This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/quat.c

507 lines
14 KiB
C
Raw Normal View History

/*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
*
* Contributor(s): Joseph Gilbert
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "quat.h"
//doc strings
char Quaternion_Identity_doc[] =
"() - set the quaternion to it's identity (1, vector)";
char Quaternion_Negate_doc[] =
"() - set all values in the quaternion to their negative";
char Quaternion_Conjugate_doc[] =
"() - set the quaternion to it's conjugate";
char Quaternion_Inverse_doc[] =
"() - set the quaternion to it's inverse";
char Quaternion_Normalize_doc[] =
"() - normalize the vector portion of the quaternion";
char Quaternion_ToEuler_doc[] =
"() - return a euler rotation representing the quaternion";
char Quaternion_ToMatrix_doc[] =
"() - return a rotation matrix representing the quaternion";
//methods table
struct PyMethodDef Quaternion_methods[] = {
{"identity",(PyCFunction)Quaternion_Identity, METH_NOARGS,
Quaternion_Identity_doc},
{"negate",(PyCFunction)Quaternion_Negate, METH_NOARGS,
Quaternion_Negate_doc},
{"conjugate",(PyCFunction)Quaternion_Conjugate, METH_NOARGS,
Quaternion_Conjugate_doc},
{"inverse",(PyCFunction)Quaternion_Inverse, METH_NOARGS,
Quaternion_Inverse_doc},
{"normalize",(PyCFunction)Quaternion_Normalize, METH_NOARGS,
Quaternion_Normalize_doc},
{"toEuler",(PyCFunction)Quaternion_ToEuler, METH_NOARGS,
Quaternion_ToEuler_doc},
{"toMatrix",(PyCFunction)Quaternion_ToMatrix, METH_NOARGS,
Quaternion_ToMatrix_doc},
{NULL, NULL, 0, NULL}
};
/*****************************/
// Quaternion Python Object
/*****************************/
PyObject *Quaternion_ToEuler(QuaternionObject *self)
{
float *eul;
int x;
eul = PyMem_Malloc(3*sizeof(float));
QuatToEul(self->quat, eul);
for(x = 0; x < 3; x++){
eul[x] *= (float)(180/Py_PI);
}
return (PyObject*)newEulerObject(eul);
}
PyObject *Quaternion_ToMatrix(QuaternionObject *self)
{
float *mat;
mat = PyMem_Malloc(3*3*sizeof(float));
QuatToMat3(self->quat, (float(*)[3])mat);
return (PyObject*)newMatrixObject(mat, 3,3);
}
//normalize the axis of rotation of [theta,vector]
PyObject *Quaternion_Normalize(QuaternionObject *self)
{
NormalQuat(self->quat);
return EXPP_incr_ret(Py_None);
}
PyObject *Quaternion_Inverse(QuaternionObject *self)
{
float mag = 0.0f;
int x;
for(x = 1; x < 4; x++){
self->quat[x] = -self->quat[x];
}
for(x = 0; x < 4; x++){
mag += (self->quat[x] * self->quat[x]);
}
mag = (float)sqrt(mag);
for(x = 0; x < 4; x++){
self->quat[x] /= (mag * mag);
}
return EXPP_incr_ret(Py_None);
}
PyObject *Quaternion_Identity(QuaternionObject *self)
{
self->quat[0] = 1.0;
self->quat[1] = 0.0; self->quat[2] = 0.0; self->quat[3] = 0.0;
return EXPP_incr_ret(Py_None);
}
PyObject *Quaternion_Negate(QuaternionObject *self)
{
int x;
for(x = 0; x < 4; x++){
self->quat[x] = -self->quat[x];
}
return EXPP_incr_ret(Py_None);
}
PyObject *Quaternion_Conjugate(QuaternionObject *self)
{
int x;
for(x = 1; x < 4; x++){
self->quat[x] = -self->quat[x];
}
return EXPP_incr_ret(Py_None);
}
static void Quaternion_dealloc(QuaternionObject *self)
{
PyObject_DEL (self);
}
static PyObject *Quaternion_getattr(QuaternionObject *self, char *name)
{
double mag = 0.0f;
float *vec;
int x;
if (ELEM4(name[0], 'w', 'x', 'y', 'z') && name[1]==0){
return PyFloat_FromDouble(self->quat[name[0]-'w']);
}
if(strcmp(name,"magnitude") == 0){
for(x = 0; x < 4; x++){
mag += self->quat[x] * self->quat[x];
}
mag = (float)sqrt(mag);
return PyFloat_FromDouble(mag);
}
if(strcmp(name,"angle") == 0){
mag = self->quat[0];
mag = 2 * (acos(mag));
mag *= (180/Py_PI);
return PyFloat_FromDouble(mag);
}
if(strcmp(name,"axis") == 0){
mag = (double)(self->quat[0] * (Py_PI/180));
mag = 2 * (acos(mag));
mag = sin(mag/2);
vec = PyMem_Malloc(3*sizeof(float));
for(x = 0; x < 3; x++){
vec[x] = (self->quat[x + 1]/((float)(mag)));
}
Normalise(vec);
return (PyObject*)newVectorObject(vec,3);
}
return Py_FindMethod(Quaternion_methods, (PyObject*)self, name);
}
static int Quaternion_setattr(QuaternionObject *self, char *name, PyObject *v)
{
float val;
if(!PyFloat_Check(v) && !PyInt_Check(v)){
return EXPP_ReturnIntError(PyExc_TypeError,"int or float expected\n");
}else{
if (!PyArg_Parse(v, "f", &val))
return EXPP_ReturnIntError(PyExc_TypeError, "unable to parse float argument\n");
}
if (ELEM4(name[0], 'w', 'x', 'y', 'z') && name[1]==0){
self->quat[name[0]-'w']= val;
}else return -1;
return 0;
}
/* Quaternions Sequence methods */
static PyObject *Quaternion_item(QuaternionObject *self, int i)
{
if (i < 0 || i >= 4)
return EXPP_ReturnPyObjError (PyExc_IndexError, "array index out of range\n");
return Py_BuildValue("f", self->quat[i]);
}
static PyObject *Quaternion_slice(QuaternionObject *self, int begin, int end)
{
PyObject *list;
int count;
if (begin < 0) begin= 0;
if (end > 4) end= 4;
if (begin > end) begin= end;
list= PyList_New(end-begin);
for (count = begin; count < end; count++){
PyList_SetItem(list, count-begin, PyFloat_FromDouble(self->quat[count]));
}
return list;
}
static int Quaternion_ass_item(QuaternionObject *self, int i, PyObject *ob)
{
if (i < 0 || i >= 4)
return EXPP_ReturnIntError(PyExc_IndexError,
"array assignment index out of range\n");
if (!PyNumber_Check(ob))
return EXPP_ReturnIntError(PyExc_IndexError,
"Quaternion member must be a number\n");
if(!PyFloat_Check(ob) && !PyInt_Check(ob)){
return EXPP_ReturnIntError(PyExc_TypeError,"int or float expected\n");
}else{
self->quat[i]= (float)PyFloat_AsDouble(ob);
}
return 0;
}
static int Quaternion_ass_slice(QuaternionObject *self, int begin, int end, PyObject *seq)
{
int count, z;
if (begin < 0) begin= 0;
if (end > 4) end= 4;
if (begin > end) begin= end;
if (!PySequence_Check(seq))
return EXPP_ReturnIntError(PyExc_TypeError,
"illegal argument type for built-in operation\n");
if (PySequence_Length(seq) != (end - begin))
return EXPP_ReturnIntError(PyExc_TypeError,
"size mismatch in slice assignment\n");
z = 0;
for (count = begin; count < end; count++) {
PyObject *ob = PySequence_GetItem(seq, z); z++;
if(!PyFloat_Check(ob) && !PyInt_Check(ob)){
Py_DECREF(ob);
return -1;
}else{
if (!PyArg_Parse(ob, "f", &self->quat[count])) {
Py_DECREF(ob);
return -1;
}
}
}
return 0;
}
static PyObject *Quaternion_repr (QuaternionObject *self)
{
int i, maxindex = 4 - 1;
char ftoa[24];
PyObject *str1, *str2;
str1 = PyString_FromString ("[");
for (i = 0; i < maxindex; i++) {
sprintf(ftoa, "%.4f, ", self->quat[i]);
str2 = PyString_FromString (ftoa);
if (!str1 || !str2) goto error;
PyString_ConcatAndDel (&str1, str2);
}
sprintf(ftoa, "%.4f]", self->quat[maxindex]);
str2 = PyString_FromString (ftoa);
if (!str1 || !str2) goto error;
PyString_ConcatAndDel (&str1, str2);
if (str1) return str1;
error:
Py_XDECREF (str1);
Py_XDECREF (str2);
return EXPP_ReturnPyObjError (PyExc_MemoryError,
"couldn't create PyString!\n");
}
PyObject * Quaternion_add(PyObject *q1, PyObject *q2)
{
float * quat;
int x;
if((!QuaternionObject_Check(q1)) || (!QuaternionObject_Check(q2)))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"unsupported type for this operation\n");
if(((QuaternionObject*)q1)->flag > 0 || ((QuaternionObject*)q2)->flag > 0)
return EXPP_ReturnPyObjError (PyExc_ArithmeticError,
"cannot add a scalar and a quat\n");
quat = PyMem_Malloc (4*sizeof(float));
for(x = 0; x < 4; x++){
quat[x] = (((QuaternionObject*)q1)->quat[x]) + (((QuaternionObject*)q2)->quat[x]);
}
return (PyObject*)newQuaternionObject(quat);
}
PyObject * Quaternion_sub(PyObject *q1, PyObject *q2)
{
float * quat;
int x;
if((!QuaternionObject_Check(q1)) || (!QuaternionObject_Check(q2)))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"unsupported type for this operation\n");
if(((QuaternionObject*)q1)->flag > 0 || ((QuaternionObject*)q2)->flag > 0)
return EXPP_ReturnPyObjError (PyExc_ArithmeticError,
"cannot subtract a scalar and a quat\n");
quat = PyMem_Malloc (4*sizeof(float));
for(x = 0; x < 4; x++){
quat[x] = (((QuaternionObject*)q1)->quat[x]) - (((QuaternionObject*)q2)->quat[x]);
}
return (PyObject*)newQuaternionObject(quat);
}
PyObject * Quaternion_mul(PyObject *q1, PyObject * q2)
{
float * quat;
int x;
if((!QuaternionObject_Check(q1)) || (!QuaternionObject_Check(q2)))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"unsupported type for this operation\n");
if(((QuaternionObject*)q1)->flag == 0 && ((QuaternionObject*)q2)->flag == 0)
return EXPP_ReturnPyObjError (PyExc_ArithmeticError,
"please use the dot or cross product to multiply quaternions\n");
quat = PyMem_Malloc (4*sizeof(float));
//scalar mult by quat
for(x = 0; x < 4; x++){
quat[x] = ((QuaternionObject*)q1)->quat[x] * ((QuaternionObject*)q2)->quat[x];
}
return (PyObject*)newQuaternionObject(quat);
}
//coercion of unknown types to type QuaternionObject for numeric protocols
int Quaternion_coerce(PyObject **q1, PyObject **q2)
{
long *tempI;
double *tempF;
float *quat;
int x;
if (QuaternionObject_Check(*q1)) {
if (QuaternionObject_Check(*q2)) { //two Quaternions
Py_INCREF(*q1);
Py_INCREF(*q2);
return 0;
}else{
if(PyNumber_Check(*q2)){
if(PyInt_Check(*q2)){ //cast scalar to Quaternion
tempI = PyMem_Malloc(1*sizeof(long));
*tempI = PyInt_AsLong(*q2);
quat = PyMem_Malloc (4*sizeof (float));
for(x = 0; x < 4; x++){
quat[x] = (float)*tempI;
}
PyMem_Free(tempI);
*q2 = newQuaternionObject(quat);
((QuaternionObject*)*q2)->flag = 1; //int coercion
Py_INCREF(*q1);
return 0;
}else if(PyFloat_Check(*q2)){ //cast scalar to Quaternion
tempF = PyMem_Malloc(1*sizeof(double));
*tempF = PyFloat_AsDouble(*q2);
quat = PyMem_Malloc (4*sizeof (float));
for(x = 0; x < 4; x++){
quat[x] = (float)*tempF;
}
PyMem_Free(tempF);
*q2 = newQuaternionObject(quat);
((QuaternionObject*)*q2)->flag = 2; //float coercion
Py_INCREF(*q1);
return 0;
}
}
//unknown type or numeric cast failure
printf("attempting quaternion operation with unsupported type...\n");
Py_INCREF(*q1);
return 0; //operation will type check
}
}else{
printf("numeric protocol failure...\n");
return -1; //this should not occur - fail
}
return -1;
}
static PySequenceMethods Quaternion_SeqMethods =
{
(inquiry) 0, /* sq_length */
(binaryfunc) 0, /* sq_concat */
(intargfunc) 0, /* sq_repeat */
(intargfunc) Quaternion_item, /* sq_item */
(intintargfunc) Quaternion_slice, /* sq_slice */
(intobjargproc) Quaternion_ass_item, /* sq_ass_item */
(intintobjargproc) Quaternion_ass_slice, /* sq_ass_slice */
};
static PyNumberMethods Quaternion_NumMethods =
{
(binaryfunc) Quaternion_add, /* __add__ */
(binaryfunc) Quaternion_sub, /* __sub__ */
(binaryfunc) Quaternion_mul, /* __mul__ */
(binaryfunc) 0, /* __div__ */
(binaryfunc) 0, /* __mod__ */
(binaryfunc) 0, /* __divmod__ */
(ternaryfunc) 0, /* __pow__ */
(unaryfunc) 0, /* __neg__ */
(unaryfunc) 0, /* __pos__ */
(unaryfunc) 0, /* __abs__ */
(inquiry) 0, /* __nonzero__ */
(unaryfunc) 0, /* __invert__ */
(binaryfunc) 0, /* __lshift__ */
(binaryfunc) 0, /* __rshift__ */
(binaryfunc) 0, /* __and__ */
(binaryfunc) 0, /* __xor__ */
(binaryfunc) 0, /* __or__ */
(coercion) Quaternion_coerce, /* __coerce__ */
(unaryfunc) 0, /* __int__ */
(unaryfunc) 0, /* __long__ */
(unaryfunc) 0, /* __float__ */
(unaryfunc) 0, /* __oct__ */
(unaryfunc) 0, /* __hex__ */
};
PyTypeObject quaternion_Type =
{
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
"quaternion", /*tp_name*/
sizeof(QuaternionObject), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor) Quaternion_dealloc, /*tp_dealloc*/
(printfunc) 0, /*tp_print*/
(getattrfunc) Quaternion_getattr, /*tp_getattr*/
(setattrfunc) Quaternion_setattr, /*tp_setattr*/
0, /*tp_compare*/
(reprfunc) Quaternion_repr, /*tp_repr*/
&Quaternion_NumMethods, /*tp_as_number*/
&Quaternion_SeqMethods, /*tp_as_sequence*/
};
PyObject *newQuaternionObject(float *quat)
{
QuaternionObject *self;
int x;
quaternion_Type.ob_type = &PyType_Type;
self = PyObject_NEW(QuaternionObject, &quaternion_Type);
if(!quat){
self->quat = PyMem_Malloc (4 *sizeof (float));
for(x = 0; x < 4; x++){
self->quat[x] = 0.0f;
}
self->quat[3] = 1.0f;
}else{
self->quat = quat;
}
self->flag = 0;
return (PyObject*) self;
}