This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/makesrna/intern/makesrna.c

2720 lines
83 KiB
C
Raw Normal View History

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Blender Foundation (2008).
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <float.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "RNA_access.h"
#include "RNA_define.h"
#include "RNA_types.h"
#include "rna_internal.h"
#define RNA_VERSION_DATE "$Id$"
#ifdef _WIN32
#ifndef snprintf
#define snprintf _snprintf
#endif
#endif
/* Replace if different */
#define TMP_EXT ".tmp"
static int replace_if_different(char *tmpfile)
{
#define REN_IF_DIFF \
remove(orgfile); \
if(rename(tmpfile, orgfile) != 0) { \
fprintf(stderr, "%s:%d, rename error: \"%s\" -> \"%s\"\n", __FILE__, __LINE__, tmpfile, orgfile); \
return -1; \
} \
remove(tmpfile); \
return 1; \
/* end REN_IF_DIFF */
FILE *fp_new, *fp_org;
int len_new, len_org;
char *arr_new, *arr_org;
int cmp;
char orgfile[4096];
strcpy(orgfile, tmpfile);
orgfile[strlen(orgfile) - strlen(TMP_EXT)] = '\0'; /* strip '.tmp' */
fp_org= fopen(orgfile, "rb");
if(fp_org==NULL) {
REN_IF_DIFF;
}
fp_new= fopen(tmpfile, "rb");
if(fp_new==NULL) {
/* shouldn't happen, just to be safe */
fprintf(stderr, "%s:%d, open error: \"%s\"\n", __FILE__, __LINE__, tmpfile);
fclose(fp_org);
return -1;
}
fseek(fp_new, 0L, SEEK_END); len_new = ftell(fp_new); fseek(fp_new, 0L, SEEK_SET);
fseek(fp_org, 0L, SEEK_END); len_org = ftell(fp_org); fseek(fp_org, 0L, SEEK_SET);
if(len_new != len_org) {
fclose(fp_new);
fclose(fp_org);
REN_IF_DIFF;
}
/* now compare the files... */
arr_new= MEM_mallocN(sizeof(char)*len_new, "rna_cmp_file_new");
arr_org= MEM_mallocN(sizeof(char)*len_org, "rna_cmp_file_org");
if(fread(arr_new, sizeof(char), len_new, fp_new) != len_new)
fprintf(stderr, "%s:%d, error reading file %s for comparison.\n", __FILE__, __LINE__, tmpfile);
if(fread(arr_org, sizeof(char), len_org, fp_org) != len_org)
fprintf(stderr, "%s:%d, error reading file %s for comparison.\n", __FILE__, __LINE__, orgfile);
fclose(fp_new);
fclose(fp_org);
cmp= memcmp(arr_new, arr_org, len_new);
MEM_freeN(arr_new);
MEM_freeN(arr_org);
if(cmp) {
REN_IF_DIFF;
}
else {
remove(tmpfile);
return 0;
}
#undef REN_IF_DIFF
}
/* Sorting */
static int cmp_struct(const void *a, const void *b)
{
const StructRNA *structa= *(const StructRNA**)a;
const StructRNA *structb= *(const StructRNA**)b;
return strcmp(structa->identifier, structb->identifier);
}
static int cmp_property(const void *a, const void *b)
{
const PropertyRNA *propa= *(const PropertyRNA**)a;
const PropertyRNA *propb= *(const PropertyRNA**)b;
if(strcmp(propa->identifier, "rna_type") == 0) return -1;
else if(strcmp(propb->identifier, "rna_type") == 0) return 1;
if(strcmp(propa->identifier, "name") == 0) return -1;
else if(strcmp(propb->identifier, "name") == 0) return 1;
return strcmp(propa->name, propb->name);
}
static int cmp_def_struct(const void *a, const void *b)
{
const StructDefRNA *dsa= *(const StructDefRNA**)a;
const StructDefRNA *dsb= *(const StructDefRNA**)b;
return cmp_struct(&dsa->srna, &dsb->srna);
}
static int cmp_def_property(const void *a, const void *b)
{
const PropertyDefRNA *dpa= *(const PropertyDefRNA**)a;
const PropertyDefRNA *dpb= *(const PropertyDefRNA**)b;
return cmp_property(&dpa->prop, &dpb->prop);
}
static void rna_sortlist(ListBase *listbase, int(*cmp)(const void*, const void*))
{
Link *link;
void **array;
int a, size;
if(listbase->first == listbase->last)
return;
for(size=0, link=listbase->first; link; link=link->next)
size++;
array= MEM_mallocN(sizeof(void*)*size, "rna_sortlist");
for(a=0, link=listbase->first; link; link=link->next, a++)
array[a]= link;
qsort(array, size, sizeof(void*), cmp);
listbase->first= listbase->last= NULL;
for(a=0; a<size; a++) {
link= array[a];
link->next= link->prev= NULL;
rna_addtail(listbase, link);
}
MEM_freeN(array);
}
/* Preprocessing */
static void rna_print_c_string(FILE *f, const char *str)
{
static char *escape[] = {"\''", "\"\"", "\??", "\\\\","\aa", "\bb", "\ff", "\nn", "\rr", "\tt", "\vv", NULL};
int i, j;
if(!str) {
fprintf(f, "NULL");
return;
}
fprintf(f, "\"");
for(i=0; str[i]; i++) {
for(j=0; escape[j]; j++)
if(str[i] == escape[j][0])
break;
if(escape[j]) fprintf(f, "\\%c", escape[j][1]);
else fprintf(f, "%c", str[i]);
}
fprintf(f, "\"");
}
static void rna_print_data_get(FILE *f, PropertyDefRNA *dp)
{
if(dp->dnastructfromname && dp->dnastructfromprop)
fprintf(f, " %s *data= (%s*)(((%s*)ptr->data)->%s);\n", dp->dnastructname, dp->dnastructname, dp->dnastructfromname, dp->dnastructfromprop);
else
fprintf(f, " %s *data= (%s*)(ptr->data);\n", dp->dnastructname, dp->dnastructname);
}
static void rna_print_id_get(FILE *f, PropertyDefRNA *dp)
{
fprintf(f, " ID *id= ptr->id.data;\n");
}
static char *rna_alloc_function_name(const char *structname, const char *propname, const char *type)
{
AllocDefRNA *alloc;
char buffer[2048];
char *result;
snprintf(buffer, sizeof(buffer), "%s_%s_%s", structname, propname, type);
result= MEM_callocN(sizeof(char)*strlen(buffer)+1, "rna_alloc_function_name");
strcpy(result, buffer);
alloc= MEM_callocN(sizeof(AllocDefRNA), "AllocDefRNA");
alloc->mem= result;
rna_addtail(&DefRNA.allocs, alloc);
return result;
}
static StructRNA *rna_find_struct(const char *identifier)
{
StructDefRNA *ds;
for(ds=DefRNA.structs.first; ds; ds=ds->cont.next)
if(strcmp(ds->srna->identifier, identifier)==0)
return ds->srna;
return NULL;
}
static const char *rna_find_type(const char *type)
{
StructDefRNA *ds;
for(ds=DefRNA.structs.first; ds; ds=ds->cont.next)
if(ds->dnaname && strcmp(ds->dnaname, type)==0)
return ds->srna->identifier;
return NULL;
}
static const char *rna_find_dna_type(const char *type)
{
StructDefRNA *ds;
for(ds=DefRNA.structs.first; ds; ds=ds->cont.next)
if(strcmp(ds->srna->identifier, type)==0)
return ds->dnaname;
return NULL;
}
static const char *rna_type_type_name(PropertyRNA *prop)
{
switch(prop->type) {
case PROP_BOOLEAN:
case PROP_INT:
case PROP_ENUM:
return "int";
case PROP_FLOAT:
return "float";
case PROP_STRING:
return "char*";
default:
return NULL;
}
}
static const char *rna_type_type(PropertyRNA *prop)
{
const char *type;
type= rna_type_type_name(prop);
if(type)
return type;
return "PointerRNA";
}
static const char *rna_type_struct(PropertyRNA *prop)
{
const char *type;
type= rna_type_type_name(prop);
if(type)
return "";
return "struct ";
}
static const char *rna_parameter_type_name(PropertyRNA *parm)
{
const char *type;
type= rna_type_type_name(parm);
if(type)
return type;
switch(parm->type) {
case PROP_POINTER: {
PointerPropertyRNA *pparm= (PointerPropertyRNA*)parm;
if(parm->flag & PROP_RNAPTR)
return "PointerRNA";
else
return rna_find_dna_type((const char *)pparm->type);
}
case PROP_COLLECTION: {
return "ListBase";
}
default:
return "<error, no type specified>";
}
}
static int rna_enum_bitmask(PropertyRNA *prop)
{
EnumPropertyRNA *eprop= (EnumPropertyRNA*)prop;
int a, mask= 0;
if(eprop->item) {
for(a=0; a<eprop->totitem; a++)
if(eprop->item[a].identifier[0])
mask |= eprop->item[a].value;
}
return mask;
}
static int rna_color_quantize(PropertyRNA *prop, PropertyDefRNA *dp)
{
if(prop->type == PROP_FLOAT && prop->subtype == PROP_COLOR)
if(strcmp(dp->dnatype, "float") != 0 && strcmp(dp->dnatype, "double") != 0)
return 1;
return 0;
}
2009-01-17 15:28:34 +00:00
static const char *rna_function_string(void *func)
{
return (func)? (const char*)func: "NULL";
}
static void rna_float_print(FILE *f, float num)
{
if(num == -FLT_MAX) fprintf(f, "-FLT_MAX");
else if(num == FLT_MAX) fprintf(f, "FLT_MAX");
else if((int)num == num) fprintf(f, "%.1ff", num);
else fprintf(f, "%.10ff", num);
}
static void rna_int_print(FILE *f, int num)
{
if(num == INT_MIN) fprintf(f, "INT_MIN");
else if(num == INT_MAX) fprintf(f, "INT_MAX");
else fprintf(f, "%d", num);
}
static char *rna_def_property_get_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, const char *manualfunc)
{
char *func;
if(prop->flag & PROP_IDPROPERTY)
return NULL;
if(!manualfunc) {
if(!dp->dnastructname || !dp->dnaname) {
fprintf(stderr, "rna_def_property_get_func: %s.%s has no valid dna info.\n", srna->identifier, prop->identifier);
DefRNA.error= 1;
return NULL;
}
}
func= rna_alloc_function_name(srna->identifier, prop->identifier, "get");
switch(prop->type) {
case PROP_STRING: {
StringPropertyRNA *sprop= (StringPropertyRNA*)prop;
fprintf(f, "void %s(PointerRNA *ptr, char *value)\n", func);
fprintf(f, "{\n");
if(manualfunc) {
fprintf(f, " %s(ptr, value);\n", manualfunc);
}
else {
rna_print_data_get(f, dp);
if(sprop->maxlength)
fprintf(f, " BLI_strncpy(value, data->%s, %d);\n", dp->dnaname, sprop->maxlength);
else
fprintf(f, " BLI_strncpy(value, data->%s, sizeof(data->%s));\n", dp->dnaname, dp->dnaname);
}
fprintf(f, "}\n\n");
break;
}
case PROP_POINTER: {
fprintf(f, "PointerRNA %s(PointerRNA *ptr)\n", func);
fprintf(f, "{\n");
if(manualfunc) {
fprintf(f, " return %s(ptr);\n", manualfunc);
}
else {
PointerPropertyRNA *pprop= (PointerPropertyRNA*)prop;
rna_print_data_get(f, dp);
if(dp->dnapointerlevel == 0)
fprintf(f, " return rna_pointer_inherit_refine(ptr, &RNA_%s, &data->%s);\n", (char*)pprop->type, dp->dnaname);
else
fprintf(f, " return rna_pointer_inherit_refine(ptr, &RNA_%s, data->%s);\n", (char*)pprop->type, dp->dnaname);
}
fprintf(f, "}\n\n");
break;
}
case PROP_COLLECTION: {
CollectionPropertyRNA *cprop= (CollectionPropertyRNA*)prop;
fprintf(f, "static PointerRNA %s(CollectionPropertyIterator *iter)\n", func);
fprintf(f, "{\n");
if(manualfunc) {
if(strcmp(manualfunc, "rna_iterator_listbase_get") == 0 ||
strcmp(manualfunc, "rna_iterator_array_get") == 0 ||
strcmp(manualfunc, "rna_iterator_array_dereference_get") == 0)
fprintf(f, " return rna_pointer_inherit_refine(&iter->parent, &RNA_%s, %s(iter));\n", (cprop->item_type)? (char*)cprop->item_type: "UnknownType", manualfunc);
else
fprintf(f, " return %s(iter);\n", manualfunc);
}
fprintf(f, "}\n\n");
break;
}
default:
if(prop->arraydimension) {
if(prop->flag & PROP_DYNAMIC)
fprintf(f, "void %s(PointerRNA *ptr, %s values[])\n", func, rna_type_type(prop));
else
fprintf(f, "void %s(PointerRNA *ptr, %s values[%d])\n", func, rna_type_type(prop), prop->totarraylength);
fprintf(f, "{\n");
if(manualfunc) {
fprintf(f, " %s(ptr, values);\n", manualfunc);
}
else {
rna_print_data_get(f, dp);
if(prop->flag & PROP_DYNAMIC) {
char *lenfunc= rna_alloc_function_name(srna->identifier, prop->identifier, "get_length");
fprintf(f, " int i, arraylen[RNA_MAX_ARRAY_DIMENSION];\n");
fprintf(f, " int len= %s(ptr, arraylen);\n\n", lenfunc);
fprintf(f, " for(i=0; i<len; i++) {\n");
MEM_freeN(lenfunc);
}
else {
fprintf(f, " int i;\n\n");
fprintf(f, " for(i=0; i<%d; i++) {\n", prop->totarraylength);
}
if(dp->dnaarraylength == 1) {
if(prop->type == PROP_BOOLEAN && dp->booleanbit)
fprintf(f, " values[i]= %s((data->%s & (%d<<i)) != 0);\n", (dp->booleannegative)? "!": "", dp->dnaname, dp->booleanbit);
else
fprintf(f, " values[i]= (%s)%s((&data->%s)[i]);\n", rna_type_type(prop), (dp->booleannegative)? "!": "", dp->dnaname);
}
else {
if(prop->type == PROP_BOOLEAN && dp->booleanbit) {
fprintf(f, " values[i]= %s((data->%s[i] & ", (dp->booleannegative)? "!": "", dp->dnaname);
rna_int_print(f, dp->booleanbit);
fprintf(f, ") != 0);\n");
}
else if(rna_color_quantize(prop, dp))
fprintf(f, " values[i]= (%s)(data->%s[i]*(1.0f/255.0f));\n", rna_type_type(prop), dp->dnaname);
else if(dp->dnatype)
fprintf(f, " values[i]= (%s)%s(((%s*)data->%s)[i]);\n", rna_type_type(prop), (dp->booleannegative)? "!": "", dp->dnatype, dp->dnaname);
else
fprintf(f, " values[i]= (%s)%s((data->%s)[i]);\n", rna_type_type(prop), (dp->booleannegative)? "!": "", dp->dnaname);
2009-01-17 15:28:34 +00:00
}
fprintf(f, " }\n");
}
fprintf(f, "}\n\n");
}
else {
fprintf(f, "%s %s(PointerRNA *ptr)\n", rna_type_type(prop), func);
fprintf(f, "{\n");
if(manualfunc) {
fprintf(f, " return %s(ptr);\n", manualfunc);
2009-01-17 15:28:34 +00:00
}
else {
rna_print_data_get(f, dp);
if(prop->type == PROP_BOOLEAN && dp->booleanbit) {
fprintf(f, " return %s(((data->%s) & ", (dp->booleannegative)? "!": "", dp->dnaname);
rna_int_print(f, dp->booleanbit);
fprintf(f, ") != 0);\n");
}
else if(prop->type == PROP_ENUM && dp->enumbitflags) {
fprintf(f, " return ((data->%s) & ", dp->dnaname);
rna_int_print(f, rna_enum_bitmask(prop));
fprintf(f, ");\n");
}
else
fprintf(f, " return (%s)%s(data->%s);\n", rna_type_type(prop), (dp->booleannegative)? "!": "", dp->dnaname);
2009-01-17 15:28:34 +00:00
}
fprintf(f, "}\n\n");
}
break;
}
return func;
}
static void rna_clamp_value(FILE *f, PropertyRNA *prop, int array)
{
if(prop->type == PROP_INT) {
IntPropertyRNA *iprop= (IntPropertyRNA*)prop;
if(iprop->hardmin != INT_MIN || iprop->hardmax != INT_MAX) {
if(array) fprintf(f, "CLAMPIS(values[i], ");
else fprintf(f, "CLAMPIS(value, ");
rna_int_print(f, iprop->hardmin); fprintf(f, ", ");
rna_int_print(f, iprop->hardmax); fprintf(f, ");\n");
return;
}
}
else if(prop->type == PROP_FLOAT) {
FloatPropertyRNA *fprop= (FloatPropertyRNA*)prop;
if(fprop->hardmin != -FLT_MAX || fprop->hardmax != FLT_MAX) {
if(array) fprintf(f, "CLAMPIS(values[i], ");
else fprintf(f, "CLAMPIS(value, ");
rna_float_print(f, fprop->hardmin); fprintf(f, ", ");
rna_float_print(f, fprop->hardmax); fprintf(f, ");\n");
return;
}
}
if(array)
fprintf(f, "values[i];\n");
else
fprintf(f, "value;\n");
}
static char *rna_def_property_set_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, char *manualfunc)
{
char *func;
if(!(prop->flag & PROP_EDITABLE))
return NULL;
if(prop->flag & PROP_IDPROPERTY)
return NULL;
if(!manualfunc) {
if(!dp->dnastructname || !dp->dnaname) {
if(prop->flag & PROP_EDITABLE) {
fprintf(stderr, "rna_def_property_set_func: %s.%s has no valid dna info.\n", srna->identifier, prop->identifier);
DefRNA.error= 1;
}
return NULL;
}
}
func= rna_alloc_function_name(srna->identifier, prop->identifier, "set");
switch(prop->type) {
case PROP_STRING: {
StringPropertyRNA *sprop= (StringPropertyRNA*)prop;
fprintf(f, "void %s(PointerRNA *ptr, const char *value)\n", func);
fprintf(f, "{\n");
if(manualfunc) {
fprintf(f, " %s(ptr, value);\n", manualfunc);
}
else {
rna_print_data_get(f, dp);
if(sprop->maxlength)
fprintf(f, " BLI_strncpy(data->%s, value, %d);\n", dp->dnaname, sprop->maxlength);
else
fprintf(f, " BLI_strncpy(data->%s, value, sizeof(data->%s));\n", dp->dnaname, dp->dnaname);
}
fprintf(f, "}\n\n");
break;
}
case PROP_POINTER: {
fprintf(f, "void %s(PointerRNA *ptr, PointerRNA value)\n", func);
fprintf(f, "{\n");
if(manualfunc) {
fprintf(f, " %s(ptr, value);\n", manualfunc);
}
else {
rna_print_data_get(f, dp);
if(prop->flag & PROP_ID_SELF_CHECK) {
rna_print_id_get(f, dp);
fprintf(f, " if(id==value.data) return;\n\n");
}
if(prop->flag & PROP_ID_REFCOUNT) {
fprintf(f, "\n if(data->%s)\n", dp->dnaname);
fprintf(f, " id_us_min((ID*)data->%s);\n", dp->dnaname);
fprintf(f, " if(value.data)\n");
fprintf(f, " id_us_plus((ID*)value.data);\n\n");
}
fprintf(f, " data->%s= value.data;\n", dp->dnaname);
}
fprintf(f, "}\n\n");
break;
}
default:
if(prop->arraydimension) {
if(prop->flag & PROP_DYNAMIC)
fprintf(f, "void %s(PointerRNA *ptr, const %s values[])\n", func, rna_type_type(prop));
else
fprintf(f, "void %s(PointerRNA *ptr, const %s values[%d])\n", func, rna_type_type(prop), prop->totarraylength);
fprintf(f, "{\n");
if(manualfunc) {
fprintf(f, " %s(ptr, values);\n", manualfunc);
}
else {
rna_print_data_get(f, dp);
if(prop->flag & PROP_DYNAMIC) {
char *lenfunc= rna_alloc_function_name(srna->identifier, prop->identifier, "set_length");
fprintf(f, " int i, arraylen[RNA_MAX_ARRAY_DIMENSION];\n");
fprintf(f, " int len= %s(ptr, arraylen);\n\n", lenfunc);
fprintf(f, " for(i=0; i<len; i++) {\n");
MEM_freeN(lenfunc);
}
else {
fprintf(f, " int i;\n\n");
fprintf(f, " for(i=0; i<%d; i++) {\n", prop->totarraylength);
}
if(dp->dnaarraylength == 1) {
if(prop->type == PROP_BOOLEAN && dp->booleanbit) {
fprintf(f, " if(%svalues[i]) data->%s |= (%d<<i);\n", (dp->booleannegative)? "!": "", dp->dnaname, dp->booleanbit);
fprintf(f, " else data->%s &= ~(%d<<i);\n", dp->dnaname, dp->booleanbit);
}
else {
fprintf(f, " (&data->%s)[i]= %s", dp->dnaname, (dp->booleannegative)? "!": "");
rna_clamp_value(f, prop, 1);
}
}
else {
if(prop->type == PROP_BOOLEAN && dp->booleanbit) {
fprintf(f, " if(%svalues[i]) data->%s[i] |= ", (dp->booleannegative)? "!": "", dp->dnaname);
rna_int_print(f, dp->booleanbit);
fprintf(f, ";\n");
fprintf(f, " else data->%s[i] &= ~", dp->dnaname);
rna_int_print(f, dp->booleanbit);
fprintf(f, ";\n");
}
else if(rna_color_quantize(prop, dp)) {
fprintf(f, " data->%s[i]= FTOCHAR(values[i]);\n", dp->dnaname);
}
else {
if(dp->dnatype)
fprintf(f, " ((%s*)data->%s)[i]= %s", dp->dnatype, dp->dnaname, (dp->booleannegative)? "!": "");
else
fprintf(f, " (data->%s)[i]= %s", dp->dnaname, (dp->booleannegative)? "!": "");
rna_clamp_value(f, prop, 1);
}
}
fprintf(f, " }\n");
}
fprintf(f, "}\n\n");
}
else {
fprintf(f, "void %s(PointerRNA *ptr, %s value)\n", func, rna_type_type(prop));
fprintf(f, "{\n");
if(manualfunc) {
fprintf(f, " %s(ptr, value);\n", manualfunc);
}
else {
rna_print_data_get(f, dp);
if(prop->type == PROP_BOOLEAN && dp->booleanbit) {
fprintf(f, " if(%svalue) data->%s |= ", (dp->booleannegative)? "!": "", dp->dnaname);
2009-01-17 15:28:34 +00:00
rna_int_print(f, dp->booleanbit);
fprintf(f, ";\n");
fprintf(f, " else data->%s &= ~", dp->dnaname);
2009-01-17 15:28:34 +00:00
rna_int_print(f, dp->booleanbit);
fprintf(f, ";\n");
}
else if(prop->type == PROP_ENUM && dp->enumbitflags) {
fprintf(f, " data->%s &= ~", dp->dnaname);
rna_int_print(f, rna_enum_bitmask(prop));
fprintf(f, ";\n");
fprintf(f, " data->%s |= value;\n", dp->dnaname);
}
else {
fprintf(f, " data->%s= %s", dp->dnaname, (dp->booleannegative)? "!": "");
rna_clamp_value(f, prop, 0);
}
}
fprintf(f, "}\n\n");
}
break;
}
return func;
}
static char *rna_def_property_length_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, char *manualfunc)
{
char *func= NULL;
if(prop->flag & PROP_IDPROPERTY)
return NULL;
if(prop->type == PROP_STRING) {
if(!manualfunc) {
if(!dp->dnastructname || !dp->dnaname) {
fprintf(stderr, "rna_def_property_length_func: %s.%s has no valid dna info.\n", srna->identifier, prop->identifier);
DefRNA.error= 1;
return NULL;
}
}
func= rna_alloc_function_name(srna->identifier, prop->identifier, "length");
fprintf(f, "int %s(PointerRNA *ptr)\n", func);
fprintf(f, "{\n");
if(manualfunc) {
fprintf(f, " return %s(ptr);\n", manualfunc);
}
else {
rna_print_data_get(f, dp);
fprintf(f, " return strlen(data->%s);\n", dp->dnaname);
}
fprintf(f, "}\n\n");
}
else if(prop->type == PROP_COLLECTION) {
if(!manualfunc) {
if(prop->type == PROP_COLLECTION && (!(dp->dnalengthname || dp->dnalengthfixed)|| !dp->dnaname)) {
fprintf(stderr, "rna_def_property_length_func: %s.%s has no valid dna info.\n", srna->identifier, prop->identifier);
DefRNA.error= 1;
return NULL;
}
}
func= rna_alloc_function_name(srna->identifier, prop->identifier, "length");
fprintf(f, "int %s(PointerRNA *ptr)\n", func);
fprintf(f, "{\n");
if(manualfunc) {
fprintf(f, " return %s(ptr);\n", manualfunc);
}
else {
rna_print_data_get(f, dp);
if(dp->dnalengthname)
fprintf(f, " return (data->%s == NULL)? 0: data->%s;\n", dp->dnaname, dp->dnalengthname);
else
fprintf(f, " return (data->%s == NULL)? 0: %d;\n", dp->dnaname, dp->dnalengthfixed);
}
fprintf(f, "}\n\n");
}
return func;
}
static char *rna_def_property_begin_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, char *manualfunc)
{
char *func, *getfunc;
if(prop->flag & PROP_IDPROPERTY)
return NULL;
if(!manualfunc) {
if(!dp->dnastructname || !dp->dnaname) {
fprintf(stderr, "rna_def_property_begin_func: %s.%s has no valid dna info.\n", srna->identifier, prop->identifier);
DefRNA.error= 1;
return NULL;
}
}
func= rna_alloc_function_name(srna->identifier, prop->identifier, "begin");
fprintf(f, "void %s(CollectionPropertyIterator *iter, PointerRNA *ptr)\n", func);
fprintf(f, "{\n");
if(!manualfunc)
rna_print_data_get(f, dp);
fprintf(f, "\n memset(iter, 0, sizeof(*iter));\n");
fprintf(f, " iter->parent= *ptr;\n");
fprintf(f, " iter->prop= (PropertyRNA*)&rna_%s_%s;\n", srna->identifier, prop->identifier);
if(dp->dnalengthname || dp->dnalengthfixed) {
if(manualfunc) {
fprintf(f, "\n %s(iter, ptr);\n", manualfunc);
}
else {
if(dp->dnalengthname)
fprintf(f, "\n rna_iterator_array_begin(iter, data->%s, sizeof(data->%s[0]), data->%s, 0, NULL);\n", dp->dnaname, dp->dnaname, dp->dnalengthname);
else
fprintf(f, "\n rna_iterator_array_begin(iter, data->%s, sizeof(data->%s[0]), %d, 0, NULL);\n", dp->dnaname, dp->dnaname, dp->dnalengthfixed);
}
}
else {
if(manualfunc)
fprintf(f, "\n %s(iter, ptr);\n", manualfunc);
else if(dp->dnapointerlevel == 0)
fprintf(f, "\n rna_iterator_listbase_begin(iter, &data->%s, NULL);\n", dp->dnaname);
else
fprintf(f, "\n rna_iterator_listbase_begin(iter, data->%s, NULL);\n", dp->dnaname);
}
getfunc= rna_alloc_function_name(srna->identifier, prop->identifier, "get");
fprintf(f, "\n if(iter->valid)\n");
fprintf(f, " iter->ptr= %s(iter);\n", getfunc);
fprintf(f, "}\n\n");
return func;
}
static char *rna_def_property_lookup_int_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, char *manualfunc, char *nextfunc)
{
char *func;
if(prop->flag & PROP_IDPROPERTY)
return NULL;
if(!manualfunc) {
if(!dp->dnastructname || !dp->dnaname)
return NULL;
/* only supported in case of standard next functions */
if(strcmp(nextfunc, "rna_iterator_array_next") == 0);
else if(strcmp(nextfunc, "rna_iterator_listbase_next") == 0);
else return NULL;
}
func= rna_alloc_function_name(srna->identifier, prop->identifier, "lookup_int");
fprintf(f, "PointerRNA %s(PointerRNA *ptr, int index)\n", func);
fprintf(f, "{\n");
if(manualfunc) {
fprintf(f, "\n return %s(ptr, index);\n", manualfunc);
fprintf(f, "}\n\n");
return func;
}
fprintf(f, " PointerRNA r_ptr;\n");
fprintf(f, " CollectionPropertyIterator iter;\n\n");
fprintf(f, " %s_%s_begin(&iter, ptr);\n\n", srna->identifier, prop->identifier);
fprintf(f, " {\n");
if(strcmp(nextfunc, "rna_iterator_array_next") == 0) {
fprintf(f, " ArrayIterator *internal= iter.internal;\n");
fprintf(f, " if(internal->skip) {\n");
fprintf(f, " while(index-- > 0) {\n");
fprintf(f, " do {\n");
fprintf(f, " internal->ptr += internal->itemsize;\n");
fprintf(f, " } while(internal->skip(&iter, internal->ptr));\n");
fprintf(f, " }\n");
fprintf(f, " }\n");
fprintf(f, " else {\n");
fprintf(f, " internal->ptr += internal->itemsize*index;\n");
fprintf(f, " }\n");
}
else if(strcmp(nextfunc, "rna_iterator_listbase_next") == 0) {
fprintf(f, " ListBaseIterator *internal= iter.internal;\n");
fprintf(f, " if(internal->skip) {\n");
fprintf(f, " while(index-- > 0) {\n");
fprintf(f, " do {\n");
fprintf(f, " internal->link= internal->link->next;\n");
fprintf(f, " } while(internal->skip(&iter, internal->link));\n");
fprintf(f, " }\n");
fprintf(f, " }\n");
fprintf(f, " else {\n");
fprintf(f, " while(index-- > 0)\n");
fprintf(f, " internal->link= internal->link->next;\n");
fprintf(f, " }\n");
}
fprintf(f, " }\n\n");
fprintf(f, " r_ptr = %s_%s_get(&iter);\n", srna->identifier, prop->identifier);
fprintf(f, " %s_%s_end(&iter);\n\n", srna->identifier, prop->identifier);
fprintf(f, " return r_ptr;\n");
#if 0
rna_print_data_get(f, dp);
item_type= (cprop->item_type)? (char*)cprop->item_type: "UnknownType";
if(dp->dnalengthname || dp->dnalengthfixed) {
if(dp->dnalengthname)
fprintf(f, "\n rna_array_lookup_int(ptr, &RNA_%s, data->%s, sizeof(data->%s[0]), data->%s, index);\n", item_type, dp->dnaname, dp->dnaname, dp->dnalengthname);
else
fprintf(f, "\n rna_array_lookup_int(ptr, &RNA_%s, data->%s, sizeof(data->%s[0]), %d, index);\n", item_type, dp->dnaname, dp->dnaname, dp->dnalengthfixed);
}
else {
if(dp->dnapointerlevel == 0)
fprintf(f, "\n return rna_listbase_lookup_int(ptr, &RNA_%s, &data->%s, index);\n", item_type, dp->dnaname);
else
fprintf(f, "\n return rna_listbase_lookup_int(ptr, &RNA_%s, data->%s, index);\n", item_type, dp->dnaname);
}
#endif
fprintf(f, "}\n\n");
return func;
}
static char *rna_def_property_next_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, char *manualfunc)
{
char *func, *getfunc;
if(prop->flag & PROP_IDPROPERTY)
return NULL;
if(!manualfunc)
return NULL;
func= rna_alloc_function_name(srna->identifier, prop->identifier, "next");
fprintf(f, "void %s(CollectionPropertyIterator *iter)\n", func);
fprintf(f, "{\n");
fprintf(f, " %s(iter);\n", manualfunc);
getfunc= rna_alloc_function_name(srna->identifier, prop->identifier, "get");
fprintf(f, "\n if(iter->valid)\n");
fprintf(f, " iter->ptr= %s(iter);\n", getfunc);
fprintf(f, "}\n\n");
return func;
}
static char *rna_def_property_end_func(FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, char *manualfunc)
{
char *func;
if(prop->flag & PROP_IDPROPERTY)
return NULL;
func= rna_alloc_function_name(srna->identifier, prop->identifier, "end");
fprintf(f, "void %s(CollectionPropertyIterator *iter)\n", func);
fprintf(f, "{\n");
if(manualfunc)
fprintf(f, " %s(iter);\n", manualfunc);
fprintf(f, "}\n\n");
return func;
}
static void rna_set_raw_property(PropertyDefRNA *dp, PropertyRNA *prop)
{
if(dp->dnapointerlevel != 0)
return;
if(!dp->dnatype || !dp->dnaname || !dp->dnastructname)
return;
if(strcmp(dp->dnatype, "char") == 0) {
prop->rawtype= PROP_RAW_CHAR;
prop->flag |= PROP_RAW_ACCESS;
}
else if(strcmp(dp->dnatype, "short") == 0) {
prop->rawtype= PROP_RAW_SHORT;
prop->flag |= PROP_RAW_ACCESS;
}
else if(strcmp(dp->dnatype, "int") == 0) {
prop->rawtype= PROP_RAW_INT;
prop->flag |= PROP_RAW_ACCESS;
}
else if(strcmp(dp->dnatype, "float") == 0) {
prop->rawtype= PROP_RAW_FLOAT;
prop->flag |= PROP_RAW_ACCESS;
}
else if(strcmp(dp->dnatype, "double") == 0) {
prop->rawtype= PROP_RAW_DOUBLE;
prop->flag |= PROP_RAW_ACCESS;
}
}
static void rna_set_raw_offset(FILE *f, StructRNA *srna, PropertyRNA *prop)
{
PropertyDefRNA *dp= rna_find_struct_property_def(srna, prop);
fprintf(f, "\toffsetof(%s, %s), %d", dp->dnastructname, dp->dnaname, prop->rawtype);
}
static void rna_def_property_funcs(FILE *f, StructRNA *srna, PropertyDefRNA *dp)
{
PropertyRNA *prop;
prop= dp->prop;
switch(prop->type) {
case PROP_BOOLEAN: {
BooleanPropertyRNA *bprop= (BooleanPropertyRNA*)prop;
if(!prop->arraydimension) {
if(!bprop->get && !bprop->set && !dp->booleanbit)
rna_set_raw_property(dp, prop);
bprop->get= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)bprop->get);
bprop->set= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)bprop->set);
}
else {
bprop->getarray= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)bprop->getarray);
bprop->setarray= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)bprop->setarray);
}
break;
}
case PROP_INT: {
IntPropertyRNA *iprop= (IntPropertyRNA*)prop;
if(!prop->arraydimension) {
if(!iprop->get && !iprop->set)
rna_set_raw_property(dp, prop);
iprop->get= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)iprop->get);
iprop->set= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)iprop->set);
}
else {
if(!iprop->getarray && !iprop->setarray)
rna_set_raw_property(dp, prop);
iprop->getarray= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)iprop->getarray);
iprop->setarray= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)iprop->setarray);
}
break;
}
case PROP_FLOAT: {
FloatPropertyRNA *fprop= (FloatPropertyRNA*)prop;
if(!prop->arraydimension) {
if(!fprop->get && !fprop->set)
rna_set_raw_property(dp, prop);
fprop->get= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)fprop->get);
fprop->set= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)fprop->set);
}
else {
if(!fprop->getarray && !fprop->setarray)
rna_set_raw_property(dp, prop);
fprop->getarray= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)fprop->getarray);
fprop->setarray= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)fprop->setarray);
}
break;
}
case PROP_ENUM: {
EnumPropertyRNA *eprop= (EnumPropertyRNA*)prop;
eprop->get= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)eprop->get);
eprop->set= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)eprop->set);
break;
}
case PROP_STRING: {
StringPropertyRNA *sprop= (StringPropertyRNA*)prop;
sprop->get= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)sprop->get);
sprop->length= (void*)rna_def_property_length_func(f, srna, prop, dp, (char*)sprop->length);
sprop->set= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)sprop->set);
break;
}
case PROP_POINTER: {
PointerPropertyRNA *pprop= (PointerPropertyRNA*)prop;
pprop->get= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)pprop->get);
pprop->set= (void*)rna_def_property_set_func(f, srna, prop, dp, (char*)pprop->set);
if(!pprop->type) {
fprintf(stderr, "rna_def_property_funcs: %s.%s, pointer must have a struct type.\n", srna->identifier, prop->identifier);
DefRNA.error= 1;
}
break;
}
case PROP_COLLECTION: {
CollectionPropertyRNA *cprop= (CollectionPropertyRNA*)prop;
char *nextfunc= (char*)cprop->next;
if(dp->dnatype && strcmp(dp->dnatype, "ListBase")==0);
else if(dp->dnalengthname || dp->dnalengthfixed)
cprop->length= (void*)rna_def_property_length_func(f, srna, prop, dp, (char*)cprop->length);
/* test if we can allow raw array access, if it is using our standard
* array get/next function, we can be sure it is an actual array */
if(cprop->next && cprop->get)
if(strcmp((char*)cprop->next, "rna_iterator_array_next") == 0 &&
strcmp((char*)cprop->get, "rna_iterator_array_get") == 0)
prop->flag |= PROP_RAW_ARRAY;
cprop->get= (void*)rna_def_property_get_func(f, srna, prop, dp, (char*)cprop->get);
cprop->begin= (void*)rna_def_property_begin_func(f, srna, prop, dp, (char*)cprop->begin);
cprop->next= (void*)rna_def_property_next_func(f, srna, prop, dp, (char*)cprop->next);
cprop->end= (void*)rna_def_property_end_func(f, srna, prop, dp, (char*)cprop->end);
cprop->lookupint= (void*)rna_def_property_lookup_int_func(f, srna, prop, dp, (char*)cprop->lookupint, nextfunc);
if(!(prop->flag & PROP_IDPROPERTY)) {
if(!cprop->begin) {
fprintf(stderr, "rna_def_property_funcs: %s.%s, collection must have a begin function.\n", srna->identifier, prop->identifier);
DefRNA.error= 1;
}
if(!cprop->next) {
fprintf(stderr, "rna_def_property_funcs: %s.%s, collection must have a next function.\n", srna->identifier, prop->identifier);
DefRNA.error= 1;
}
if(!cprop->get) {
fprintf(stderr, "rna_def_property_funcs: %s.%s, collection must have a get function.\n", srna->identifier, prop->identifier);
DefRNA.error= 1;
}
}
if(!cprop->item_type) {
fprintf(stderr, "rna_def_property_funcs: %s.%s, collection must have a struct type.\n", srna->identifier, prop->identifier);
DefRNA.error= 1;
}
break;
}
}
}
static void rna_def_property_funcs_header(FILE *f, StructRNA *srna, PropertyDefRNA *dp)
{
PropertyRNA *prop;
char *func;
prop= dp->prop;
if(prop->flag & (PROP_IDPROPERTY|PROP_BUILTIN))
return;
func= rna_alloc_function_name(srna->identifier, prop->identifier, "");
switch(prop->type) {
case PROP_BOOLEAN:
case PROP_INT: {
if(!prop->arraydimension) {
fprintf(f, "int %sget(PointerRNA *ptr);\n", func);
//fprintf(f, "void %sset(PointerRNA *ptr, int value);\n", func);
}
else {
fprintf(f, "void %sget(PointerRNA *ptr, int values[%d]);\n", func, prop->totarraylength);
//fprintf(f, "void %sset(PointerRNA *ptr, const int values[%d]);\n", func, prop->arraylength);
}
break;
}
case PROP_FLOAT: {
if(!prop->arraydimension) {
fprintf(f, "float %sget(PointerRNA *ptr);\n", func);
//fprintf(f, "void %sset(PointerRNA *ptr, float value);\n", func);
}
else {
fprintf(f, "void %sget(PointerRNA *ptr, float values[%d]);\n", func, prop->totarraylength);
//fprintf(f, "void %sset(PointerRNA *ptr, const float values[%d]);\n", func, prop->arraylength);
}
break;
}
case PROP_ENUM: {
EnumPropertyRNA *eprop= (EnumPropertyRNA*)prop;
int i;
if(eprop->item) {
fprintf(f, "enum {\n");
for(i=0; i<eprop->totitem; i++)
if(eprop->item[i].identifier[0])
fprintf(f, "\t%s_%s_%s = %d,\n", srna->identifier, prop->identifier, eprop->item[i].identifier, eprop->item[i].value);
fprintf(f, "};\n\n");
}
fprintf(f, "int %sget(PointerRNA *ptr);\n", func);
//fprintf(f, "void %sset(PointerRNA *ptr, int value);\n", func);
break;
}
case PROP_STRING: {
StringPropertyRNA *sprop= (StringPropertyRNA*)prop;
if(sprop->maxlength) {
fprintf(f, "#define %s_%s_MAX %d\n\n", srna->identifier, prop->identifier, sprop->maxlength);
}
fprintf(f, "void %sget(PointerRNA *ptr, char *value);\n", func);
fprintf(f, "int %slength(PointerRNA *ptr);\n", func);
//fprintf(f, "void %sset(PointerRNA *ptr, const char *value);\n", func);
break;
}
case PROP_POINTER: {
fprintf(f, "PointerRNA %sget(PointerRNA *ptr);\n", func);
//fprintf(f, "void %sset(PointerRNA *ptr, PointerRNA value);\n", func);
break;
}
case PROP_COLLECTION: {
fprintf(f, "void %sbegin(CollectionPropertyIterator *iter, PointerRNA *ptr);\n", func);
fprintf(f, "void %snext(CollectionPropertyIterator *iter);\n", func);
fprintf(f, "void %send(CollectionPropertyIterator *iter);\n", func);
//fprintf(f, "int %slength(PointerRNA *ptr);\n", func);
//fprintf(f, "void %slookup_int(PointerRNA *ptr, int key, StructRNA **type);\n", func);
//fprintf(f, "void %slookup_string(PointerRNA *ptr, const char *key, StructRNA **type);\n", func);
break;
}
}
fprintf(f, "\n");
}
static void rna_def_property_funcs_header_cpp(FILE *f, StructRNA *srna, PropertyDefRNA *dp)
{
PropertyRNA *prop;
prop= dp->prop;
if(prop->flag & (PROP_IDPROPERTY|PROP_BUILTIN))
return;
if(prop->name && prop->description && strcmp(prop->description, "") != 0)
fprintf(f, "\t/* %s: %s */\n", prop->name, prop->description);
else if(prop->name)
fprintf(f, "\t/* %s */\n", prop->name);
else
fprintf(f, "\t/* */\n");
switch(prop->type) {
case PROP_BOOLEAN: {
if(!prop->arraydimension)
fprintf(f, "\tbool %s(void);", prop->identifier);
else
fprintf(f, "\tArray<int, %d> %s(void);", prop->totarraylength, prop->identifier);
break;
}
case PROP_INT: {
if(!prop->arraydimension)
fprintf(f, "\tint %s(void);", prop->identifier);
else
fprintf(f, "\tArray<int, %d> %s(void);", prop->totarraylength, prop->identifier);
break;
}
case PROP_FLOAT: {
if(!prop->arraydimension)
fprintf(f, "\tfloat %s(void);", prop->identifier);
else
fprintf(f, "\tArray<float, %d> %s(void);", prop->totarraylength, prop->identifier);
break;
}
case PROP_ENUM: {
EnumPropertyRNA *eprop= (EnumPropertyRNA*)prop;
int i;
if(eprop->item) {
fprintf(f, "\tenum %s_enum {\n", prop->identifier);
for(i=0; i<eprop->totitem; i++)
if(eprop->item[i].identifier[0])
fprintf(f, "\t\t%s_%s = %d,\n", prop->identifier, eprop->item[i].identifier, eprop->item[i].value);
fprintf(f, "\t};\n");
}
fprintf(f, "\t%s_enum %s(void);", prop->identifier, prop->identifier);
break;
}
case PROP_STRING: {
fprintf(f, "\tstd::string %s(void);", prop->identifier);
break;
}
case PROP_POINTER: {
PointerPropertyRNA *pprop= (PointerPropertyRNA*)dp->prop;
if(pprop->type)
fprintf(f, "\t%s %s(void);", (char*)pprop->type, prop->identifier);
else
fprintf(f, "\t%s %s(void);", "UnknownType", prop->identifier);
break;
}
case PROP_COLLECTION: {
CollectionPropertyRNA *cprop= (CollectionPropertyRNA*)dp->prop;
if(cprop->item_type)
fprintf(f, "\tCOLLECTION_PROPERTY(%s, %s, %s)", (char*)cprop->item_type, srna->identifier, prop->identifier);
else
fprintf(f, "\tCOLLECTION_PROPERTY(%s, %s, %s)", "UnknownType", srna->identifier, prop->identifier);
break;
}
}
fprintf(f, "\n");
}
static void rna_def_property_funcs_impl_cpp(FILE *f, StructRNA *srna, PropertyDefRNA *dp)
{
PropertyRNA *prop;
prop= dp->prop;
if(prop->flag & (PROP_IDPROPERTY|PROP_BUILTIN))
return;
switch(prop->type) {
case PROP_BOOLEAN: {
if(!prop->arraydimension)
fprintf(f, "\tBOOLEAN_PROPERTY(%s, %s)", srna->identifier, prop->identifier);
else
fprintf(f, "\tBOOLEAN_ARRAY_PROPERTY(%s, %d, %s)", srna->identifier, prop->totarraylength, prop->identifier);
break;
}
case PROP_INT: {
if(!prop->arraydimension)
fprintf(f, "\tINT_PROPERTY(%s, %s)", srna->identifier, prop->identifier);
else
fprintf(f, "\tINT_ARRAY_PROPERTY(%s, %d, %s)", srna->identifier, prop->totarraylength, prop->identifier);
break;
}
case PROP_FLOAT: {
if(!prop->arraydimension)
fprintf(f, "\tFLOAT_PROPERTY(%s, %s)", srna->identifier, prop->identifier);
else
fprintf(f, "\tFLOAT_ARRAY_PROPERTY(%s, %d, %s)", srna->identifier, prop->totarraylength, prop->identifier);
break;
}
case PROP_ENUM: {
fprintf(f, "\tENUM_PROPERTY(%s_enum, %s, %s)", prop->identifier, srna->identifier, prop->identifier);
break;
}
case PROP_STRING: {
fprintf(f, "\tSTRING_PROPERTY(%s, %s)", srna->identifier, prop->identifier);
break;
}
case PROP_POINTER: {
PointerPropertyRNA *pprop= (PointerPropertyRNA*)dp->prop;
if(pprop->type)
fprintf(f, "\tPOINTER_PROPERTY(%s, %s, %s)", (char*)pprop->type, srna->identifier, prop->identifier);
else
fprintf(f, "\tPOINTER_PROPERTY(%s, %s, %s)", "UnknownType", srna->identifier, prop->identifier);
break;
}
case PROP_COLLECTION: {
/*CollectionPropertyRNA *cprop= (CollectionPropertyRNA*)dp->prop;
if(cprop->type)
fprintf(f, "\tCOLLECTION_PROPERTY(%s, %s, %s)", (char*)cprop->type, srna->identifier, prop->identifier);
else
fprintf(f, "\tCOLLECTION_PROPERTY(%s, %s, %s)", "UnknownType", srna->identifier, prop->identifier);*/
break;
}
}
fprintf(f, "\n");
}
static void rna_def_function_funcs(FILE *f, StructDefRNA *dsrna, FunctionDefRNA *dfunc)
{
StructRNA *srna;
FunctionRNA *func;
PropertyDefRNA *dparm;
PropertyType type;
char *funcname, *ptrstr, *valstr;
int flag, pout, cptr, first;
srna= dsrna->srna;
func= dfunc->func;
if(!dfunc->call)
return;
funcname= rna_alloc_function_name(srna->identifier, func->identifier, "call");
/* function definition */
fprintf(f, "void %s(bContext *C, ReportList *reports, PointerRNA *_ptr, ParameterList *_parms)", funcname);
fprintf(f, "\n{\n");
/* variable definitions */
if((func->flag & FUNC_NO_SELF)==0) {
if(func->flag & FUNC_USE_SELF_ID)
fprintf(f, "\tstruct ID *_selfid;\n");
if(dsrna->dnaname) fprintf(f, "\tstruct %s *_self;\n", dsrna->dnaname);
else fprintf(f, "\tstruct %s *_self;\n", srna->identifier);
}
dparm= dfunc->cont.properties.first;
for(; dparm; dparm= dparm->next) {
type = dparm->prop->type;
flag = dparm->prop->flag;
pout = (flag & PROP_OUTPUT);
cptr = ((type == PROP_POINTER) && !(flag & PROP_RNAPTR));
if(dparm->prop==func->c_ret)
ptrstr= cptr || dparm->prop->arraydimension ? "*" : "";
/* XXX only arrays and strings are allowed to be dynamic, is this checked anywhere? */
else if (cptr || (flag & PROP_DYNAMIC))
ptrstr= pout ? "**" : "*";
/* fixed size arrays and RNA pointers are pre-allocated on the ParameterList stack, pass a pointer to it */
else if (type == PROP_POINTER || dparm->prop->arraydimension)
ptrstr= "*";
/* PROP_THICK_WRAP strings are pre-allocated on the ParameterList stack, but type name for string props is already char*, so leave empty */
else if (type == PROP_STRING && (flag & PROP_THICK_WRAP))
ptrstr= "";
else
ptrstr= pout ? "*" : "";
fprintf(f, "\t%s%s %s%s;\n", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop), ptrstr, dparm->prop->identifier);
/* for dynamic parameters we pass an additional int for the length of the parameter */
if (flag & PROP_DYNAMIC)
fprintf(f, "\tint %s%s_len;\n", pout ? "*" : "", dparm->prop->identifier);
}
fprintf(f, "\tchar *_data");
if(func->c_ret) fprintf(f, ", *_retdata");
fprintf(f, ";\n");
fprintf(f, "\t\n");
/* assign self */
if((func->flag & FUNC_NO_SELF)==0) {
if(func->flag & FUNC_USE_SELF_ID)
fprintf(f, "\t_selfid= (struct ID*)_ptr->id.data;\n");
if(dsrna->dnaname) fprintf(f, "\t_self= (struct %s *)_ptr->data;\n", dsrna->dnaname);
else fprintf(f, "\t_self= (struct %s *)_ptr->data;\n", srna->identifier);
}
fprintf(f, "\t_data= (char *)_parms->data;\n");
dparm= dfunc->cont.properties.first;
for(; dparm; dparm= dparm->next) {
type = dparm->prop->type;
flag = dparm->prop->flag;
pout = (flag & PROP_OUTPUT);
cptr = ((type == PROP_POINTER) && !(flag & PROP_RNAPTR));
if(dparm->prop==func->c_ret)
fprintf(f, "\t_retdata= _data;\n");
else {
if (cptr || (flag & PROP_DYNAMIC)) {
ptrstr= "**";
valstr= "*";
}
else if (type == PROP_POINTER || dparm->prop->arraydimension) {
ptrstr= "*";
valstr= "";
}
else if (type == PROP_STRING && (flag & PROP_THICK_WRAP)) {
ptrstr= "";
valstr= "";
}
else {
ptrstr= "*";
valstr= "*";
}
fprintf(f, "\t%s= ", dparm->prop->identifier);
if (!pout)
fprintf(f, "%s", valstr);
fprintf(f, "((%s%s%s)_data);\n", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop), ptrstr);
/* this must be kept in sync with RNA_parameter_length_get_data, we could just call the function directly, but this is faster */
if (flag & PROP_DYNAMIC)
fprintf(f, "\t%s_len= %s((int *)(_data+%d));\n", dparm->prop->identifier, pout ? "" : "*", rna_parameter_size(dparm->prop));
}
if(dparm->next)
fprintf(f, "\t_data+= %d;\n", rna_parameter_size_alloc(dparm->prop));
}
if(dfunc->call) {
fprintf(f, "\t\n");
fprintf(f, "\t");
if(func->c_ret) fprintf(f, "%s= ", func->c_ret->identifier);
fprintf(f, "%s(", dfunc->call);
first= 1;
if((func->flag & FUNC_NO_SELF)==0) {
if(func->flag & FUNC_USE_SELF_ID)
fprintf(f, "_selfid, ");
fprintf(f, "_self");
first= 0;
}
if(func->flag & FUNC_USE_CONTEXT) {
if(!first) fprintf(f, ", ");
first= 0;
fprintf(f, "C");
}
if(func->flag & FUNC_USE_REPORTS) {
if(!first) fprintf(f, ", ");
first= 0;
fprintf(f, "reports");
}
dparm= dfunc->cont.properties.first;
for(; dparm; dparm= dparm->next) {
if(dparm->prop==func->c_ret)
continue;
if(!first) fprintf(f, ", ");
first= 0;
fprintf(f, "%s", dparm->prop->identifier);
if (dparm->prop->flag & PROP_DYNAMIC)
fprintf(f, ", %s_len", dparm->prop->identifier);
}
fprintf(f, ");\n");
if(func->c_ret) {
dparm= rna_find_parameter_def(func->c_ret);
ptrstr= (((dparm->prop->type == PROP_POINTER) && !(dparm->prop->flag & PROP_RNAPTR)) || (dparm->prop->arraydimension))? "*": "";
fprintf(f, "\t*((%s%s%s*)_retdata)= %s;\n", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop), ptrstr, func->c_ret->identifier);
}
}
fprintf(f, "}\n\n");
dfunc->gencall= funcname;
}
static void rna_auto_types()
{
StructDefRNA *ds;
PropertyDefRNA *dp;
for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) {
/* DNA name for Screen is patched in 2.5, we do the reverse here .. */
if(ds->dnaname && strcmp(ds->dnaname, "Screen") == 0)
ds->dnaname= "bScreen";
for(dp=ds->cont.properties.first; dp; dp=dp->next) {
if(dp->dnastructname && strcmp(dp->dnastructname, "Screen") == 0)
dp->dnastructname= "bScreen";
if(dp->dnatype) {
if(dp->prop->type == PROP_POINTER) {
PointerPropertyRNA *pprop= (PointerPropertyRNA*)dp->prop;
StructRNA *type;
if(!pprop->type && !pprop->get)
pprop->type= (StructRNA*)rna_find_type(dp->dnatype);
if(pprop->type) {
type= rna_find_struct((char*)pprop->type);
if(type && (type->flag & STRUCT_ID_REFCOUNT))
pprop->property.flag |= PROP_ID_REFCOUNT;
}
}
else if(dp->prop->type== PROP_COLLECTION) {
CollectionPropertyRNA *cprop= (CollectionPropertyRNA*)dp->prop;
if(!cprop->item_type && !cprop->get && strcmp(dp->dnatype, "ListBase")==0)
cprop->item_type= (StructRNA*)rna_find_type(dp->dnatype);
}
}
}
}
}
static void rna_sort(BlenderRNA *brna)
{
StructDefRNA *ds;
StructRNA *srna;
rna_sortlist(&brna->structs, cmp_struct);
rna_sortlist(&DefRNA.structs, cmp_def_struct);
for(srna=brna->structs.first; srna; srna=srna->cont.next)
rna_sortlist(&srna->cont.properties, cmp_property);
for(ds=DefRNA.structs.first; ds; ds=ds->cont.next)
rna_sortlist(&ds->cont.properties, cmp_def_property);
}
static const char *rna_property_structname(PropertyType type)
{
switch(type) {
case PROP_BOOLEAN: return "BooleanPropertyRNA";
case PROP_INT: return "IntPropertyRNA";
case PROP_FLOAT: return "FloatPropertyRNA";
case PROP_STRING: return "StringPropertyRNA";
case PROP_ENUM: return "EnumPropertyRNA";
case PROP_POINTER: return "PointerPropertyRNA";
case PROP_COLLECTION: return "CollectionPropertyRNA";
default: return "UnknownPropertyRNA";
}
}
static const char *rna_property_typename(PropertyType type)
{
switch(type) {
case PROP_BOOLEAN: return "PROP_BOOLEAN";
case PROP_INT: return "PROP_INT";
case PROP_FLOAT: return "PROP_FLOAT";
case PROP_STRING: return "PROP_STRING";
case PROP_ENUM: return "PROP_ENUM";
case PROP_POINTER: return "PROP_POINTER";
case PROP_COLLECTION: return "PROP_COLLECTION";
default: return "PROP_UNKNOWN";
}
}
static const char *rna_property_subtypename(PropertySubType type)
{
switch(type) {
case PROP_NONE: return "PROP_NONE";
case PROP_FILEPATH: return "PROP_FILEPATH";
case PROP_FILENAME: return "PROP_FILENAME";
case PROP_DIRPATH: return "PROP_DIRPATH";
case PROP_UNSIGNED: return "PROP_UNSIGNED";
case PROP_PERCENTAGE: return "PROP_PERCENTAGE";
case PROP_FACTOR: return "PROP_FACTOR";
case PROP_ANGLE: return "PROP_ANGLE";
case PROP_TIME: return "PROP_TIME";
case PROP_DISTANCE: return "PROP_DISTANCE";
case PROP_COLOR: return "PROP_COLOR";
case PROP_TRANSLATION: return "PROP_TRANSLATION";
case PROP_DIRECTION: return "PROP_DIRECTION";
case PROP_MATRIX: return "PROP_MATRIX";
case PROP_EULER: return "PROP_EULER";
case PROP_QUATERNION: return "PROP_QUATERNION";
case PROP_AXISANGLE: return "PROP_AXISANGLE";
case PROP_VELOCITY: return "PROP_VELOCITY";
case PROP_ACCELERATION: return "PROP_ACCELERATION";
case PROP_XYZ: return "PROP_XYZ";
Changes to Color Management After testing and feedback, I've decided to slightly modify the way color management works internally. While the previous method worked well for rendering, was a smaller transition and had some advantages over this new method, it was a bit more ambiguous, and was making things difficult for other areas such as compositing. This implementation now considers all color data (with only a couple of exceptions such as brush colors) to be stored in linear RGB color space, rather than sRGB as previously. This brings it in line with Nuke, which also operates this way, quite successfully. Color swatches, pickers, color ramp display are now gamma corrected to display gamma so you can see what you're doing, but the numbers themselves are considered linear. This makes understanding blending modes more clear (a 0.5 value on overlay will not change the result now) as well as making color swatches act more predictably in the compositor, however bringing over color values from applications like photoshop or gimp, that operate in a gamma space, will give identical results. This commit will convert over existing files saved by earlier 2.5 versions to work generally the same, though there may be some slight differences with things like textures. Now that we're set on changing other areas of shading, this won't be too disruptive overall. I've made a diagram explaining the pipeline here: http://mke3.net/blender/devel/2.5/25_linear_workflow_pipeline.png and some docs here: http://www.blender.org/development/release-logs/blender-250/color-management/
2009-12-02 07:56:34 +00:00
case PROP_COLOR_GAMMA: return "PROP_COLOR_GAMMA";
case PROP_LAYER: return "PROP_LAYER";
case PROP_LAYER_MEMBER: return "PROP_LAYER_MEMBER";
default: {
/* incase we dont have a type preset that includes the subtype */
if(RNA_SUBTYPE_UNIT(type)) {
return rna_property_subtypename(type & ~RNA_SUBTYPE_UNIT(type));
}
else {
return "PROP_SUBTYPE_UNKNOWN";
}
}
}
}
static const char *rna_property_subtype_unit(PropertyType type)
{
switch(RNA_SUBTYPE_UNIT(type)) {
case PROP_UNIT_NONE: return "PROP_UNIT_NONE";
case PROP_UNIT_LENGTH: return "PROP_UNIT_LENGTH";
case PROP_UNIT_AREA: return "PROP_UNIT_AREA";
case PROP_UNIT_VOLUME: return "PROP_UNIT_VOLUME";
case PROP_UNIT_MASS: return "PROP_UNIT_MASS";
case PROP_UNIT_ROTATION: return "PROP_UNIT_ROTATION";
case PROP_UNIT_TIME: return "PROP_UNIT_TIME";
case PROP_UNIT_VELOCITY: return "PROP_UNIT_VELOCITY";
case PROP_UNIT_ACCELERATION:return "PROP_UNIT_ACCELERATION";
default: return "PROP_UNIT_UNKNOWN";
}
}
static void rna_generate_prototypes(BlenderRNA *brna, FILE *f)
{
StructRNA *srna;
for(srna=brna->structs.first; srna; srna=srna->cont.next)
fprintf(f, "extern StructRNA RNA_%s;\n", srna->identifier);
fprintf(f, "\n");
}
static void rna_generate_blender(BlenderRNA *brna, FILE *f)
{
StructRNA *srna;
fprintf(f, "BlenderRNA BLENDER_RNA = {");
srna= brna->structs.first;
if(srna) fprintf(f, "{&RNA_%s, ", srna->identifier);
else fprintf(f, "{NULL, ");
srna= brna->structs.last;
if(srna) fprintf(f, "&RNA_%s}", srna->identifier);
else fprintf(f, "NULL}");
fprintf(f, "};\n\n");
}
static void rna_generate_property_prototypes(BlenderRNA *brna, StructRNA *srna, FILE *f)
{
PropertyRNA *prop;
StructRNA *base;
base= srna->base;
while (base) {
fprintf(f, "\n");
for(prop=base->cont.properties.first; prop; prop=prop->next)
fprintf(f, "%s%s rna_%s_%s;\n", "extern ", rna_property_structname(prop->type), base->identifier, prop->identifier);
base= base->base;
}
if(srna->cont.properties.first)
fprintf(f, "\n");
for(prop=srna->cont.properties.first; prop; prop=prop->next)
fprintf(f, "%s%s rna_%s_%s;\n", (prop->flag & PROP_EXPORT)? "": "", rna_property_structname(prop->type), srna->identifier, prop->identifier);
fprintf(f, "\n");
}
static void rna_generate_parameter_prototypes(BlenderRNA *brna, StructRNA *srna, FunctionRNA *func, FILE *f)
{
PropertyRNA *parm;
for(parm= func->cont.properties.first; parm; parm= parm->next)
fprintf(f, "%s%s rna_%s_%s_%s;\n", "extern ", rna_property_structname(parm->type), srna->identifier, func->identifier, parm->identifier);
if(func->cont.properties.first)
fprintf(f, "\n");
}
static void rna_generate_function_prototypes(BlenderRNA *brna, StructRNA *srna, FILE *f)
{
FunctionRNA *func;
StructRNA *base;
base= srna->base;
while (base) {
for(func= base->functions.first; func; func= func->cont.next) {
fprintf(f, "%s%s rna_%s_%s_func;\n", "extern ", "FunctionRNA", base->identifier, func->identifier);
rna_generate_parameter_prototypes(brna, base, func, f);
}
if(base->functions.first)
fprintf(f, "\n");
base= base->base;
}
for(func= srna->functions.first; func; func= func->cont.next) {
fprintf(f, "%s%s rna_%s_%s_func;\n", "extern ", "FunctionRNA", srna->identifier, func->identifier);
rna_generate_parameter_prototypes(brna, srna, func, f);
}
if(srna->functions.first)
fprintf(f, "\n");
}
static void rna_generate_static_parameter_prototypes(BlenderRNA *brna, StructRNA *srna, FunctionDefRNA *dfunc, FILE *f)
{
FunctionRNA *func;
PropertyDefRNA *dparm;
StructDefRNA *dsrna;
PropertyType type;
int flag, pout, cptr, first;
char *ptrstr;
dsrna= rna_find_struct_def(srna);
func= dfunc->func;
/* return type */
for(dparm= dfunc->cont.properties.first; dparm; dparm= dparm->next) {
if(dparm->prop==func->c_ret) {
if(dparm->prop->arraydimension)
fprintf(f, "XXX no array return types yet"); /* XXX not supported */
else if(dparm->prop->type == PROP_POINTER && !(dparm->prop->flag & PROP_RNAPTR))
fprintf(f, "%s%s *", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop));
else
fprintf(f, "%s%s ", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop));
break;
}
}
/* void if nothing to return */
if(!dparm)
fprintf(f, "void ");
/* function name */
fprintf(f, "%s(", dfunc->call);
first= 1;
/* self, context and reports parameters */
if((func->flag & FUNC_NO_SELF)==0) {
if(func->flag & FUNC_USE_SELF_ID)
fprintf(f, "struct ID *_selfid, ");
if(dsrna->dnaname) fprintf(f, "struct %s *_self", dsrna->dnaname);
else fprintf(f, "struct %s *_self", srna->identifier);
first= 0;
}
if(func->flag & FUNC_USE_CONTEXT) {
if(!first) fprintf(f, ", ");
first= 0;
fprintf(f, "bContext *C");
}
if(func->flag & FUNC_USE_REPORTS) {
if(!first) fprintf(f, ", ");
first= 0;
fprintf(f, "ReportList *reports");
}
/* defined parameters */
for(dparm= dfunc->cont.properties.first; dparm; dparm= dparm->next) {
type = dparm->prop->type;
flag = dparm->prop->flag;
pout = (flag & PROP_OUTPUT);
cptr = ((type == PROP_POINTER) && !(flag & PROP_RNAPTR));
if(dparm->prop==func->c_ret)
continue;
if (cptr || (flag & PROP_DYNAMIC))
ptrstr= pout ? "**" : "*";
else if (type == PROP_POINTER || dparm->prop->arraydimension)
ptrstr= "*";
else if (type == PROP_STRING && (flag & PROP_THICK_WRAP))
ptrstr= "";
else
ptrstr= pout ? "*" : "";
if(!first) fprintf(f, ", ");
first= 0;
if(!(flag & PROP_DYNAMIC) && dparm->prop->arraydimension)
fprintf(f, "%s%s %s[%d]", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop), dparm->prop->identifier, dparm->prop->totarraylength);
else
fprintf(f, "%s%s %s%s", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop), ptrstr, dparm->prop->identifier);
if (flag & PROP_DYNAMIC)
fprintf(f, ", int %s%s_len", pout ? "*" : "", dparm->prop->identifier);
}
fprintf(f, ");\n");
}
static void rna_generate_static_function_prototypes(BlenderRNA *brna, StructRNA *srna, FILE *f)
{
FunctionRNA *func;
FunctionDefRNA *dfunc;
int first= 1;
for(func= srna->functions.first; func; func= func->cont.next) {
dfunc= rna_find_function_def(func);
if(dfunc->call) {
if(first) {
fprintf(f, "/* Repeated prototypes to detect errors */\n\n");
first= 0;
}
rna_generate_static_parameter_prototypes(brna, srna, dfunc, f);
}
}
fprintf(f, "\n");
}
static void rna_generate_property(FILE *f, StructRNA *srna, const char *nest, PropertyRNA *prop)
{
char *strnest= "", *errnest= "";
int len, freenest= 0;
if(nest != NULL) {
len= strlen(nest);
strnest= MEM_mallocN(sizeof(char)*(len+2), "rna_generate_property -> strnest");
errnest= MEM_mallocN(sizeof(char)*(len+2), "rna_generate_property -> errnest");
strcpy(strnest, "_"); strcat(strnest, nest);
strcpy(errnest, "."); strcat(errnest, nest);
freenest= 1;
}
switch(prop->type) {
case PROP_ENUM: {
EnumPropertyRNA *eprop= (EnumPropertyRNA*)prop;
int i, defaultfound= 0;
if(eprop->item) {
fprintf(f, "static EnumPropertyItem rna_%s%s_%s_items[%d] = {\n\t", srna->identifier, strnest, prop->identifier, eprop->totitem+1);
for(i=0; i<eprop->totitem; i++) {
fprintf(f, "{%d, ", eprop->item[i].value);
rna_print_c_string(f, eprop->item[i].identifier); fprintf(f, ", ");
fprintf(f, "%d, ", eprop->item[i].icon);
rna_print_c_string(f, eprop->item[i].name); fprintf(f, ", ");
rna_print_c_string(f, eprop->item[i].description); fprintf(f, "},\n\t");
if(eprop->item[i].identifier[0])
if(eprop->defaultvalue == eprop->item[i].value)
defaultfound= 1;
}
fprintf(f, "{0, NULL, 0, NULL, NULL}\n};\n\n");
if(!defaultfound) {
fprintf(stderr, "rna_generate_structs: %s%s.%s, enum default is not in items.\n", srna->identifier, errnest, prop->identifier);
DefRNA.error= 1;
}
}
else {
fprintf(stderr, "rna_generate_structs: %s%s.%s, enum must have items defined.\n", srna->identifier, errnest, prop->identifier);
DefRNA.error= 1;
}
break;
}
case PROP_BOOLEAN: {
BooleanPropertyRNA *bprop= (BooleanPropertyRNA*)prop;
unsigned int i;
if(prop->arraydimension && prop->totarraylength) {
fprintf(f, "static int rna_%s%s_%s_default[%d] = {\n\t", srna->identifier, strnest, prop->identifier, prop->totarraylength);
for(i=0; i<prop->totarraylength; i++) {
if(bprop->defaultarray)
fprintf(f, "%d", bprop->defaultarray[i]);
else
fprintf(f, "%d", bprop->defaultvalue);
if(i != prop->totarraylength-1)
fprintf(f, ",\n\t");
}
fprintf(f, "\n};\n\n");
}
break;
}
case PROP_INT: {
IntPropertyRNA *iprop= (IntPropertyRNA*)prop;
unsigned int i;
if(prop->arraydimension && prop->totarraylength) {
fprintf(f, "static int rna_%s%s_%s_default[%d] = {\n\t", srna->identifier, strnest, prop->identifier, prop->totarraylength);
for(i=0; i<prop->totarraylength; i++) {
if(iprop->defaultarray)
fprintf(f, "%d", iprop->defaultarray[i]);
else
fprintf(f, "%d", iprop->defaultvalue);
if(i != prop->totarraylength-1)
fprintf(f, ",\n\t");
}
fprintf(f, "\n};\n\n");
}
break;
}
case PROP_FLOAT: {
FloatPropertyRNA *fprop= (FloatPropertyRNA*)prop;
unsigned int i;
if(prop->arraydimension && prop->totarraylength) {
fprintf(f, "static float rna_%s%s_%s_default[%d] = {\n\t", srna->identifier, strnest, prop->identifier, prop->totarraylength);
for(i=0; i<prop->totarraylength; i++) {
if(fprop->defaultarray)
rna_float_print(f, fprop->defaultarray[i]);
else
rna_float_print(f, fprop->defaultvalue);
if(i != prop->totarraylength-1)
fprintf(f, ",\n\t");
}
fprintf(f, "\n};\n\n");
}
break;
}
default:
break;
}
fprintf(f, "%s%s rna_%s%s_%s = {\n", (prop->flag & PROP_EXPORT)? "": "", rna_property_structname(prop->type), srna->identifier, strnest, prop->identifier);
if(prop->next) fprintf(f, "\t{(PropertyRNA*)&rna_%s%s_%s, ", srna->identifier, strnest, prop->next->identifier);
else fprintf(f, "\t{NULL, ");
if(prop->prev) fprintf(f, "(PropertyRNA*)&rna_%s%s_%s,\n", srna->identifier, strnest, prop->prev->identifier);
else fprintf(f, "NULL,\n");
fprintf(f, "\t%d, ", prop->magic);
rna_print_c_string(f, prop->identifier);
fprintf(f, ", %d, ", prop->flag);
rna_print_c_string(f, prop->name); fprintf(f, ",\n\t");
rna_print_c_string(f, prop->description); fprintf(f, ",\n\t");
fprintf(f, "%d,\n", prop->icon);
fprintf(f, "\t%s, %s|%s, %s, %d, {%d, %d, %d}, %d,\n", rna_property_typename(prop->type), rna_property_subtypename(prop->subtype), rna_property_subtype_unit(prop->subtype), rna_function_string(prop->getlength), prop->arraydimension, prop->arraylength[0], prop->arraylength[1], prop->arraylength[2], prop->totarraylength);
fprintf(f, "\t%s%s, %d, %s, %s,\n", (prop->flag & PROP_CONTEXT_UPDATE)? "(UpdateFunc)": "", rna_function_string(prop->update), prop->noteflag, rna_function_string(prop->editable), rna_function_string(prop->itemeditable));
if(prop->flag & PROP_RAW_ACCESS) rna_set_raw_offset(f, srna, prop);
else fprintf(f, "\t0, -1");
/* our own type - collections/arrays only */
if(prop->srna) fprintf(f, ", &RNA_%s", (char*)prop->srna);
else fprintf(f, ", NULL");
fprintf(f, "},\n");
switch(prop->type) {
case PROP_BOOLEAN: {
BooleanPropertyRNA *bprop= (BooleanPropertyRNA*)prop;
fprintf(f, "\t%s, %s, %s, %s, %d, ", rna_function_string(bprop->get), rna_function_string(bprop->set), rna_function_string(bprop->getarray), rna_function_string(bprop->setarray), bprop->defaultvalue);
if(prop->arraydimension && prop->totarraylength) fprintf(f, "rna_%s%s_%s_default\n", srna->identifier, strnest, prop->identifier);
else fprintf(f, "NULL\n");
break;
}
case PROP_INT: {
IntPropertyRNA *iprop= (IntPropertyRNA*)prop;
fprintf(f, "\t%s, %s, %s, %s, %s,\n\t", rna_function_string(iprop->get), rna_function_string(iprop->set), rna_function_string(iprop->getarray), rna_function_string(iprop->setarray), rna_function_string(iprop->range));
rna_int_print(f, iprop->softmin); fprintf(f, ", ");
rna_int_print(f, iprop->softmax); fprintf(f, ", ");
rna_int_print(f, iprop->hardmin); fprintf(f, ", ");
rna_int_print(f, iprop->hardmax); fprintf(f, ", ");
rna_int_print(f, iprop->step); fprintf(f, ", ");
rna_int_print(f, iprop->defaultvalue); fprintf(f, ", ");
if(prop->arraydimension && prop->totarraylength) fprintf(f, "rna_%s%s_%s_default\n", srna->identifier, strnest, prop->identifier);
else fprintf(f, "NULL\n");
break;
}
case PROP_FLOAT: {
FloatPropertyRNA *fprop= (FloatPropertyRNA*)prop;
fprintf(f, "\t%s, %s, %s, %s, %s, ", rna_function_string(fprop->get), rna_function_string(fprop->set), rna_function_string(fprop->getarray), rna_function_string(fprop->setarray), rna_function_string(fprop->range));
rna_float_print(f, fprop->softmin); fprintf(f, ", ");
rna_float_print(f, fprop->softmax); fprintf(f, ", ");
rna_float_print(f, fprop->hardmin); fprintf(f, ", ");
rna_float_print(f, fprop->hardmax); fprintf(f, ", ");
rna_float_print(f, fprop->step); fprintf(f, ", ");
rna_int_print(f, (int)fprop->precision); fprintf(f, ", ");
rna_float_print(f, fprop->defaultvalue); fprintf(f, ", ");
if(prop->arraydimension && prop->totarraylength) fprintf(f, "rna_%s%s_%s_default\n", srna->identifier, strnest, prop->identifier);
else fprintf(f, "NULL\n");
break;
}
case PROP_STRING: {
StringPropertyRNA *sprop= (StringPropertyRNA*)prop;
fprintf(f, "\t%s, %s, %s, %d, ", rna_function_string(sprop->get), rna_function_string(sprop->length), rna_function_string(sprop->set), sprop->maxlength);
rna_print_c_string(f, sprop->defaultvalue); fprintf(f, "\n");
break;
}
case PROP_ENUM: {
EnumPropertyRNA *eprop= (EnumPropertyRNA*)prop;
fprintf(f, "\t%s, %s, %s, ", rna_function_string(eprop->get), rna_function_string(eprop->set), rna_function_string(eprop->itemf));
if(eprop->item)
fprintf(f, "rna_%s%s_%s_items, ", srna->identifier, strnest, prop->identifier);
else
fprintf(f, "NULL, ");
fprintf(f, "%d, %d\n", eprop->totitem, eprop->defaultvalue);
break;
}
case PROP_POINTER: {
PointerPropertyRNA *pprop= (PointerPropertyRNA*)prop;
fprintf(f, "\t%s, %s, %s, ", rna_function_string(pprop->get), rna_function_string(pprop->set), rna_function_string(pprop->typef));
if(pprop->type) fprintf(f, "&RNA_%s\n", (char*)pprop->type);
else fprintf(f, "NULL\n");
break;
}
case PROP_COLLECTION: {
CollectionPropertyRNA *cprop= (CollectionPropertyRNA*)prop;
fprintf(f, "\t%s, %s, %s, %s, %s, %s, %s, ", rna_function_string(cprop->begin), rna_function_string(cprop->next), rna_function_string(cprop->end), rna_function_string(cprop->get), rna_function_string(cprop->length), rna_function_string(cprop->lookupint), rna_function_string(cprop->lookupstring));
if(cprop->item_type) fprintf(f, "&RNA_%s\n", (char*)cprop->item_type);
else fprintf(f, "NULL\n");
break;
}
}
fprintf(f, "};\n\n");
if(freenest) {
MEM_freeN(strnest);
MEM_freeN(errnest);
}
}
static void rna_generate_struct(BlenderRNA *brna, StructRNA *srna, FILE *f)
{
FunctionRNA *func;
FunctionDefRNA *dfunc;
PropertyRNA *prop, *parm;
StructRNA *base;
fprintf(f, "/* %s */\n", srna->name);
for(prop= srna->cont.properties.first; prop; prop= prop->next)
rna_generate_property(f, srna, NULL, prop);
for(func= srna->functions.first; func; func= func->cont.next) {
for(parm= func->cont.properties.first; parm; parm= parm->next)
rna_generate_property(f, srna, func->identifier, parm);
fprintf(f, "%s%s rna_%s_%s_func = {\n", "", "FunctionRNA", srna->identifier, func->identifier);
if(func->cont.next) fprintf(f, "\t{(FunctionRNA*)&rna_%s_%s_func, ", srna->identifier, ((FunctionRNA*)func->cont.next)->identifier);
else fprintf(f, "\t{NULL, ");
if(func->cont.prev) fprintf(f, "(FunctionRNA*)&rna_%s_%s_func,\n", srna->identifier, ((FunctionRNA*)func->cont.prev)->identifier);
else fprintf(f, "NULL,\n");
fprintf(f, "\tNULL,\n");
parm= func->cont.properties.first;
if(parm) fprintf(f, "\t{(PropertyRNA*)&rna_%s_%s_%s, ", srna->identifier, func->identifier, parm->identifier);
else fprintf(f, "\t{NULL, ");
parm= func->cont.properties.last;
if(parm) fprintf(f, "(PropertyRNA*)&rna_%s_%s_%s}},\n", srna->identifier, func->identifier, parm->identifier);
else fprintf(f, "NULL}},\n");
fprintf(f, "\t");
rna_print_c_string(f, func->identifier);
fprintf(f, ", %d, ", func->flag);
rna_print_c_string(f, func->description); fprintf(f, ",\n");
dfunc= rna_find_function_def(func);
if(dfunc->gencall) fprintf(f, "\t%s,\n", dfunc->gencall);
else fprintf(f, "\tNULL,\n");
if(func->c_ret) fprintf(f, "\t(PropertyRNA*)&rna_%s_%s_%s\n", srna->identifier, func->identifier, func->c_ret->identifier);
else fprintf(f, "\tNULL\n");
fprintf(f, "};\n");
fprintf(f, "\n");
}
fprintf(f, "StructRNA RNA_%s = {\n", srna->identifier);
if(srna->cont.next) fprintf(f, "\t{(ContainerRNA *)&RNA_%s, ", ((StructRNA*)srna->cont.next)->identifier);
else fprintf(f, "\t{NULL, ");
if(srna->cont.prev) fprintf(f, "(ContainerRNA *)&RNA_%s,\n", ((StructRNA*)srna->cont.prev)->identifier);
else fprintf(f, "NULL,\n");
fprintf(f, "\tNULL,\n");
prop= srna->cont.properties.first;
if(prop) fprintf(f, "\t{(PropertyRNA*)&rna_%s_%s, ", srna->identifier, prop->identifier);
else fprintf(f, "\t{NULL, ");
prop= srna->cont.properties.last;
if(prop) fprintf(f, "(PropertyRNA*)&rna_%s_%s}},\n", srna->identifier, prop->identifier);
else fprintf(f, "NULL}},\n");
fprintf(f, "\tNULL,NULL,\n"); /* PyType - Cant initialize here */
fprintf(f, "\t");
rna_print_c_string(f, srna->identifier);
fprintf(f, ", %d, ", srna->flag);
rna_print_c_string(f, srna->name);
fprintf(f, ", ");
rna_print_c_string(f, srna->description);
fprintf(f, ",\n\t%d,\n", srna->icon);
prop= srna->nameproperty;
if(prop) {
base= srna;
while (base->base && base->base->nameproperty==prop)
base= base->base;
fprintf(f, "\t(PropertyRNA*)&rna_%s_%s, ", base->identifier, prop->identifier);
}
else fprintf(f, "\tNULL, ");
prop= srna->iteratorproperty;
base= srna;
while (base->base && base->base->iteratorproperty==prop)
base= base->base;
fprintf(f, "(PropertyRNA*)&rna_%s_rna_properties,\n", base->identifier);
if(srna->base) fprintf(f, "\t&RNA_%s,\n", srna->base->identifier);
else fprintf(f, "\tNULL,\n");
if(srna->nested) fprintf(f, "\t&RNA_%s,\n", srna->nested->identifier);
else fprintf(f, "\tNULL,\n");
fprintf(f, "\t%s,\n", rna_function_string(srna->refine));
fprintf(f, "\t%s,\n", rna_function_string(srna->path));
fprintf(f, "\t%s,\n", rna_function_string(srna->reg));
fprintf(f, "\t%s,\n", rna_function_string(srna->unreg));
fprintf(f, "\t%s,\n", rna_function_string(srna->idproperties));
if(srna->reg && !srna->refine) {
fprintf(stderr, "rna_generate_struct: %s has a register function, must also have refine function.\n", srna->identifier);
DefRNA.error= 1;
}
func= srna->functions.first;
if(func) fprintf(f, "\t{(FunctionRNA*)&rna_%s_%s_func, ", srna->identifier, func->identifier);
else fprintf(f, "\t{NULL, ");
func= srna->functions.last;
if(func) fprintf(f, "(FunctionRNA*)&rna_%s_%s_func}\n", srna->identifier, func->identifier);
else fprintf(f, "NULL}\n");
fprintf(f, "};\n");
fprintf(f, "\n");
}
typedef struct RNAProcessItem {
char *filename;
char *api_filename;
void (*define)(BlenderRNA *brna);
} RNAProcessItem;
RNAProcessItem PROCESS_ITEMS[]= {
{"rna_rna.c", NULL, RNA_def_rna},
{"rna_ID.c", NULL, RNA_def_ID},
{"rna_texture.c", NULL, RNA_def_texture},
{"rna_action.c", "rna_action_api.c", RNA_def_action},
{"rna_animation.c", "rna_animation_api.c", RNA_def_animation},
{"rna_animviz.c", NULL, RNA_def_animviz},
{"rna_actuator.c", "rna_actuator_api.c", RNA_def_actuator},
{"rna_armature.c", "rna_armature_api.c", RNA_def_armature},
Initial code for boids v2 Too many new features to list! But here are the biggies: - Boids can move on air and/or land, or climb a goal object. - Proper interaction with collision objects. * Closest collision object in negative z direction is considered as ground. * Other collision objects are obstacles and boids collide with them. - Boid behavior rules are now added to a dynamic list. * Many new rules and many still not implemented. * Different rule evaluation modes (fuzzy, random, average). - Only particle systems defined by per system "boid relations" are considered for simulation of that system. * This is in addition to the boids own system of course. * Relations define other systems as "neutral", "friend" or "enemy". - All effectors now effect boid physics, not boid brains. * This allows forcing boids somewhere. * Exception to this is new "boid" effector, which defines boid predators (positive strength) and goals (negative strength). Known issue: - Boid health isn't yet stored in pointcache so simulations with "fight" rule are not be read from cache properly. - Object/Group visualization object's animation is not played in "particle time". This is definately the wanted behavior, but isn't possible with the current state of dupliobject code. Other new features: - Particle systems can now be named separately from particle settings. * Default name for particle settings is now "ParticleSettings" instead of "PSys" - Per particle system list of particle effector weights. * Enables different effection strengths for particles from different particle systems with without messing around with effector group setting. Other code changes: - KDTree now supports range search as it's needed for new boids. - "Keyed particle targets" renamed as general "particle targets", as they're needed for boids too. (this might break some files saved with new keyed particles) Bug fixes: - Object & group visualizations didn't work. - Interpolating pointcache didn't do rotation.
2009-07-20 23:52:53 +00:00
{"rna_boid.c", NULL, RNA_def_boid},
{"rna_brush.c", NULL, RNA_def_brush},
{"rna_camera.c", NULL, RNA_def_camera},
{"rna_cloth.c", NULL, RNA_def_cloth},
{"rna_color.c", NULL, RNA_def_color},
{"rna_constraint.c", NULL, RNA_def_constraint},
{"rna_context.c", NULL, RNA_def_context},
{"rna_controller.c", "rna_controller_api.c", RNA_def_controller},
{"rna_curve.c", NULL, RNA_def_curve},
{"rna_fcurve.c", "rna_fcurve_api.c", RNA_def_fcurve},
{"rna_fluidsim.c", NULL, RNA_def_fluidsim},
{"rna_gpencil.c", NULL, RNA_def_gpencil},
{"rna_group.c", NULL, RNA_def_group},
{"rna_image.c", "rna_image_api.c", RNA_def_image},
{"rna_key.c", NULL, RNA_def_key},
{"rna_lamp.c", NULL, RNA_def_lamp},
{"rna_lattice.c", NULL, RNA_def_lattice},
{"rna_linestyle.c", NULL, RNA_def_linestyle},
{"rna_main.c", "rna_main_api.c", RNA_def_main},
{"rna_material.c", "rna_material_api.c", RNA_def_material},
{"rna_mesh.c", "rna_mesh_api.c", RNA_def_mesh},
{"rna_meta.c", NULL, RNA_def_meta},
{"rna_modifier.c", NULL, RNA_def_modifier},
{"rna_nla.c", NULL, RNA_def_nla},
{"rna_nodetree.c", NULL, RNA_def_nodetree},
{"rna_object.c", "rna_object_api.c", RNA_def_object},
{"rna_object_force.c", NULL, RNA_def_object_force},
{"rna_packedfile.c", NULL, RNA_def_packedfile},
{"rna_particle.c", NULL, RNA_def_particle},
{"rna_pose.c", "rna_pose_api.c", RNA_def_pose},
{"rna_property.c", NULL, RNA_def_gameproperty},
{"rna_render.c", NULL, RNA_def_render},
{"rna_scene.c", "rna_scene_api.c", RNA_def_scene},
{"rna_screen.c", NULL, RNA_def_screen},
{"rna_sculpt_paint.c", NULL, RNA_def_sculpt_paint},
{"rna_sensor.c", "rna_sensor_api.c", RNA_def_sensor},
2010-06-21 22:05:34 +00:00
{"rna_sequencer.c", "rna_sequencer_api.c", RNA_def_sequencer},
{"rna_smoke.c", NULL, RNA_def_smoke},
{"rna_space.c", NULL, RNA_def_space},
{"rna_test.c", NULL, RNA_def_test},
{"rna_text.c", NULL, RNA_def_text},
{"rna_timeline.c", NULL, RNA_def_timeline_marker},
{"rna_sound.c", NULL, RNA_def_sound},
{"rna_ui.c", "rna_ui_api.c", RNA_def_ui},
{"rna_userdef.c", NULL, RNA_def_userdef},
{"rna_vfont.c", NULL, RNA_def_vfont},
{"rna_wm.c", "rna_wm_api.c", RNA_def_wm},
{"rna_world.c", NULL, RNA_def_world},
{NULL, NULL}};
static void rna_generate(BlenderRNA *brna, FILE *f, char *filename, char *api_filename)
{
StructDefRNA *ds;
PropertyDefRNA *dp;
FunctionDefRNA *dfunc;
fprintf(f, "\n/* Automatically generated struct definitions for the Data API.\n"
" Do not edit manually, changes will be overwritten. */\n\n"
"#define RNA_RUNTIME\n\n");
fprintf(f, "#include <float.h>\n");
fprintf(f, "#include <limits.h>\n");
fprintf(f, "#include <string.h>\n\n");
fprintf(f, "#include <stddef.h>\n\n");
fprintf(f, "#include \"DNA_ID.h\"\n");
fprintf(f, "#include \"DNA_scene_types.h\"\n");
fprintf(f, "#include \"BLI_blenlib.h\"\n\n");
fprintf(f, "#include \"BKE_context.h\"\n");
fprintf(f, "#include \"BKE_library.h\"\n");
fprintf(f, "#include \"BKE_main.h\"\n");
fprintf(f, "#include \"BKE_report.h\"\n");
fprintf(f, "#include \"BKE_utildefines.h\"\n\n");
fprintf(f, "#include \"RNA_define.h\"\n");
fprintf(f, "#include \"RNA_types.h\"\n");
fprintf(f, "#include \"rna_internal.h\"\n\n");
rna_generate_prototypes(brna, f);
fprintf(f, "#include \"%s\"\n", filename);
if(api_filename)
fprintf(f, "#include \"%s\"\n", api_filename);
fprintf(f, "\n");
fprintf(f, "/* Autogenerated Functions */\n\n");
for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) {
if(!filename || ds->filename == filename) {
rna_generate_property_prototypes(brna, ds->srna, f);
rna_generate_function_prototypes(brna, ds->srna, f);
}
}
for(ds=DefRNA.structs.first; ds; ds=ds->cont.next)
if(!filename || ds->filename == filename)
for(dp=ds->cont.properties.first; dp; dp=dp->next)
rna_def_property_funcs(f, ds->srna, dp);
for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) {
if(!filename || ds->filename == filename) {
for(dfunc=ds->functions.first; dfunc; dfunc= dfunc->cont.next)
rna_def_function_funcs(f, ds, dfunc);
rna_generate_static_function_prototypes(brna, ds->srna, f);
}
}
for(ds=DefRNA.structs.first; ds; ds=ds->cont.next)
if(!filename || ds->filename == filename)
rna_generate_struct(brna, ds->srna, f);
if(strcmp(filename, "rna_ID.c") == 0) {
/* this is ugly, but we cannot have c files compiled for both
* makesrna and blender with some build systems at the moment */
fprintf(f, "#include \"rna_define.c\"\n\n");
rna_generate_blender(brna, f);
}
}
static void rna_generate_header(BlenderRNA *brna, FILE *f)
{
StructDefRNA *ds;
PropertyDefRNA *dp;
StructRNA *srna;
fprintf(f, "\n#ifndef __RNA_BLENDER_H__\n");
fprintf(f, "#define __RNA_BLENDER_H__\n\n");
fprintf(f, "/* Automatically generated function declarations for the Data API.\n"
" Do not edit manually, changes will be overwritten. */\n\n");
fprintf(f, "#include \"RNA_types.h\"\n\n");
fprintf(f, "#ifdef __cplusplus\nextern \"C\" {\n#endif\n\n");
fprintf(f, "#define FOREACH_BEGIN(property, sptr, itemptr) \\\n");
fprintf(f, " { \\\n");
fprintf(f, " CollectionPropertyIterator rna_macro_iter; \\\n");
fprintf(f, " for(property##_begin(&rna_macro_iter, sptr); rna_macro_iter.valid; property##_next(&rna_macro_iter)) { \\\n");
fprintf(f, " itemptr= rna_macro_iter.ptr;\n\n");
fprintf(f, "#define FOREACH_END(property) \\\n");
fprintf(f, " } \\\n");
fprintf(f, " property##_end(&rna_macro_iter); \\\n");
fprintf(f, " }\n\n");
for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) {
srna= ds->srna;
fprintf(f, "/**************** %s ****************/\n\n", srna->name);
while(srna) {
fprintf(f, "extern StructRNA RNA_%s;\n", srna->identifier);
srna= srna->base;
}
fprintf(f, "\n");
for(dp=ds->cont.properties.first; dp; dp=dp->next)
rna_def_property_funcs_header(f, ds->srna, dp);
}
fprintf(f, "#ifdef __cplusplus\n}\n#endif\n\n");
fprintf(f, "#endif /* __RNA_BLENDER_H__ */\n\n");
}
static const char *cpp_classes = ""
"\n"
"#include <string>\n"
"\n"
"namespace RNA {\n"
"\n"
"#define BOOLEAN_PROPERTY(sname, identifier) \\\n"
" bool sname::identifier(void) { return (bool)sname##_##identifier##_get(&ptr); }\n"
"\n"
"#define BOOLEAN_ARRAY_PROPERTY(sname, size, identifier) \\\n"
" Array<int,size> sname::identifier(void) \\\n"
" { Array<int, size> ar; sname##_##identifier##_get(&ptr, ar.data); return ar; }\n"
"\n"
"#define INT_PROPERTY(sname, identifier) \\\n"
" int sname::identifier(void) { return sname##_##identifier##_get(&ptr); }\n"
"\n"
"#define INT_ARRAY_PROPERTY(sname, size, identifier) \\\n"
" Array<int,size> sname::identifier(void) \\\n"
" { Array<int, size> ar; sname##_##identifier##_get(&ptr, ar.data); return ar; }\n"
"\n"
"#define FLOAT_PROPERTY(sname, identifier) \\\n"
" float sname::identifier(void) { return sname##_##identifier##_get(&ptr); }\n"
"\n"
"#define FLOAT_ARRAY_PROPERTY(sname, size, identifier) \\\n"
" Array<float,size> sname::identifier(void) \\\n"
" { Array<float, size> ar; sname##_##identifier##_get(&ptr, ar.data); return ar; }\n"
"\n"
"#define ENUM_PROPERTY(type, sname, identifier) \\\n"
" sname::type sname::identifier(void) { return (type)sname##_##identifier##_get(&ptr); }\n"
"\n"
"#define STRING_PROPERTY(sname, identifier) \\\n"
" std::string sname::identifier(void) { \\\n"
" int len= sname##_##identifier##_length(&ptr); \\\n"
" std::string str; str.resize(len); \\\n"
" sname##_##identifier##_get(&ptr, &str[0]); return str; } \\\n"
"\n"
"#define POINTER_PROPERTY(type, sname, identifier) \\\n"
" type sname::identifier(void) { return type(sname##_##identifier##_get(&ptr)); }\n"
"\n"
"#define COLLECTION_PROPERTY(type, sname, identifier) \\\n"
" typedef CollectionIterator<type, sname##_##identifier##_begin, \\\n"
" sname##_##identifier##_next, sname##_##identifier##_end> identifier##_iterator; \\\n"
" Collection<sname, type, sname##_##identifier##_begin, \\\n"
" sname##_##identifier##_next, sname##_##identifier##_end> identifier;\n"
"\n"
"class Pointer {\n"
"public:\n"
" Pointer(const PointerRNA& p) : ptr(p) { }\n"
" operator const PointerRNA&() { return ptr; }\n"
" bool is_a(StructRNA *type) { return RNA_struct_is_a(&ptr, type); }\n"
" operator void*() { return ptr.data; }\n"
" operator bool() { return ptr.data != NULL; }\n"
"\n"
" PointerRNA ptr;\n"
"};\n"
"\n"
"\n"
"template<typename T, int Tsize>\n"
"class Array {\n"
"public:\n"
" T data[Tsize];\n"
" operator T*() { return data; }\n"
"};\n"
"\n"
"typedef void (*TBeginFunc)(CollectionPropertyIterator *iter, PointerRNA *ptr);\n"
"typedef void (*TNextFunc)(CollectionPropertyIterator *iter);\n"
"typedef void (*TEndFunc)(CollectionPropertyIterator *iter);\n"
"\n"
"template<typename T, TBeginFunc Tbegin, TNextFunc Tnext, TEndFunc Tend>\n"
"class CollectionIterator {\n"
"public:\n"
" CollectionIterator() : t(iter.ptr), init(false) { iter.valid= false; }\n"
" ~CollectionIterator(void) { if(init) Tend(&iter); };\n"
" const CollectionIterator<T, Tbegin, Tnext, Tend>& operator=(const CollectionIterator<T, Tbegin, Tnext, Tend>& copy)\n"
" { if(init) Tend(&iter); iter= copy.iter; if(iter.internal) iter.internal= MEM_dupallocN(iter.internal); t= copy.t; init= copy.init; return *this; }\n"
"\n"
" operator bool(void)\n"
" { return iter.valid != 0; }\n"
" const CollectionIterator<T, Tbegin, Tnext, Tend>& operator++() { Tnext(&iter); t = T(iter.ptr); return *this; }\n"
" T& operator*(void) { return t; }\n"
" T* operator->(void) { return &t; }\n"
" bool operator==(const CollectionIterator<T, Tbegin, Tnext, Tend>& other) { return iter.valid == other.iter.valid; }\n"
" bool operator!=(const CollectionIterator<T, Tbegin, Tnext, Tend>& other) { return iter.valid != other.iter.valid; }\n"
"\n"
" void begin(const Pointer& ptr)\n"
" { if(init) Tend(&iter); Tbegin(&iter, (PointerRNA*)&ptr.ptr); t = T(iter.ptr); init = true; }\n"
"\n"
"private:\n"
" CollectionPropertyIterator iter;\n"
" T t;\n"
" bool init;\n"
"};\n"
"\n"
"template<typename Tp, typename T, TBeginFunc Tbegin, TNextFunc Tnext, TEndFunc Tend>\n"
"class Collection {\n"
"public:\n"
" Collection(const PointerRNA& p) : ptr(p) {}\n"
"\n"
" CollectionIterator<T, Tbegin, Tnext, Tend> begin()\n"
" { CollectionIterator<T, Tbegin, Tnext, Tend> iter; iter.begin(ptr); return iter; }\n"
" CollectionIterator<T, Tbegin, Tnext, Tend> end()\n"
" { return CollectionIterator<T, Tbegin, Tnext, Tend>(); } /* test */ \n"
"\n"
"private:\n"
" PointerRNA ptr;\n"
"};\n"
"\n";
static void rna_generate_header_cpp(BlenderRNA *brna, FILE *f)
{
StructDefRNA *ds;
PropertyDefRNA *dp;
StructRNA *srna;
fprintf(f, "\n#ifndef __RNA_BLENDER_CPP_H__\n");
fprintf(f, "#define __RNA_BLENDER_CPP_H__\n\n");
fprintf(f, "/* Automatically generated classes for the Data API.\n"
" Do not edit manually, changes will be overwritten. */\n\n");
fprintf(f, "#include \"RNA_blender.h\"\n");
fprintf(f, "#include \"RNA_types.h\"\n");
fprintf(f, "%s", cpp_classes);
fprintf(f, "/**************** Declarations ****************/\n\n");
for(ds=DefRNA.structs.first; ds; ds=ds->cont.next)
fprintf(f, "class %s;\n", ds->srna->identifier);
fprintf(f, "\n");
for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) {
srna= ds->srna;
fprintf(f, "/**************** %s ****************/\n\n", srna->name);
fprintf(f, "class %s : public %s {\n", srna->identifier, (srna->base)? srna->base->identifier: "Pointer");
fprintf(f, "public:\n");
fprintf(f, "\t%s(const PointerRNA& ptr) :\n\t\t%s(ptr)", srna->identifier, (srna->base)? srna->base->identifier: "Pointer");
for(dp=ds->cont.properties.first; dp; dp=dp->next)
if(!(dp->prop->flag & (PROP_IDPROPERTY|PROP_BUILTIN)))
if(dp->prop->type == PROP_COLLECTION)
fprintf(f, ",\n\t\t%s(ptr)", dp->prop->identifier);
fprintf(f, "\n\t\t{}\n\n");
for(dp=ds->cont.properties.first; dp; dp=dp->next)
rna_def_property_funcs_header_cpp(f, ds->srna, dp);
fprintf(f, "};\n\n");
}
fprintf(f, "/**************** Implementation ****************/\n");
for(ds=DefRNA.structs.first; ds; ds=ds->cont.next) {
for(dp=ds->cont.properties.first; dp; dp=dp->next)
rna_def_property_funcs_impl_cpp(f, ds->srna, dp);
fprintf(f, "\n");
}
fprintf(f, "}\n\n#endif /* __RNA_BLENDER_CPP_H__ */\n\n");
}
static void make_bad_file(char *file, int line)
{
FILE *fp= fopen(file, "w");
fprintf(fp, "#error \"Error! can't make correct RNA file from %s:%d, STUPID!\"\n", __FILE__, line);
fclose(fp);
}
static int rna_preprocess(char *outfile)
{
BlenderRNA *brna;
StructDefRNA *ds;
FILE *file;
char deffile[4096];
int i, status;
/* define rna */
brna= RNA_create();
for(i=0; PROCESS_ITEMS[i].filename; i++) {
if(PROCESS_ITEMS[i].define) {
PROCESS_ITEMS[i].define(brna);
for(ds=DefRNA.structs.first; ds; ds=ds->cont.next)
if(!ds->filename)
ds->filename= PROCESS_ITEMS[i].filename;
}
}
rna_auto_types();
/* create RNA_blender_cpp.h */
strcpy(deffile, outfile);
strcat(deffile, "RNA_blender_cpp.h" TMP_EXT);
status= (DefRNA.error != 0);
if(status) {
make_bad_file(deffile, __LINE__);
}
else {
file = fopen(deffile, "w");
if(!file) {
printf ("Unable to open file: %s\n", deffile);
status = 1;
}
else {
rna_generate_header_cpp(brna, file);
fclose(file);
status= (DefRNA.error != 0);
}
}
replace_if_different(deffile);
rna_sort(brna);
/* create rna_gen_*.c files */
for(i=0; PROCESS_ITEMS[i].filename; i++) {
strcpy(deffile, outfile);
strcat(deffile, PROCESS_ITEMS[i].filename);
deffile[strlen(deffile)-2] = '\0';
strcat(deffile, "_gen.c" TMP_EXT);
if(status) {
make_bad_file(deffile, __LINE__);
}
else {
file = fopen(deffile, "w");
if(!file) {
printf ("Unable to open file: %s\n", deffile);
status = 1;
}
else {
rna_generate(brna, file, PROCESS_ITEMS[i].filename, PROCESS_ITEMS[i].api_filename);
fclose(file);
status= (DefRNA.error != 0);
}
}
replace_if_different(deffile);
}
/* create RNA_blender.h */
strcpy(deffile, outfile);
strcat(deffile, "RNA_blender.h" TMP_EXT);
if(status) {
make_bad_file(deffile, __LINE__);
}
else {
file = fopen(deffile, "w");
if(!file) {
printf ("Unable to open file: %s\n", deffile);
status = 1;
}
else {
rna_generate_header(brna, file);
fclose(file);
status= (DefRNA.error != 0);
}
}
replace_if_different(deffile);
/* free RNA */
RNA_define_free(brna);
RNA_free(brna);
return status;
}
static void mem_error_cb(const char *errorStr)
{
fprintf(stderr, "%s", errorStr);
fflush(stderr);
}
int main(int argc, char **argv)
{
Merge of trunk into blender 2.5: svn merge https://svn.blender.org/svnroot/bf-blender/trunk/blender -r12987:17416 Issues: * GHOST/X11 had conflicting changes. Some code was added in 2.5, which was later added in trunk also, but reverted partially, specifically revision 16683. I have left out this reversion in the 2.5 branch since I think it is needed there. http://projects.blender.org/plugins/scmsvn/viewcvs.php?view=rev&root=bf-blender&revision=16683 * Scons had various conflicting changes, I decided to go with trunk version for everything except priorities and some library renaming. * In creator.c, there were various fixes and fixes for fixes related to the -w -W and -p options. In 2.5 -w and -W is not coded yet, and -p is done differently. Since this is changed so much, and I don't think those fixes would be needed in 2.5, I've left them out. * Also in creator.c: there was code for a python bugfix where the screen was not initialized when running with -P. The code that initializes the screen there I had to disable, that can't work in 2.5 anymore but left it commented as a reminder. Further I had to disable some new function calls. using src/ and python/, as was done already in this branch, disabled function calls: * bpath.c: error reporting * BME_conversions.c: editmesh conversion functions. * SHD_dynamic: disabled almost completely, there is no python/. * KX_PythonInit.cpp and Ketsji/ build files: Mathutils is not there, disabled. * text.c: clipboard copy call. * object.c: OB_SUPPORT_MATERIAL. * DerivedMesh.c and subsurf_ccg, stipple_quarttone. Still to be done: * Go over files and functions that were moved to a different location but could still use changes that were done in trunk.
2008-11-12 21:16:53 +00:00
int totblock, return_status = 0;
if(argc<2) {
printf("Usage: %s outdirectory/\n", argv[0]);
return_status = 1;
}
else {
printf("Running makesrna, program versions %s\n", RNA_VERSION_DATE);
return_status= rna_preprocess(argv[1]);
}
Merge of trunk into blender 2.5: svn merge https://svn.blender.org/svnroot/bf-blender/trunk/blender -r12987:17416 Issues: * GHOST/X11 had conflicting changes. Some code was added in 2.5, which was later added in trunk also, but reverted partially, specifically revision 16683. I have left out this reversion in the 2.5 branch since I think it is needed there. http://projects.blender.org/plugins/scmsvn/viewcvs.php?view=rev&root=bf-blender&revision=16683 * Scons had various conflicting changes, I decided to go with trunk version for everything except priorities and some library renaming. * In creator.c, there were various fixes and fixes for fixes related to the -w -W and -p options. In 2.5 -w and -W is not coded yet, and -p is done differently. Since this is changed so much, and I don't think those fixes would be needed in 2.5, I've left them out. * Also in creator.c: there was code for a python bugfix where the screen was not initialized when running with -P. The code that initializes the screen there I had to disable, that can't work in 2.5 anymore but left it commented as a reminder. Further I had to disable some new function calls. using src/ and python/, as was done already in this branch, disabled function calls: * bpath.c: error reporting * BME_conversions.c: editmesh conversion functions. * SHD_dynamic: disabled almost completely, there is no python/. * KX_PythonInit.cpp and Ketsji/ build files: Mathutils is not there, disabled. * text.c: clipboard copy call. * object.c: OB_SUPPORT_MATERIAL. * DerivedMesh.c and subsurf_ccg, stipple_quarttone. Still to be done: * Go over files and functions that were moved to a different location but could still use changes that were done in trunk.
2008-11-12 21:16:53 +00:00
totblock= MEM_get_memory_blocks_in_use();
if(totblock!=0) {
printf("Error Totblock: %d\n",totblock);
MEM_set_error_callback(mem_error_cb);
MEM_printmemlist();
}
return return_status;
}