((double)(angle)));
|
|
|
|
mat[5] = ((float)sin((double)(angle)));
|
|
|
|
mat[6] = 0.0f;
|
|
|
|
mat[7] = (-((float)sin((double)(angle))));
|
|
|
|
mat[8] = ((float)cos((double)(angle)));
|
|
|
|
}else if ((strcmp(axis,"y") == 0) ||
|
|
|
|
(strcmp(axis,"Y") == 0)){
|
|
|
|
//rotation around Y
|
|
|
|
mat[0] = ((float)cos((double)(angle)));
|
|
|
|
mat[1] = 0.0f;
|
|
|
|
mat[2] = (-((float)sin((double)(angle))));
|
|
|
|
mat[3] = 0.0f; mat[4] = 1.0f; mat[5] = 0.0f;
|
|
|
|
mat[6] = ((float)sin((double)(angle)));
|
|
|
|
mat[7] = 0.0f;
|
|
|
|
mat[8] = ((float)cos((double)(angle)));
|
|
|
|
}else if ((strcmp(axis,"z") == 0) ||
|
|
|
|
(strcmp(axis,"Z") == 0)){
|
|
|
|
//rotation around Z
|
|
|
|
mat[0] = ((float)cos((double)(angle)));
|
|
|
|
mat[1] = ((float)sin((double)(angle)));
|
|
|
|
mat[2] = 0.0f;
|
|
|
|
mat[3] = (-((float)sin((double)(angle))));
|
|
|
|
mat[4] = ((float)cos((double)(angle)));
|
|
|
|
mat[5] = 0.0f; mat[6] = 0.0f; mat[7] = 0.0f; mat[8] = 1.0f;
|
|
|
|
}else if ((strcmp(axis,"r") == 0) ||
|
|
|
|
(strcmp(axis,"R") == 0)){
|
|
|
|
//arbitrary rotation
|
|
|
|
//normalize arbitrary axis
|
|
|
|
norm = (float)sqrt(vec->vec[0] * vec->vec[0] + vec->vec[1] * vec->vec[1] +
|
|
|
|
vec->vec[2] * vec->vec[2]);
|
|
|
|
vec->vec[0] /= norm; vec->vec[1] /= norm; vec->vec[2] /= norm;
|
|
|
|
|
|
|
|
//create matrix
|
|
|
|
cosAngle = ((float)cos((double)(angle)));
|
|
|
|
sinAngle = ((float)sin((double)(angle)));
|
|
|
|
mat[0] = ((vec->vec[0] * vec->vec[0]) * (1 - cosAngle)) +
|
|
|
|
cosAngle;
|
|
|
|
mat[1] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) +
|
|
|
|
(vec->vec[2] * sinAngle);
|
|
|
|
mat[2] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) -
|
|
|
|
(vec->vec[1] * sinAngle);
|
|
|
|
mat[3] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) -
|
|
|
|
(vec->vec[2] * sinAngle);
|
|
|
|
mat[4] = ((vec->vec[1] * vec->vec[1]) * (1 - cosAngle)) +
|
|
|
|
cosAngle;
|
|
|
|
mat[5] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) +
|
|
|
|
(vec->vec[0] * sinAngle);
|
|
|
|
mat[6] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) +
|
|
|
|
(vec->vec[1] * sinAngle);
|
|
|
|
mat[7] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) -
|
|
|
|
(vec->vec[0] * sinAngle);
|
|
|
|
mat[8] = ((vec->vec[2] * vec->vec[2]) * (1 - cosAngle)) +
|
|
|
|
cosAngle;
|
|
|
|
}else{
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
|
|
"unrecognizable axis of rotation type - expected x,y,z or r\n");
|
|
|
|
}
|
|
|
|
if(matSize == 4){
|
|
|
|
//resize matrix
|
|
|
|
mat[15] = 1.0f; mat[14] = 0.0f;
|
|
|
|
mat[13] = 0.0f; mat[12] = 0.0f;
|
|
|
|
mat[11] = 0.0f; mat[10] = mat[8];
|
|
|
|
mat[9] = mat[7]; mat[8] = mat[6];
|
|
|
|
mat[7] = 0.0f; mat[6] = mat[5];
|
|
|
|
mat[5] = mat[4];mat[4] = mat[3];
|
|
|
|
mat[3] = 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
//pass to matrix creation
|
|
|
|
return newMatrixObject (mat, matSize, matSize);
|
|
|
|
}
|
|
|
|
|
|
|
|
//***************************************************************************
|
|
|
|
// Function: M_Mathutils_TranslationMatrix
|
|
|
|
// Python equivalent: Blender.Mathutils.TranslationMatrix
|
|
|
|
//***************************************************************************
|
|
|
|
static PyObject *M_Mathutils_TranslationMatrix(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
VectorObject *vec;
|
|
|
|
float *mat;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "O!", &vector_Type, &vec)){
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected vector\n"));
|
|
|
|
}
|
|
|
|
if(vec->size != 3 && vec->size != 4){
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
|
|
"vector must be 3D or 4D\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
mat = PyMem_Malloc(4*4*sizeof(float));
|
|
|
|
Mat4One((float(*)[4])mat);
|
|
|
|
|
|
|
|
mat[12] = vec->vec[0];
|
|
|
|
mat[13] = vec->vec[1];
|
|
|
|
mat[14] = vec->vec[2];
|
|
|
|
|
|
|
|
return newMatrixObject(mat, 4,4);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//***************************************************************************
|
|
|
|
// Function: M_Mathutils_ScaleMatrix
|
|
|
|
// Python equivalent: Blender.Mathutils.ScaleMatrix
|
|
|
|
//***************************************************************************
|
|
|
|
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
|
|
|
|
static PyObject *M_Mathutils_ScaleMatrix(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
float factor;
|
|
|
|
int matSize;
|
|
|
|
VectorObject *vec = NULL;
|
|
|
|
float *mat;
|
|
|
|
float norm = 0.0f;
|
|
|
|
int x;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)){
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected float int and optional vector\n"));
|
|
|
|
}
|
|
|
|
if(matSize != 2 && matSize != 3 && matSize != 4)
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
|
|
"can only return a 2x2 3x3 or 4x4 matrix\n");
|
|
|
|
if(vec){
|
|
|
|
if(vec->size > 2 && matSize == 2)
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
|
|
"please use 2D vectors when scaling in 2D\n");
|
|
|
|
}
|
|
|
|
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
|
|
|
|
|
|
|
|
if(vec == NULL){ //scaling along axis
|
|
|
|
if(matSize == 2){
|
|
|
|
mat[0] = factor;
|
|
|
|
mat[1] = 0.0f; mat[2] = 0.0f;
|
|
|
|
mat[3] = factor;
|
|
|
|
}else {
|
|
|
|
mat[0] = factor;
|
|
|
|
mat[1] = 0.0f; mat[2] = 0.0f; mat[3] = 0.0f;
|
|
|
|
mat[4] = factor;
|
|
|
|
mat[5] = 0.0f; mat[6] = 0.0f; mat[7] = 0.0f;
|
|
|
|
mat[8] = factor;
|
|
|
|
}
|
|
|
|
}else{ //scaling in arbitrary direction
|
|
|
|
|
|
|
|
//normalize arbitrary axis
|
|
|
|
for(x = 0; x < vec->size; x++){
|
|
|
|
norm += vec->vec[x] * vec->vec[x];
|
|
|
|
}
|
|
|
|
norm = (float)sqrt(norm);
|
|
|
|
for(x = 0; x < vec->size; x++){
|
|
|
|
vec->vec[x] /= norm;
|
|
|
|
}
|
|
|
|
if(matSize ==2){
|
|
|
|
mat[0] = 1 + ((factor - 1) * (vec->vec[0] * vec->vec[0]));
|
|
|
|
mat[1] = ((factor - 1) * (vec->vec[0] * vec->vec[1]));
|
|
|
|
mat[2] = ((factor - 1) * (vec->vec[0] * vec->vec[1]));
|
|
|
|
mat[3] = 1 + ((factor - 1) * (vec->vec[1] * vec->vec[1]));
|
|
|
|
}else{
|
|
|
|
mat[0] = 1 + ((factor - 1) * (vec->vec[0] * vec->vec[0]));
|
|
|
|
mat[1] = ((factor - 1) * (vec->vec[0] * vec->vec[1]));
|
|
|
|
mat[2] = ((factor - 1) * (vec->vec[0] * vec->vec[2]));
|
|
|
|
mat[3] = ((factor - 1) * (vec->vec[0] * vec->vec[1]));
|
|
|
|
mat[4] = 1 + ((factor - 1) * (vec->vec[1] * vec->vec[1]));
|
|
|
|
mat[5] = ((factor - 1) * (vec->vec[1] * vec->vec[2]));
|
|
|
|
mat[6] = ((factor - 1) * (vec->vec[0] * vec->vec[2]));
|
|
|
|
mat[7] = ((factor - 1) * (vec->vec[1] * vec->vec[2]));
|
|
|
|
mat[8] = 1 + ((factor - 1) * (vec->vec[2] * vec->vec[2]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if(matSize == 4){
|
|
|
|
//resize matrix
|
|
|
|
mat[15] = 1.0f; mat[14] = 0.0f; mat[13] = 0.0f;
|
|
|
|
mat[12] = 0.0f; mat[11] = 0.0f;
|
|
|
|
mat[10] = mat[8]; mat[9] = mat[7];
|
|
|
|
mat[8] = mat[6]; mat[7] = 0.0f;
|
|
|
|
mat[6] = mat[5]; mat[5] = mat[4];
|
|
|
|
mat[4] = mat[3]; mat[3] = 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
//pass to matrix creation
|
|
|
|
return newMatrixObject (mat, matSize, matSize);
|
|
|
|
}
|
|
|
|
|
|
|
|
//***************************************************************************
|
|
|
|
// Function: M_Mathutils_OrthoProjectionMatrix
|
|
|
|
// Python equivalent: Blender.Mathutils.OrthoProjectionMatrix
|
|
|
|
//***************************************************************************
|
|
|
|
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
|
|
|
|
static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
char *plane;
|
|
|
|
int matSize;
|
|
|
|
float *mat;
|
|
|
|
VectorObject *vec = NULL;
|
|
|
|
float norm = 0.0f;
|
|
|
|
int x;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)){
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected string and int and optional vector\n"));
|
|
|
|
}
|
|
|
|
if(matSize != 2 && matSize != 3 && matSize != 4)
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
|
|
"can only return a 2x2 3x3 or 4x4 matrix\n");
|
|
|
|
if(vec){
|
|
|
|
if(vec->size > 2 && matSize == 2)
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
|
|
"please use 2D vectors when scaling in 2D\n");
|
|
|
|
}
|
|
|
|
if(vec == NULL){ //ortho projection onto cardinal plane
|
|
|
|
if (((strcmp(plane, "x") == 0) || (strcmp(plane, "X") == 0)) &&
|
|
|
|
matSize == 2){
|
|
|
|
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
|
|
|
|
mat[0] = 1.0f;
|
|
|
|
mat[1] = 0.0f; mat[2] = 0.0f; mat[3] = 0.0f;
|
|
|
|
}else if(((strcmp(plane, "y") == 0) || (strcmp(plane, "Y") == 0)) &&
|
|
|
|
matSize == 2){
|
|
|
|
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
|
|
|
|
mat[0] = 0.0f; mat[1] = 0.0f; mat[2] = 0.0f;
|
|
|
|
mat[3] = 1.0f;
|
|
|
|
}else if(((strcmp(plane, "xy") == 0) || (strcmp(plane, "XY") == 0)) &&
|
|
|
|
matSize > 2){
|
|
|
|
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
|
|
|
|
mat[0] = 1.0f;
|
|
|
|
mat[1] = 0.0f; mat[2] = 0.0f; mat[3] = 0.0f;
|
|
|
|
mat[4] = 1.0f;
|
|
|
|
mat[5] = 0.0f; mat[6] = 0.0f; mat[7] = 0.0f; mat[8] = 0.0f;
|
|
|
|
}else if(((strcmp(plane, "xz") == 0) || (strcmp(plane, "XZ") == 0)) &&
|
|
|
|
matSize > 2){
|
|
|
|
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
|
|
|
|
mat[0] = 1.0f;
|
|
|
|
mat[1] = 0.0f; mat[2] = 0.0f; mat[3] = 0.0f; mat[4] = 0.0f;
|
|
|
|
mat[5] = 0.0f; mat[6] = 0.0f; mat[7] = 0.0f;
|
|
|
|
mat[8] = 1.0f;
|
|
|
|
}else if(((strcmp(plane, "yz") == 0) || (strcmp(plane, "YZ") == 0)) &&
|
|
|
|
matSize > 2){
|
|
|
|
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
|
|
|
|
mat[0] = 0.0f; mat[1] = 0.0f; mat[2] = 0.0f; mat[3] = 0.0f;
|
|
|
|
mat[4] = 1.0f;
|
|
|
|
mat[5] = 0.0f; mat[6] = 0.0f; mat[7] = 0.0f;
|
|
|
|
mat[8] = 1.0f;
|
|
|
|
}else{
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
|
|
"unknown plane - expected: x, y, xy, xz, yz\n");
|
|
|
|
}
|
|
|
|
}else{ //arbitrary plane
|
|
|
|
//normalize arbitrary axis
|
|
|
|
for(x = 0; x < vec->size; x++){
|
|
|
|
norm += vec->vec[x] * vec->vec[x];
|
|
|
|
}
|
|
|
|
norm = (float)sqrt(norm);
|
|
|
|
|
|
|
|
for(x = 0; x < vec->size; x++){
|
|
|
|
vec->vec[x] /= norm;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (((strcmp(plane, "r") == 0) || (strcmp(plane, "R") == 0)) &&
|
|
|
|
matSize == 2){
|
|
|
|
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
|
|
|
|
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
|
|
|
|
mat[1] = - (vec->vec[0] * vec->vec[1]);
|
|
|
|
mat[2] = - (vec->vec[0] * vec->vec[1]);
|
|
|
|
mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
|
|
|
|
}else if (((strcmp(plane, "r") == 0) || (strcmp(plane, "R") == 0)) &&
|
|
|
|
matSize > 2){
|
|
|
|
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
|
|
|
|
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
|
|
|
|
mat[1] = - (vec->vec[0] * vec->vec[1]);
|
|
|
|
mat[2] = - (vec->vec[0] * vec->vec[2]);
|
|
|
|
mat[3] = - (vec->vec[0] * vec->vec[1]);
|
|
|
|
mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
|
|
|
|
mat[5] = - (vec->vec[1] * vec->vec[2]);
|
|
|
|
mat[6] = - (vec->vec[0] * vec->vec[2]);
|
|
|
|
mat[7] = - (vec->vec[1] * vec->vec[2]);
|
|
|
|
mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
|
|
|
|
}else{
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
|
|
"unknown plane - expected: 'r' expected for axis designation\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(matSize == 4){
|
|
|
|
//resize matrix
|
|
|
|
mat[15] = 1.0f; mat[14] = 0.0f;
|
|
|
|
mat[13] = 0.0f; mat[12] = 0.0f;
|
|
|
|
mat[11] = 0.0f; mat[10] = mat[8];
|
|
|
|
mat[9] = mat[7];mat[8] = mat[6];
|
|
|
|
mat[7] = 0.0f; mat[6] = mat[5];
|
|
|
|
mat[5] = mat[4];mat[4] = mat[3];
|
|
|
|
mat[3] = 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
//pass to matrix creation
|
|
|
|
return newMatrixObject (mat, matSize, matSize);
|
|
|
|
}
|
|
|
|
|
|
|
|
//***************************************************************************
|
|
|
|
// Function: M_Mathutils_ShearMatrix
|
|
|
|
// Python equivalent: Blender.Mathutils.ShearMatrix
|
|
|
|
//***************************************************************************
|
|
|
|
static PyObject *M_Mathutils_ShearMatrix(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
float factor;
|
|
|
|
int matSize;
|
|
|
|
char *plane;
|
|
|
|
float *mat;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)){
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected string float and int\n"));
|
|
|
|
}
|
|
|
|
|
|
|
|
if(matSize != 2 && matSize != 3 && matSize != 4)
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
|
|
"can only return a 2x2 3x3 or 4x4 matrix\n");
|
|
|
|
|
|
|
|
if (((strcmp(plane, "x") == 0) || (strcmp(plane, "X") == 0)) &&
|
|
|
|
matSize == 2){
|
|
|
|
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
|
|
|
|
mat[0] = 1.0f; mat[1] = 0.0f;
|
|
|
|
mat[2] = factor; mat[3] = 1.0f;
|
|
|
|
}else if(((strcmp(plane, "y") == 0) || (strcmp(plane, "Y") == 0)) &&
|
|
|
|
matSize == 2){
|
|
|
|
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
|
|
|
|
mat[0] = 1.0f; mat[1] = factor;
|
|
|
|
mat[2] = 0.0f; mat[3] = 1.0f;
|
|
|
|
}else if(((strcmp(plane, "xy") == 0) || (strcmp(plane, "XY") == 0)) &&
|
|
|
|
matSize > 2){
|
|
|
|
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
|
|
|
|
mat[0] = 1.0f; mat[1] = 0.0f; mat[2] = 0.0f; mat[3] = 0.0f;
|
|
|
|
mat[4] = 1.0f; mat[5] = 0.0f;
|
|
|
|
mat[6] = factor; mat[7] = factor; mat[8] = 0.0f;
|
|
|
|
}else if(((strcmp(plane, "xz") == 0) || (strcmp(plane, "XZ") == 0)) &&
|
|
|
|
matSize > 2){
|
|
|
|
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
|
|
|
|
mat[0] = 1.0f; mat[1] = 0.0f; mat[2] = 0.0f;
|
|
|
|
mat[3] = factor; mat[4] = 1.0f; mat[5] = factor;
|
|
|
|
mat[6] = 0.0f; mat[7] = 0.0f; mat[8] = 1.0f;
|
|
|
|
}else if(((strcmp(plane, "yz") == 0) || (strcmp(plane, "YZ") == 0)) &&
|
|
|
|
matSize > 2){
|
|
|
|
mat = PyMem_Malloc(matSize * matSize * sizeof(float));
|
|
|
|
mat[0] = 1.0f; mat[1] = factor; mat[2] = factor;
|
|
|
|
mat[3] = 0.0f; mat[4] = 1.0f;
|
|
|
|
mat[5] = 0.0f; mat[6] = 0.0f; mat[7] = 0.0f;
|
|
|
|
mat[8] = 1.0f;
|
|
|
|
}else{
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
|
|
"expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
if(matSize == 4){
|
|
|
|
//resize matrix
|
|
|
|
mat[15] = 1.0f; mat[14] = 0.0f;
|
|
|
|
mat[13] = 0.0f; mat[12] = 0.0f;
|
|
|
|
mat[11] = 0.0f; mat[10] = mat[8];
|
|
|
|
mat[9] = mat[7];mat[8] = mat[6];
|
|
|
|
mat[7] = 0.0f; mat[6] = mat[5];
|
|
|
|
mat[5] = mat[4];mat[4] = mat[3];
|
|
|
|
mat[3] = 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
//pass to matrix creation
|
|
|
|
return newMatrixObject (mat, matSize, matSize);
|
|
|
|
}
|
|
|
|
|
|
|
|
//***************************************************************************
|
|
|
|
//Begin Matrix Utils
|
|
|
|
|
|
|
|
static PyObject *M_Mathutils_CopyMat(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
MatrixObject *matrix;
|
|
|
|
float *mat;
|
|
|
|
int x,y,z;
|
|
|
|
|
|
|
|
if(!PyArg_ParseTuple(args, "O!", &matrix_Type, &matrix))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected matrix\n"));
|
|
|
|
|
|
|
|
mat = PyMem_Malloc(matrix->rowSize * matrix->colSize * sizeof(float));
|
|
|
|
|
|
|
|
z = 0;
|
|
|
|
for(x = 0; x < matrix->rowSize; x++){
|
|
|
|
for(y = 0; y < matrix->colSize; y++){
|
|
|
|
mat[z] = matrix->matrix[x][y];
|
|
|
|
z++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (PyObject*)newMatrixObject (mat, matrix->rowSize, matrix->colSize);
|
|
|
|
}
|
|
|
|
static PyObject *M_Mathutils_MatMultVec(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
|
|
|
|
PyObject * ob1 = NULL;
|
|
|
|
PyObject * ob2 = NULL;
|
|
|
|
MatrixObject * mat;
|
|
|
|
VectorObject * vec;
|
|
|
|
float * vecNew;
|
|
|
|
int x, y;
|
|
|
|
int z = 0;
|
|
|
|
float dot = 0.0f;
|
|
|
|
|
|
|
|
//get pyObjects
|
|
|
|
if(!PyArg_ParseTuple(args, "O!O!", &matrix_Type, &ob1, &vector_Type, &ob2))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"matrix and vector object expected - in that order\n"));
|
|
|
|
|
|
|
|
mat = (MatrixObject*)ob1;
|
|
|
|
vec = (VectorObject*)ob2;
|
|
|
|
|
|
|
|
if(mat->rowSize != vec->size)
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
|
|
|
|
"matrix row size and vector size must be the same\n"));
|
|
|
|
|
|
|
|
vecNew = PyMem_Malloc (vec->size*sizeof (float));
|
|
|
|
|
|
|
|
for(x = 0; x < mat->rowSize; x++){
|
|
|
|
for(y = 0; y < mat->colSize; y++){
|
|
|
|
dot += mat->matrix[x][y] * vec->vec[y];
|
|
|
|
}
|
|
|
|
vecNew[z] = dot;
|
|
|
|
z++;
|
|
|
|
dot = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (PyObject *)newVectorObject(vecNew, vec->size);
|
|
|
|
}
|
|
|
|
|
|
|
|
//***************************************************************************
|
|
|
|
// Function: M_Mathutils_Quaternion
|
|
|
|
// Python equivalent: Blender.Mathutils.Quaternion
|
|
|
|
//***************************************************************************
|
|
|
|
static PyObject *M_Mathutils_Quaternion(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
PyObject *listObject;
|
|
|
|
float *vec;
|
|
|
|
float *quat;
|
|
|
|
float angle = 0.0f;
|
|
|
|
int x;
|
|
|
|
float norm;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "O!|f", &PyList_Type, &listObject, &angle))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected list and optional float\n"));
|
|
|
|
|
|
|
|
if(PyList_Size(listObject) != 4 && PyList_Size(listObject) != 3)
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"3 or 4 expected floats for the quaternion\n"));
|
|
|
|
|
|
|
|
vec = PyMem_Malloc (PyList_Size(listObject)*sizeof (float));
|
|
|
|
for (x = 0; x < PyList_Size(listObject); x++) {
|
|
|
|
if (!PyArg_Parse(PyList_GetItem(listObject, x), "f", &vec[x]))
|
|
|
|
return EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"python list not parseable\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
if(PyList_Size(listObject) == 3){ //an axis of rotation
|
|
|
|
norm = (float)sqrt(vec[0] * vec[0] + vec[1] * vec[1] +
|
|
|
|
vec[2] * vec[2]);
|
|
|
|
|
|
|
|
vec[0] /= norm; vec[1] /= norm; vec[2] /= norm;
|
|
|
|
|
|
|
|
angle = angle * (float)(Py_PI/180);
|
|
|
|
quat = PyMem_Malloc(4*sizeof(float));
|
|
|
|
quat[0] = (float)(cos((double)(angle)/2));
|
|
|
|
quat[1] = (float)(sin((double)(angle)/2)) * vec[0];
|
|
|
|
quat[2] = (float)(sin((double)(angle)/2)) * vec[1];
|
|
|
|
quat[3] = (float)(sin((double)(angle)/2)) * vec[2];
|
|
|
|
|
|
|
|
PyMem_Free(vec);
|
|
|
|
|
|
|
|
return newQuaternionObject(quat);
|
|
|
|
}else
|
|
|
|
return newQuaternionObject(vec);
|
|
|
|
}
|
|
|
|
|
|
|
|
//***************************************************************************
|
|
|
|
//Begin Quaternion Utils
|
|
|
|
|
|
|
|
static PyObject *M_Mathutils_CopyQuat(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
QuaternionObject * quatU;
|
|
|
|
float * quat;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "O!", &quaternion_Type, &quatU))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected Quaternion type"));
|
|
|
|
|
|
|
|
quat = PyMem_Malloc (4*sizeof(float));
|
|
|
|
quat[0] = quatU->quat[0];
|
|
|
|
quat[1] = quatU->quat[1];
|
|
|
|
quat[2] = quatU->quat[2];
|
|
|
|
quat[3] = quatU->quat[3];
|
|
|
|
|
|
|
|
return (PyObject*)newQuaternionObject(quat);
|
|
|
|
}
|
|
|
|
|
|
|
|
static PyObject *M_Mathutils_CrossQuats(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
QuaternionObject * quatU;
|
|
|
|
QuaternionObject * quatV;
|
|
|
|
float * quat;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU,
|
|
|
|
&quaternion_Type, &quatV))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected Quaternion types"));
|
|
|
|
quat = PyMem_Malloc (4*sizeof(float));
|
|
|
|
QuatMul(quat, quatU->quat, quatV->quat);
|
|
|
|
|
|
|
|
return (PyObject*)newQuaternionObject(quat);
|
|
|
|
}
|
|
|
|
|
|
|
|
static PyObject *M_Mathutils_DotQuats(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
QuaternionObject * quatU;
|
|
|
|
QuaternionObject * quatV;
|
|
|
|
float * quat;
|
|
|
|
int x;
|
|
|
|
float dot = 0.0f;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU,
|
|
|
|
&quaternion_Type, &quatV))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected Quaternion types"));
|
|
|
|
|
|
|
|
quat = PyMem_Malloc (4*sizeof(float));
|
|
|
|
for(x = 0; x < 4; x++){
|
|
|
|
dot += quatU->quat[x] * quatV->quat[x];
|
|
|
|
}
|
|
|
|
|
|
|
|
return PyFloat_FromDouble((double)(dot));
|
|
|
|
}
|
|
|
|
|
|
|
|
static PyObject *M_Mathutils_DifferenceQuats(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
QuaternionObject * quatU;
|
|
|
|
QuaternionObject * quatV;
|
|
|
|
float * quat;
|
|
|
|
float * tempQuat;
|
|
|
|
int x;
|
|
|
|
float dot = 0.0f;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "O!O!", &quaternion_Type,
|
|
|
|
&quatU, &quaternion_Type, &quatV))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected Quaternion types"));
|
|
|
|
|
|
|
|
quat = PyMem_Malloc (4*sizeof(float));
|
|
|
|
tempQuat = PyMem_Malloc (4*sizeof(float));
|
|
|
|
|
|
|
|
tempQuat[0] = quatU->quat[0];
|
|
|
|
tempQuat[1] = -quatU->quat[1];
|
|
|
|
tempQuat[2] = -quatU->quat[2];
|
|
|
|
tempQuat[3] = -quatU->quat[3];
|
|
|
|
|
|
|
|
dot= (float)sqrt((double)tempQuat[0] * (double)tempQuat[0] +
|
|
|
|
(double)tempQuat[1] * (double)tempQuat[1] +
|
|
|
|
(double)tempQuat[2] * (double)tempQuat[2] +
|
|
|
|
(double)tempQuat[3] * (double)tempQuat[3]);
|
|
|
|
|
|
|
|
for(x = 0; x < 4; x++){
|
|
|
|
tempQuat[x] /= (dot * dot);
|
|
|
|
}
|
|
|
|
QuatMul(quat, tempQuat, quatV->quat);
|
|
|
|
|
|
|
|
return (PyObject*)newQuaternionObject(quat);
|
|
|
|
}
|
|
|
|
|
|
|
|
static PyObject *M_Mathutils_Slerp(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
QuaternionObject * quatU;
|
|
|
|
QuaternionObject * quatV;
|
|
|
|
float * quat;
|
|
|
|
float param, x,y, cosD, sinD, deltaD, IsinD, val;
|
|
|
|
int flag, z;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "O!O!f", &quaternion_Type,
|
|
|
|
&quatU, &quaternion_Type, &quatV, ¶m))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected Quaternion types and float"));
|
|
|
|
|
|
|
|
quat = PyMem_Malloc (4*sizeof(float));
|
|
|
|
|
|
|
|
cosD = quatU->quat[0] * quatV->quat[0] +
|
|
|
|
quatU->quat[1] * quatV->quat[1] +
|
|
|
|
quatU->quat[2] * quatV->quat[2] +
|
|
|
|
quatU->quat[3] * quatV->quat[3];
|
|
|
|
|
|
|
|
flag = 0;
|
|
|
|
if(cosD< 0.0f){
|
|
|
|
flag = 1;
|
|
|
|
cosD = -cosD;
|
|
|
|
}
|
|
|
|
if(cosD > .99999f){
|
|
|
|
x = 1.0f - param;
|
|
|
|
y = param;
|
|
|
|
}else{
|
|
|
|
sinD = (float)sqrt(1.0f - cosD * cosD);
|
|
|
|
deltaD = (float)atan2(sinD, cosD);
|
|
|
|
IsinD = 1.0f/sinD;
|
|
|
|
x = (float)sin((1.0f - param) * deltaD) * IsinD;
|
|
|
|
y = (float)sin(param * deltaD) * IsinD;
|
|
|
|
}
|
|
|
|
for(z = 0; z < 4; z++){
|
|
|
|
val = quatV->quat[z];
|
|
|
|
if(val) val = -val;
|
|
|
|
quat[z] = (quatU->quat[z] * x) + (val * y);
|
|
|
|
}
|
|
|
|
return (PyObject*)newQuaternionObject(quat);
|
|
|
|
}
|
|
|
|
|
|
|
|
//***************************************************************************
|
|
|
|
// Function: M_Mathutils_Euler
|
|
|
|
// Python equivalent: Blender.Mathutils.Euler
|
|
|
|
//***************************************************************************
|
|
|
|
static PyObject *M_Mathutils_Euler(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
PyObject *listObject;
|
|
|
|
float *vec;
|
|
|
|
int x;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "O!", &PyList_Type, &listObject))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected list\n"));
|
|
|
|
|
|
|
|
if(PyList_Size(listObject) != 3)
|
|
|
|
return EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"only 3d eulers are supported\n");
|
|
|
|
|
|
|
|
vec = PyMem_Malloc (3*sizeof (float));
|
|
|
|
for (x = 0; x < 3; x++) {
|
|
|
|
if (!PyArg_Parse(PyList_GetItem(listObject, x), "f", &vec[x]))
|
|
|
|
return EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"python list not parseable\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
return (PyObject*)newEulerObject(vec);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//***************************************************************************
|
|
|
|
//Begin Euler Util
|
|
|
|
|
|
|
|
static PyObject *M_Mathutils_CopyEuler(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
EulerObject * eulU;
|
|
|
|
float * eul;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "O!", &euler_Type, &eulU))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected Euler types"));
|
|
|
|
|
|
|
|
eul = PyMem_Malloc (3*sizeof(float));
|
|
|
|
eul[0] = eulU->eul[0];
|
|
|
|
eul[1] = eulU->eul[1];
|
|
|
|
eul[2] = eulU->eul[2];
|
|
|
|
|
|
|
|
return (PyObject*)newEulerObject(eul);
|
|
|
|
}
|
|
|
|
|
|
|
|
static PyObject *M_Mathutils_RotateEuler(PyObject *self, PyObject *args)
|
|
|
|
{
|
|
|
|
EulerObject * Eul;
|
|
|
|
float angle;
|
|
|
|
char *axis;
|
|
|
|
int x;
|
|
|
|
|
|
|
|
if (!PyArg_ParseTuple(args, "O!fs", &euler_Type, &Eul, &angle, &axis))
|
|
|
|
return (EXPP_ReturnPyObjError (PyExc_TypeError,
|
|
|
|
"expected euler type & float & string"));
|
|
|
|
|
|
|
|
angle *= (float)(Py_PI/180);
|
|
|
|
for(x = 0; x < 3; x++){
|
|
|
|
Eul->eul[x] *= (float)(Py_PI/180);
|
|
|
|
}
|
|
|
|
euler_rot(Eul->eul, angle, *axis);
|
|
|
|
for(x = 0; x < 3; x++){
|
|
|
|
Eul->eul[x] *= (float)(180/Py_PI);
|
|
|
|
}
|
|
|
|
|
|
|
|
return EXPP_incr_ret(Py_None);
|
|
|
|
}
|
|
|
|
|
|
|
|
//***************************************************************************
|
|
|
|
// Function: Mathutils_Init
|
|
|
|
//***************************************************************************
|
|
|
|
PyObject *Mathutils_Init (void)
|
|
|
|
{
|
|
|
|
PyObject *mod= Py_InitModule3("Blender.Mathutils", M_Mathutils_methods, M_Mathutils_doc);
|
|
|
|
return(mod);
|
|
|
|
}
|