This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/shrinkwrap.c

864 lines
26 KiB
C
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Andr Pinto
*
* ***** END GPL LICENSE BLOCK *****
*/
2011-02-27 20:40:57 +00:00
/** \file blender/blenkernel/intern/shrinkwrap.c
* \ingroup bke
*/
#include <string.h>
#include <float.h>
#include <math.h>
#include <memory.h>
#include <stdio.h>
#include <time.h>
#include <assert.h>
#include "DNA_object_types.h"
#include "DNA_modifier_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_mesh_types.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BLI_task.h"
#include "BKE_shrinkwrap.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_DerivedMesh.h"
#include "BKE_lattice.h"
#include "BKE_library.h"
#include "BKE_modifier.h"
#include "BKE_deform.h"
#include "BKE_editmesh.h"
#include "BKE_mesh.h" /* for OMP limits. */
#include "BKE_subsurf.h"
2014-02-03 18:55:59 +11:00
#include "BLI_strict_flags.h"
/* for timing... */
#if 0
# include "PIL_time_utildefines.h"
#else
# define TIMEIT_BENCH(expr, id) (expr)
#endif
/* Util macros */
#define OUT_OF_MEMORY() ((void)printf("Shrinkwrap: Out of memory\n"))
typedef struct ShrinkwrapCalcData {
ShrinkwrapModifierData *smd; //shrinkwrap modifier data
struct Object *ob; //object we are applying shrinkwrap to
struct MVert *vert; //Array of verts being projected (to fetch normals or other data)
float(*vertexCos)[3]; //vertexs being shrinkwraped
int numVerts;
struct MDeformVert *dvert; //Pointer to mdeform array
int vgroup; //Vertex group num
bool invert_vgroup; /* invert vertex group influence */
struct Mesh *target; //mesh we are shrinking to
struct SpaceTransform local2target; //transform to move between local and target space
struct ShrinkwrapTreeData *tree; // mesh BVH tree data
float keepDist; //Distance to keep above target surface (units are in local space)
} ShrinkwrapCalcData;
typedef struct ShrinkwrapCalcCBData {
ShrinkwrapCalcData *calc;
ShrinkwrapTreeData *tree;
ShrinkwrapTreeData *aux_tree;
float *proj_axis;
SpaceTransform *local2aux;
} ShrinkwrapCalcCBData;
/* Checks if the modifier needs target normals with these settings. */
bool BKE_shrinkwrap_needs_normals(int shrinkType, int shrinkMode)
{
return shrinkType != MOD_SHRINKWRAP_NEAREST_VERTEX && shrinkMode == MOD_SHRINKWRAP_ABOVE_SURFACE;
}
/* Initializes the mesh data structure from the given mesh and settings. */
bool BKE_shrinkwrap_init_tree(ShrinkwrapTreeData *data, Mesh *mesh, int shrinkType, int shrinkMode, bool force_normals)
{
memset(data, 0, sizeof(*data));
if (!mesh || mesh->totvert <= 0) {
return false;
}
data->mesh = mesh;
if (shrinkType == MOD_SHRINKWRAP_NEAREST_VERTEX) {
data->bvh = BKE_bvhtree_from_mesh_get(&data->treeData, mesh, BVHTREE_FROM_VERTS, 2);
return data->bvh != NULL;
}
else {
if (mesh->totpoly <= 0) {
return false;
}
data->bvh = BKE_bvhtree_from_mesh_get(&data->treeData, mesh, BVHTREE_FROM_LOOPTRI, 4);
if (data->bvh == NULL) {
return false;
}
if (force_normals || BKE_shrinkwrap_needs_normals(shrinkType, shrinkMode)) {
if ((mesh->flag & ME_AUTOSMOOTH) != 0) {
data->clnors = CustomData_get_layer(&mesh->ldata, CD_NORMAL);
}
}
return true;
}
}
/* Frees the tree data if necessary. */
void BKE_shrinkwrap_free_tree(ShrinkwrapTreeData *data)
{
free_bvhtree_from_mesh(&data->treeData);
}
/*
* Shrinkwrap to the nearest vertex
*
* it builds a kdtree of vertexs we can attach to and then
* for each vertex performs a nearest vertex search on the tree
*/
static void shrinkwrap_calc_nearest_vertex_cb_ex(
void *__restrict userdata,
const int i,
const ParallelRangeTLS *__restrict tls)
{
ShrinkwrapCalcCBData *data = userdata;
ShrinkwrapCalcData *calc = data->calc;
BVHTreeFromMesh *treeData = &data->tree->treeData;
BVHTreeNearest *nearest = tls->userdata_chunk;
float *co = calc->vertexCos[i];
float tmp_co[3];
float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
if (calc->invert_vgroup) {
weight = 1.0f - weight;
}
if (weight == 0.0f) {
return;
}
/* Convert the vertex to tree coordinates */
if (calc->vert) {
copy_v3_v3(tmp_co, calc->vert[i].co);
}
else {
copy_v3_v3(tmp_co, co);
}
BLI_space_transform_apply(&calc->local2target, tmp_co);
/* Use local proximity heuristics (to reduce the nearest search)
*
* If we already had an hit before.. we assume this vertex is going to have a close hit to that other vertex
* so we can initiate the "nearest.dist" with the expected value to that last hit.
* This will lead in pruning of the search tree. */
if (nearest->index != -1)
nearest->dist_sq = len_squared_v3v3(tmp_co, nearest->co);
else
nearest->dist_sq = FLT_MAX;
BLI_bvhtree_find_nearest(treeData->tree, tmp_co, nearest, treeData->nearest_callback, treeData);
/* Found the nearest vertex */
if (nearest->index != -1) {
/* Adjusting the vertex weight,
* so that after interpolating it keeps a certain distance from the nearest position */
if (nearest->dist_sq > FLT_EPSILON) {
const float dist = sqrtf(nearest->dist_sq);
weight *= (dist - calc->keepDist) / dist;
}
/* Convert the coordinates back to mesh coordinates */
copy_v3_v3(tmp_co, nearest->co);
BLI_space_transform_invert(&calc->local2target, tmp_co);
interp_v3_v3v3(co, co, tmp_co, weight); /* linear interpolation */
}
}
static void shrinkwrap_calc_nearest_vertex(ShrinkwrapCalcData *calc)
{
BVHTreeNearest nearest = NULL_BVHTreeNearest;
2012-10-20 20:20:02 +00:00
/* Setup nearest */
nearest.index = -1;
nearest.dist_sq = FLT_MAX;
ShrinkwrapCalcCBData data = {.calc = calc, .tree = calc->tree};
ParallelRangeSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = (calc->numVerts > BKE_MESH_OMP_LIMIT);
settings.userdata_chunk = &nearest;
settings.userdata_chunk_size = sizeof(nearest);
BLI_task_parallel_range(0, calc->numVerts,
2018-01-21 11:41:28 +11:00
&data, shrinkwrap_calc_nearest_vertex_cb_ex,
&settings);
}
/*
* This function raycast a single vertex and updates the hit if the "hit" is considered valid.
* Returns true if "hit" was updated.
* Opts control whether an hit is valid or not
* Supported options are:
* MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE (front faces hits are ignored)
* MOD_SHRINKWRAP_CULL_TARGET_BACKFACE (back faces hits are ignored)
*/
2014-03-20 22:56:28 +11:00
bool BKE_shrinkwrap_project_normal(
char options, const float vert[3], const float dir[3],
const float ray_radius, const SpaceTransform *transf,
ShrinkwrapTreeData *tree, BVHTreeRayHit *hit)
{
/* don't use this because this dist value could be incompatible
* this value used by the callback for comparing prev/new dist values.
* also, at the moment there is no need to have a corrected 'dist' value */
// #define USE_DIST_CORRECT
float tmp_co[3], tmp_no[3];
const float *co, *no;
BVHTreeRayHit hit_tmp;
2012-10-20 20:20:02 +00:00
/* Copy from hit (we need to convert hit rays from one space coordinates to the other */
memcpy(&hit_tmp, hit, sizeof(hit_tmp));
2012-10-20 20:20:02 +00:00
/* Apply space transform (TODO readjust dist) */
if (transf) {
copy_v3_v3(tmp_co, vert);
BLI_space_transform_apply(transf, tmp_co);
co = tmp_co;
copy_v3_v3(tmp_no, dir);
BLI_space_transform_apply_normal(transf, tmp_no);
no = tmp_no;
#ifdef USE_DIST_CORRECT
hit_tmp.dist *= mat4_to_scale(((SpaceTransform *)transf)->local2target);
#endif
}
else {
co = vert;
no = dir;
}
hit_tmp.index = -1;
BLI_bvhtree_ray_cast(tree->bvh, co, no, ray_radius, &hit_tmp, tree->treeData.raycast_callback, &tree->treeData);
if (hit_tmp.index != -1) {
/* invert the normal first so face culling works on rotated objects */
if (transf) {
BLI_space_transform_invert_normal(transf, hit_tmp.no);
}
if (options & MOD_SHRINKWRAP_CULL_TARGET_MASK) {
/* apply backface */
const float dot = dot_v3v3(dir, hit_tmp.no);
if (((options & MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE) && dot <= 0.0f) ||
2012-11-05 04:19:30 +00:00
((options & MOD_SHRINKWRAP_CULL_TARGET_BACKFACE) && dot >= 0.0f))
{
2014-03-20 22:56:28 +11:00
return false; /* Ignore hit */
}
}
if (transf) {
/* Inverting space transform (TODO make coeherent with the initial dist readjust) */
BLI_space_transform_invert(transf, hit_tmp.co);
#ifdef USE_DIST_CORRECT
2012-11-05 04:19:30 +00:00
hit_tmp.dist = len_v3v3(vert, hit_tmp.co);
#endif
}
BLI_assert(hit_tmp.dist <= hit->dist);
memcpy(hit, &hit_tmp, sizeof(hit_tmp));
2014-03-20 22:56:28 +11:00
return true;
}
2014-03-20 22:56:28 +11:00
return false;
}
static void shrinkwrap_calc_normal_projection_cb_ex(
void *__restrict userdata,
const int i,
const ParallelRangeTLS *__restrict tls)
{
ShrinkwrapCalcCBData *data = userdata;
ShrinkwrapCalcData *calc = data->calc;
ShrinkwrapTreeData *tree = data->tree;
ShrinkwrapTreeData *aux_tree = data->aux_tree;
float *proj_axis = data->proj_axis;
SpaceTransform *local2aux = data->local2aux;
BVHTreeRayHit *hit = tls->userdata_chunk;
const float proj_limit_squared = calc->smd->projLimit * calc->smd->projLimit;
float *co = calc->vertexCos[i];
float tmp_co[3], tmp_no[3];
float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
if (calc->invert_vgroup) {
weight = 1.0f - weight;
}
if (weight == 0.0f) {
return;
}
if (calc->vert) {
2018-06-22 16:56:49 +02:00
/* calc->vert contains verts from evaluated mesh. */
/* this coordinated are deformed by vertexCos only for normal projection (to get correct normals) */
/* for other cases calc->varts contains undeformed coordinates and vertexCos should be used */
if (calc->smd->projAxis == MOD_SHRINKWRAP_PROJECT_OVER_NORMAL) {
copy_v3_v3(tmp_co, calc->vert[i].co);
normal_short_to_float_v3(tmp_no, calc->vert[i].no);
}
else {
copy_v3_v3(tmp_co, co);
copy_v3_v3(tmp_no, proj_axis);
}
}
else {
copy_v3_v3(tmp_co, co);
copy_v3_v3(tmp_no, proj_axis);
}
hit->index = -1;
hit->dist = BVH_RAYCAST_DIST_MAX; /* TODO: we should use FLT_MAX here, but sweepsphere code isn't prepared for that */
bool is_aux = false;
/* Project over positive direction of axis */
if (calc->smd->shrinkOpts & MOD_SHRINKWRAP_PROJECT_ALLOW_POS_DIR) {
if (aux_tree) {
if (BKE_shrinkwrap_project_normal(
2018-10-18 12:03:04 +11:00
0, tmp_co, tmp_no, 0.0,
local2aux, aux_tree, hit))
{
is_aux = true;
}
}
if (BKE_shrinkwrap_project_normal(
2018-10-18 12:03:04 +11:00
calc->smd->shrinkOpts, tmp_co, tmp_no, 0.0,
&calc->local2target, tree, hit))
{
is_aux = false;
}
}
/* Project over negative direction of axis */
if (calc->smd->shrinkOpts & MOD_SHRINKWRAP_PROJECT_ALLOW_NEG_DIR) {
float inv_no[3];
negate_v3_v3(inv_no, tmp_no);
char options = calc->smd->shrinkOpts;
if ((options & MOD_SHRINKWRAP_INVERT_CULL_TARGET) && (options & MOD_SHRINKWRAP_CULL_TARGET_MASK)) {
options ^= MOD_SHRINKWRAP_CULL_TARGET_MASK;
}
if (aux_tree) {
if (BKE_shrinkwrap_project_normal(
2018-10-18 12:03:04 +11:00
0, tmp_co, inv_no, 0.0,
local2aux, aux_tree, hit))
{
is_aux = true;
}
}
if (BKE_shrinkwrap_project_normal(
2018-10-18 12:03:04 +11:00
options, tmp_co, inv_no, 0.0,
&calc->local2target, tree, hit))
{
is_aux = false;
}
}
/* don't set the initial dist (which is more efficient),
* because its calculated in the targets space, we want the dist in our own space */
if (proj_limit_squared != 0.0f) {
if (hit->index != -1 && len_squared_v3v3(hit->co, co) > proj_limit_squared) {
hit->index = -1;
}
}
if (hit->index != -1) {
if (is_aux) {
BKE_shrinkwrap_snap_point_to_surface(
2018-10-18 12:03:04 +11:00
aux_tree, local2aux, calc->smd->shrinkMode,
hit->index, hit->co, hit->no, calc->keepDist, tmp_co, hit->co);
}
else {
BKE_shrinkwrap_snap_point_to_surface(
2018-10-18 12:03:04 +11:00
tree, &calc->local2target, calc->smd->shrinkMode,
hit->index, hit->co, hit->no, calc->keepDist, tmp_co, hit->co);
}
interp_v3_v3v3(co, co, hit->co, weight);
}
}
static void shrinkwrap_calc_normal_projection(ShrinkwrapCalcData *calc)
{
2012-10-20 20:20:02 +00:00
/* Options about projection direction */
float proj_axis[3] = {0.0f, 0.0f, 0.0f};
2012-10-20 20:20:02 +00:00
/* Raycast and tree stuff */
/** \note 'hit.dist' is kept in the targets space, this is only used
* for finding the best hit, to get the real dist,
* measure the len_v3v3() from the input coord to hit.co */
BVHTreeRayHit hit;
2012-10-20 20:20:02 +00:00
/* auxiliary target */
Mesh *auxMesh = NULL;
bool auxMesh_free;
ShrinkwrapTreeData *aux_tree = NULL;
ShrinkwrapTreeData aux_tree_stack;
SpaceTransform local2aux;
2012-10-20 20:20:02 +00:00
/* If the user doesn't allows to project in any direction of projection axis
* then there's nothing todo. */
2014-02-03 18:55:59 +11:00
if ((calc->smd->shrinkOpts & (MOD_SHRINKWRAP_PROJECT_ALLOW_POS_DIR | MOD_SHRINKWRAP_PROJECT_ALLOW_NEG_DIR)) == 0)
return;
2012-10-20 20:20:02 +00:00
/* Prepare data to retrieve the direction in which we should project each vertex */
if (calc->smd->projAxis == MOD_SHRINKWRAP_PROJECT_OVER_NORMAL) {
if (calc->vert == NULL) return;
}
else {
2012-10-20 20:20:02 +00:00
/* The code supports any axis that is a combination of X,Y,Z
* although currently UI only allows to set the 3 different axis */
if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_X_AXIS) proj_axis[0] = 1.0f;
if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_Y_AXIS) proj_axis[1] = 1.0f;
if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_Z_AXIS) proj_axis[2] = 1.0f;
normalize_v3(proj_axis);
2012-10-20 20:20:02 +00:00
/* Invalid projection direction */
2012-11-05 04:19:30 +00:00
if (len_squared_v3(proj_axis) < FLT_EPSILON) {
return;
}
}
if (calc->smd->auxTarget) {
auxMesh = BKE_modifier_get_evaluated_mesh_from_evaluated_object(calc->smd->auxTarget, &auxMesh_free);
if (!auxMesh)
return;
BLI_SPACE_TRANSFORM_SETUP(&local2aux, calc->ob, calc->smd->auxTarget);
}
if (BKE_shrinkwrap_init_tree(&aux_tree_stack, auxMesh, calc->smd->shrinkType, calc->smd->shrinkMode, false)) {
aux_tree = &aux_tree_stack;
}
/* After successfully build the trees, start projection vertices. */
ShrinkwrapCalcCBData data = {
.calc = calc, .tree = calc->tree, .aux_tree = aux_tree,
.proj_axis = proj_axis, .local2aux = &local2aux
};
ParallelRangeSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = (calc->numVerts > BKE_MESH_OMP_LIMIT);
settings.userdata_chunk = &hit;
settings.userdata_chunk_size = sizeof(hit);
BLI_task_parallel_range(0, calc->numVerts,
&data,
shrinkwrap_calc_normal_projection_cb_ex,
&settings);
/* free data structures */
if (aux_tree) {
BKE_shrinkwrap_free_tree(aux_tree);
}
if (auxMesh != NULL && auxMesh_free) {
BKE_id_free(NULL, auxMesh);
}
}
/*
* Shrinkwrap moving vertexs to the nearest surface point on the target
*
* it builds a BVHTree from the target mesh and then performs a
2012-03-01 12:20:18 +00:00
* NN matches for each vertex
*/
static void shrinkwrap_calc_nearest_surface_point_cb_ex(
void *__restrict userdata,
const int i,
const ParallelRangeTLS *__restrict tls)
{
ShrinkwrapCalcCBData *data = userdata;
ShrinkwrapCalcData *calc = data->calc;
BVHTreeFromMesh *treeData = &data->tree->treeData;
BVHTreeNearest *nearest = tls->userdata_chunk;
float *co = calc->vertexCos[i];
float tmp_co[3];
float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
if (calc->invert_vgroup) {
weight = 1.0f - weight;
}
if (weight == 0.0f) {
return;
}
/* Convert the vertex to tree coordinates */
if (calc->vert) {
copy_v3_v3(tmp_co, calc->vert[i].co);
}
else {
copy_v3_v3(tmp_co, co);
}
BLI_space_transform_apply(&calc->local2target, tmp_co);
/* Use local proximity heuristics (to reduce the nearest search)
*
* If we already had an hit before.. we assume this vertex is going to have a close hit to that other vertex
* so we can initiate the "nearest.dist" with the expected value to that last hit.
* This will lead in pruning of the search tree. */
if (nearest->index != -1)
nearest->dist_sq = len_squared_v3v3(tmp_co, nearest->co);
else
nearest->dist_sq = FLT_MAX;
BLI_bvhtree_find_nearest(treeData->tree, tmp_co, nearest, treeData->nearest_callback, treeData);
/* Found the nearest vertex */
if (nearest->index != -1) {
BKE_shrinkwrap_snap_point_to_surface(
2018-10-18 12:03:04 +11:00
data->tree, NULL, calc->smd->shrinkMode,
nearest->index, nearest->co, nearest->no, calc->keepDist, tmp_co, tmp_co);
/* Convert the coordinates back to mesh coordinates */
BLI_space_transform_invert(&calc->local2target, tmp_co);
interp_v3_v3v3(co, co, tmp_co, weight); /* linear interpolation */
}
}
/**
* Compute a smooth normal of the target (if applicable) at the hit location.
*
2018-10-18 12:03:04 +11:00
* \param tree: information about the mesh
* \param transform: transform from the hit coordinate space to the object space; may be null
* \param r_no: output in hit coordinate space; may be shared with inputs
*/
void BKE_shrinkwrap_compute_smooth_normal(
const struct ShrinkwrapTreeData *tree, const struct SpaceTransform *transform,
int looptri_idx, const float hit_co[3], const float hit_no[3], float r_no[3])
{
const BVHTreeFromMesh *treeData = &tree->treeData;
const MLoopTri *tri = &treeData->looptri[looptri_idx];
/* Interpolate smooth normals if enabled. */
if ((tree->mesh->mpoly[tri->poly].flag & ME_SMOOTH) != 0) {
const MVert *verts[] = {
&treeData->vert[treeData->loop[tri->tri[0]].v],
&treeData->vert[treeData->loop[tri->tri[1]].v],
&treeData->vert[treeData->loop[tri->tri[2]].v],
};
float w[3], no[3][3], tmp_co[3];
/* Custom and auto smooth split normals. */
if (tree->clnors) {
copy_v3_v3(no[0], tree->clnors[tri->tri[0]]);
copy_v3_v3(no[1], tree->clnors[tri->tri[1]]);
copy_v3_v3(no[2], tree->clnors[tri->tri[2]]);
}
/* Ordinary vertex normals. */
else {
normal_short_to_float_v3(no[0], verts[0]->no);
normal_short_to_float_v3(no[1], verts[1]->no);
normal_short_to_float_v3(no[2], verts[2]->no);
}
/* Barycentric weights from hit point. */
copy_v3_v3(tmp_co, hit_co);
if (transform) {
BLI_space_transform_apply(transform, tmp_co);
}
interp_weights_tri_v3(w, verts[0]->co, verts[1]->co, verts[2]->co, tmp_co);
/* Interpolate using weights. */
interp_v3_v3v3v3(r_no, no[0], no[1], no[2], w);
if (transform) {
BLI_space_transform_invert_normal(transform, r_no);
}
else {
normalize_v3(r_no);
}
}
/* Use the looptri normal if flat. */
else {
copy_v3_v3(r_no, hit_no);
}
}
/* Helper for MOD_SHRINKWRAP_INSIDE, MOD_SHRINKWRAP_OUTSIDE and MOD_SHRINKWRAP_OUTSIDE_SURFACE. */
static void shrinkwrap_snap_with_side(float r_point_co[3], const float point_co[3], const float hit_co[3], const float hit_no[3], float goal_dist, float forcesign, bool forcesnap)
{
float dist = len_v3v3(point_co, hit_co);
/* If exactly on the surface, push out along normal */
if (dist < FLT_EPSILON) {
madd_v3_v3v3fl(r_point_co, hit_co, hit_no, goal_dist * forcesign);
}
/* Move to the correct side if needed */
else {
float delta[3];
sub_v3_v3v3(delta, point_co, hit_co);
float dsign = signf(dot_v3v3(delta, hit_no));
/* If on the wrong side or too close, move to correct */
if (forcesnap || dsign * forcesign < 0 || dist < goal_dist) {
interp_v3_v3v3(r_point_co, point_co, hit_co, (dist - goal_dist * dsign * forcesign) / dist);
}
else {
copy_v3_v3(r_point_co, point_co);
}
}
}
/**
* Apply the shrink to surface modes to the given original coordinates and nearest point.
*
2018-10-18 12:03:04 +11:00
* \param tree: mesh data for smooth normals
* \param transform: transform from the hit coordinate space to the object space; may be null
* \param r_point_co: may be the same memory location as point_co, hit_co, or hit_no.
*/
void BKE_shrinkwrap_snap_point_to_surface(
const struct ShrinkwrapTreeData *tree, const struct SpaceTransform *transform,
int mode, int hit_idx, const float hit_co[3], const float hit_no[3], float goal_dist,
const float point_co[3], float r_point_co[3])
{
float dist, tmp[3];
switch (mode) {
/* Offsets along the line between point_co and hit_co. */
case MOD_SHRINKWRAP_ON_SURFACE:
if (goal_dist > 0 && (dist = len_v3v3(point_co, hit_co)) > FLT_EPSILON) {
interp_v3_v3v3(r_point_co, point_co, hit_co, (dist - goal_dist) / dist);
}
else {
copy_v3_v3(r_point_co, hit_co);
}
break;
case MOD_SHRINKWRAP_INSIDE:
shrinkwrap_snap_with_side(r_point_co, point_co, hit_co, hit_no, goal_dist, -1, false);
break;
case MOD_SHRINKWRAP_OUTSIDE:
shrinkwrap_snap_with_side(r_point_co, point_co, hit_co, hit_no, goal_dist, +1, false);
break;
case MOD_SHRINKWRAP_OUTSIDE_SURFACE:
if (goal_dist > 0) {
shrinkwrap_snap_with_side(r_point_co, point_co, hit_co, hit_no, goal_dist, +1, true);
}
else {
copy_v3_v3(r_point_co, hit_co);
}
break;
/* Offsets along the normal */
case MOD_SHRINKWRAP_ABOVE_SURFACE:
if (goal_dist > 0) {
BKE_shrinkwrap_compute_smooth_normal(tree, transform, hit_idx, hit_co, hit_no, tmp);
madd_v3_v3v3fl(r_point_co, hit_co, tmp, goal_dist);
}
else {
copy_v3_v3(r_point_co, hit_co);
}
break;
default:
printf("Unknown Shrinkwrap surface snap mode: %d\n", mode);
copy_v3_v3(r_point_co, hit_co);
}
}
static void shrinkwrap_calc_nearest_surface_point(ShrinkwrapCalcData *calc)
{
BVHTreeNearest nearest = NULL_BVHTreeNearest;
2012-10-20 20:20:02 +00:00
/* Setup nearest */
nearest.index = -1;
nearest.dist_sq = FLT_MAX;
2012-10-20 20:20:02 +00:00
/* Find the nearest vertex */
ShrinkwrapCalcCBData data = {.calc = calc, .tree = calc->tree};
ParallelRangeSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = (calc->numVerts > BKE_MESH_OMP_LIMIT);
settings.userdata_chunk = &nearest;
settings.userdata_chunk_size = sizeof(nearest);
BLI_task_parallel_range(0, calc->numVerts,
&data,
shrinkwrap_calc_nearest_surface_point_cb_ex,
&settings);
}
/* Main shrinkwrap function */
void shrinkwrapModifier_deform(ShrinkwrapModifierData *smd, struct Scene *scene, Object *ob, Mesh *mesh,
float (*vertexCos)[3], int numVerts)
{
DerivedMesh *ss_mesh = NULL;
ShrinkwrapCalcData calc = NULL_ShrinkwrapCalcData;
bool target_free;
/* remove loop dependencies on derived meshes (TODO should this be done elsewhere?) */
if (smd->target == ob) smd->target = NULL;
if (smd->auxTarget == ob) smd->auxTarget = NULL;
2012-10-20 20:20:02 +00:00
/* Configure Shrinkwrap calc data */
calc.smd = smd;
calc.ob = ob;
calc.numVerts = numVerts;
calc.vertexCos = vertexCos;
calc.invert_vgroup = (smd->shrinkOpts & MOD_SHRINKWRAP_INVERT_VGROUP) != 0;
2012-10-20 20:20:02 +00:00
/* DeformVertex */
calc.vgroup = defgroup_name_index(calc.ob, calc.smd->vgroup_name);
if (mesh) {
calc.dvert = mesh->dvert;
}
2012-03-07 04:53:43 +00:00
else if (calc.ob->type == OB_LATTICE) {
calc.dvert = BKE_lattice_deform_verts_get(calc.ob);
}
if (smd->target) {
calc.target = BKE_modifier_get_evaluated_mesh_from_evaluated_object(smd->target, &target_free);
2012-10-20 20:20:02 +00:00
/* TODO there might be several "bugs" on non-uniform scales matrixs
* because it will no longer be nearest surface, not sphere projection
* because space has been deformed */
BLI_SPACE_TRANSFORM_SETUP(&calc.local2target, ob, smd->target);
2012-10-20 20:20:02 +00:00
/* TODO: smd->keepDist is in global units.. must change to local */
calc.keepDist = smd->keepDist;
}
calc.vgroup = defgroup_name_index(calc.ob, smd->vgroup_name);
if (mesh != NULL && smd->shrinkType == MOD_SHRINKWRAP_PROJECT) {
2012-10-20 20:20:02 +00:00
/* Setup arrays to get vertexs positions, normals and deform weights */
calc.vert = mesh->mvert;
calc.dvert = mesh->dvert;
2012-10-20 20:20:02 +00:00
/* Using vertexs positions/normals as if a subsurface was applied */
if (smd->subsurfLevels) {
SubsurfModifierData ssmd = {{NULL}};
2012-10-20 20:20:02 +00:00
ssmd.subdivType = ME_CC_SUBSURF; /* catmull clark */
ssmd.levels = smd->subsurfLevels; /* levels */
/* TODO to be moved to Mesh once we are done with changes in subsurf code. */
DerivedMesh *dm = CDDM_from_mesh(mesh);
ss_mesh = subsurf_make_derived_from_derived(dm, &ssmd, scene, NULL, (ob->mode & OB_MODE_EDIT) ? SUBSURF_IN_EDIT_MODE : 0);
if (ss_mesh) {
calc.vert = ss_mesh->getVertDataArray(ss_mesh, CD_MVERT);
if (calc.vert) {
/* TRICKY: this code assumes subsurface will have the transformed original vertices
* in their original order at the end of the vert array. */
calc.vert = calc.vert + ss_mesh->getNumVerts(ss_mesh) - dm->getNumVerts(dm);
}
}
2012-10-20 20:20:02 +00:00
/* Just to make sure we are not leaving any memory behind */
BLI_assert(ssmd.emCache == NULL);
BLI_assert(ssmd.mCache == NULL);
dm->release(dm);
}
}
2012-10-20 20:20:02 +00:00
/* Projecting target defined - lets work! */
ShrinkwrapTreeData tree;
if (BKE_shrinkwrap_init_tree(&tree, calc.target, smd->shrinkType, smd->shrinkMode, false)) {
calc.tree = &tree;
switch (smd->shrinkType) {
case MOD_SHRINKWRAP_NEAREST_SURFACE:
TIMEIT_BENCH(shrinkwrap_calc_nearest_surface_point(&calc), deform_surface);
break;
case MOD_SHRINKWRAP_PROJECT:
TIMEIT_BENCH(shrinkwrap_calc_normal_projection(&calc), deform_project);
break;
case MOD_SHRINKWRAP_NEAREST_VERTEX:
TIMEIT_BENCH(shrinkwrap_calc_nearest_vertex(&calc), deform_vertex);
break;
}
BKE_shrinkwrap_free_tree(&tree);
}
2012-10-20 20:20:02 +00:00
/* free memory */
if (ss_mesh)
ss_mesh->release(ss_mesh);
if (target_free && calc.target) {
BKE_id_free(NULL, calc.target);
}
}